Exploring the Antibacterial and Biosensing Applications of Peroxidase-Mimetic Ni0.1Cu0.9S Nanoflower
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Synthesis of Ni0.1Cu0.9S Nanoflower
2.3. Peroxidase-Like Property of Ni0.1Cu0.9S Nanoflower
2.4. Antibacterial Experiments In Vitro
2.5. Detection and Analysis of Ascorbic Acid
3. Results
3.1. Component and Structure Characterization of Ni0.1Cu0.9S Nanoflower
3.2. Peroxidase-Like Property of Ni0.1Cu0.9S Nanoflower
3.3. Antibacterial Activity Evaluation
3.4. Determination and Colorimetric Assay of Ascorbic Acid
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, K.; Chen, K.; Prior, T.J.; Feng, X.; Redshaw, C. Pd-Immobilized Schiff Base Double-Layer Macrocycle: Synthesis, Structures, Peroxidase Mimic Activity, and Antibacterial Performance. ACS Appl. Mater. Interfaces 2022, 14, 1423–1433. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Lou, R.; Pan, W.; Li, N.; Tang, B. Nanoenzymes in Disease Diagnosis and Therapy. Chem. Commun. 2020, 56, 15513–15524. [Google Scholar] [CrossRef] [PubMed]
- Jin, C.; Lian, J.; Gao, Y.; Guo, K.; Wu, K.; Gao, L.; Zhang, X.; Zhang, X.; Liu, Q. Si Doped CoO Nanorods as Peroxidase Mimics for Colorimetric Sensing of Reduced Glutathione. ACS Sustain. Chem. Eng. 2019, 7, 13989–13998. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Y.; Zhang, D. Exploring the Bactericidal Performance and Application of Novel mimic Enzyme Co4S3. J. Colloid Interface Sci. 2020, 561, 327–337. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, Y.; Zhang, D.; Chen, C. Intrinsic Oxidase-like Nanoenzyme Co4S3/Co(OH)2 Hybrid Nanotubes with Broad-Spectrum Antibacterial Activity. ACS Appl. Mater. Interfaces 2020, 12, 29614–29624. [Google Scholar] [CrossRef]
- Karim, M.N.; Singh, M.; Weerathunge, P.; Bian, P.; Zheng, R.; Dekiwadia, C.; Ahmed, T.; Walia, S.; Della Gaspera, E.; Singh, S.; et al. Visible-Light-Triggered Reactive-Oxygen-Species-Mediated Antibacterial Activity of Peroxidase-Mimic CuO Nanorods. ACS Appl. Nano Mater. 2018, 1, 1694–1704. [Google Scholar] [CrossRef]
- Meng, X.; Li, D.; Chen, L.; He, H.; Wang, Q.; Hong, C.; He, J.; Gao, X.; Yang, Y.; Jiang, B.; et al. High-Performance Self-Cascade Pyrite Nanozymes for Apoptosis–Ferroptosis Synergistic Tumor Therapy. ACS Nano 2021, 15, 5735–5751. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X.; Chu, C.; Zhou, Z.; Chen, B.; Pang, X.; Lin, G.; Lin, H.; Guo, Y.; Ren, E.; et al. Genetically Engineered Magnetic Nanocages for Cancer Magneto-Catalytic Theranostics. Nat. Commun. 2020, 11, 5421. [Google Scholar] [CrossRef]
- Wu, J.; Yang, Q.; Li, Q.; Li, H.; Li, F. Two-Dimensional MnO2 Nanozyme-Mediated Homogeneous Electrochemical Detection of Organophosphate Pesticides without the Interference of H2O2 and Color. Anal. Chem. 2021, 93, 4084–4091. [Google Scholar] [CrossRef]
- Chang, Y.; Liu, M.; Liu, J. Highly Selective Fluorescent Sensing of Phosphite through Recovery of Poisoned Nickel Oxide Nanozyme. Anal. Chem. 2020, 92, 3118–3124. [Google Scholar] [CrossRef]
- Ge, C.; Wu, R.; Chong, Y.; Fang, G.; Jiang, X.; Pan, Y.; Chen, C.; Yin, J.-J. Synthesis of Pt Hollow Nanodendrites with Enhanced Peroxidase-Like Activity against Bacterial Infections: Implication for Wound Healing. Adv. Funct. Mater. 2018, 28, 1801484. [Google Scholar] [CrossRef]
- Xu, B.; Wang, H.; Wang, W.; Gao, L.; Li, S.; Pan, X.; Wang, H.; Yang, H.; Meng, X.; Wu, Q.; et al. A Single-Atom Nanozyme for Wound Disinfection Applications. Angew. Chem. Int. Ed. 2019, 58, 4911–4916. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhu, W.; Zhou, Y.; Li, Q.; Jiao, L.; Qiu, H.; Bing, W.; Zhang, Z. A Biodegradable and Near-Infrared Light-Activatable Photothermal Nanoconvertor for Bacterial Inactivation. J.Mater. Chem. B 2022, 10, 3834–3840. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Zhang, X.; Li, S.; Tan, J.; Xu, C.; Huang, Y. MOF-Derived Co3O4@Co-Fe Oxide Double-Shelled Nanocages as Multi-Functional Specific Peroxidase-Like Nanozyme Catalysts for Chemo/Biosensing and Dye Degradation. Chem. Eng. J. 2020, 395, 125130. [Google Scholar] [CrossRef]
- Hui, S.; Liu, Q.; Huang, Z.; Yang, J.; Liu, Y.; Jiang, S. Gold Nanoclusters-Decorated Zeolitic Imidazolate Frameworks with Reactive Oxygen Species Generation for Photoenhanced Antibacterial Study. Bioconjugate Chem. 2020, 31, 2439–2445. [Google Scholar] [CrossRef]
- Zhang, S.; Lu, Q.; Wang, F.; Xiao, Z.; He, L.; He, D.; Deng, L. Gold–Platinum Nanodots with High-Peroxidase-like Activity and Photothermal Conversion Efficiency for Antibacterial Therapy. ACS Appl. Mater. Interfaces 2021, 13, 37535–37544. [Google Scholar] [CrossRef]
- Kohanski, M.A.; Dwyer, D.J.; Hayete, B.; Lawrence, C.A.; Collins, J.J. A Common Mechanism of Cellular Death Induced by Bactericidal Antibiotics. Cell 2007, 130, 797–810. [Google Scholar] [CrossRef] [Green Version]
- Han, Q.; Lau, J.W.; Do, T.C.; Zhang, Z.; Xing, B. Near-Infrared Light Brightens Bacterial Disinfection: Recent Progress and Perspectives. ACS Appl. Bio. Mater. 2021, 4, 3937–3961. [Google Scholar] [CrossRef]
- Bilici, K.; Atac, N.; Muti, A.; Baylam, I.; Dogan, O.; Sennaroglu, A.; Can, F.; Yagci Acar, H. Broad Spectrum Antibacterial Photodynamic and Photothermal Therapy Achieved with Indocyanine Green Loaded SPIONs under near Infrared Irradiation. Biomater. Sci. 2020, 8, 4616–4625. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, G.; Zhang, H.; Liu, X.; Shi, J.; Shi, H.; Yao, X.; Chu, P.K.; Zhang, X. A Bifunctional Hydrogel Incorporated with CuS@MoS2 Microspheres for Disinfection and Improved Wound Healing. Chem. Eng. J. 2020, 382, 122849. [Google Scholar] [CrossRef]
- Zhu, W.; Wang, L.; Li, Q.; Jiao, L.; Yu, X.; Gao, X.; Qiu, H.; Zhang, Z.; Bing, W. Will the Bacteria Survive in the CeO2 Nanozyme-H2O2 System? Molecules 2021, 26, 3747. [Google Scholar] [CrossRef] [PubMed]
- Wei, G.; Yang, G.; Wang, Y.; Jiang, H.; Fu, Y.; Yue, G.; Ju, R. Phototherapy-Based Combination Strategies for Bacterial Infection Treatment. Theranostics 2020, 10, 12241–12262. [Google Scholar] [CrossRef] [PubMed]
- Qin, J.; Feng, Y.; Cheng, D.; Liu, B.; Wang, Z.; Zhao, Y.; Wei, J. Construction of a Mesoporous Ceria Hollow Sphere/Enzyme Nanoreactor for Enhanced Cascade Catalytic Antibacterial Therapy. ACS Appl. Mater. Interfaces 2021, 13, 40302–40314. [Google Scholar] [CrossRef] [PubMed]
- Yin, W.; Yu, J.; Lv, F.; Yan, L.; Zheng, L.R.; Gu, Z.; Zhao, Y. Functionalized Nano-MoS2 with Peroxidase Catalytic and Near-Infrared Photothermal Activities for Safe and Synergetic Wound Antibacterial Applications. ACS Nano 2016, 10, 11000–11011. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Fang, Y.; Zhang, X. Bacterial Detection and Elimination Using a Dual-Functional Porphyrin-Based Porous Organic Polymer with Peroxidase-Like and High Near-Infrared-Light-Enhanced Antibacterial Activity. ACS Appl. Mater. Interfaces 2020, 12, 8989–8999. [Google Scholar] [CrossRef]
- Lu, M.; Li, B.; Guan, L.; Li, K.; Lin, Y. Carbon-Shielded Three-Dimensional Co–Mn Nanowire Array Anchored on Ni Foam with Dual-Enzyme Mimic Performance for Selective Detection of Ascorbic Acid. ACS Sustain. Chem. Eng. 2019, 7, 15471–15478. [Google Scholar] [CrossRef]
- Zheng, X.; Lian, Q.; Zhou, L.; Jiang, Y.; Gao, J. Peroxidase Mimicking of Binary Polyacrylonitrile-CuO Nanoflowers and the Application in Colorimetric Detection of H2O2 and Ascorbic Acid. ACS Sustain. Chem. Eng. 2021, 9, 7030–7043. [Google Scholar] [CrossRef]
- Bai, Q.; Liang, M.; Wu, W.; Zhang, C.; Li, X.; Liu, M.; Yang, D.; Yu, W.W.; Hu, Q.; Wang, L.; et al. Plasmonic Nanozyme of Graphdiyne Nanowalls Wrapped Hollow Copper Sulfide Nanocubes for Rapid Bacteria-Killing. Adv. Funct. Mater. 2022, 32, 2112683. [Google Scholar] [CrossRef]
- Xie, Y.; Gan, C.; Li, Z.; Liu, W.; Yang, D.; Qiu, X. Fabrication of a Lignin-Copper Sulfide-Incorporated PVA Hydrogel with Near-Infrared-Activated Photothermal/Photodynamic/Peroxidase-like Performance for Combating Bacteria and Biofilms. ACS Biomater. Sci. Eng. 2022, 8, 560–569. [Google Scholar] [CrossRef]
- Liu, Y.; Nie, N.; Tang, H.; Zhang, C.; Chen, K.; Wang, W.; Liu, J. Effective Antibacterial Activity of Degradable Copper-Doped Phosphate-Based Glass Nanozymes. ACS Appl. Mater. Interfaces 2021, 13, 11631–11645. [Google Scholar] [CrossRef]
- Ye, Y.; Xiao, L.; Bin, H.; Zhang, Q.; Nie, T.; Yang, X.; Wu, D.; Cheng, H.; Li, P.; Wang, Q. Oxygen-Tuned Nanozyme Polymerization for the Preparation of Hydrogels with Printable and Antibacterial Properties. J. Mater. Chem. B 2017, 5, 1518–1524. [Google Scholar] [CrossRef] [PubMed]
- Golchin, J.; Golchin, K.; Alidadian, N.; Ghaderi, S.; Eslamkhah, S.; Eslamkhah, M.; Akbarzadeh, A. Nanozyme Applications in Biology and Medicine: An Overview. Artif. Cell. Nanomed. B 2017, 45, 1069–1076. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, Y.; Su, D.; Wang, X.; Wu, S.; Zhou, L.; Shi, Y.; Fang, S.; Cheng, H.-M.; Li, F. CuS Microspheres with Tunable Interlayer Space and Micropore as a High-Rate and Long-Life Anode for Sodium-Ion Batteries. Adv. Energy Mater. 2018, 8, 1800930. [Google Scholar] [CrossRef]
- Wang, P.; Gao, Y.; Li, P.; Zhang, X.; Niu, H.; Zheng, Z. Doping Zn2+ in CuS Nanoflowers into Chemically Homogeneous Zn0.49Cu0.50S1.01 Superlattice Crystal Structure as High-Efficiency n-Type Photoelectric Semiconductors. ACS Appl. Mater. Interfaces 2016, 8, 15820–15827. [Google Scholar] [CrossRef]
- Zhao, D.; Yin, M.; Feng, C.; Zhan, K.; Jiao, Q.; Li, H.; Zhao, Y. Rational Design of N-Doped CuS@C Nanowires toward High-Performance Half/Full Sodium-Ion Batteries. ACS Sustain. Chem. Eng. 2020, 8, 11317–11327. [Google Scholar] [CrossRef]
- Shang, M.; Xu, S.; Li, J.; Sun, H.; Peng, J.; Wang, S.; Zhang, M. CuS Hollow Nanospheres/Cellulose Composite Film as a Recyclable Interfacial Photothermal Evaporator for Solar Steam Generation. Energy Technol. 2022, 10, 2100805. [Google Scholar] [CrossRef]
- Tian, Q.; Tang, M.; Sun, Y.; Zou, R.; Chen, Z.; Zhu, M.; Yang, S.; Wang, J.; Wang, J.; Hu, J. Hydrophilic Flower-Like CuS Superstructures as an Efficient 980 nm Laser-Driven Photothermal Agent for Ablation of Cancer Cells. Adv. Mater. 2011, 23, 3542–3547. [Google Scholar] [CrossRef]
- Liang, H.; Shuang, W.; Zhang, Y.; Chao, S.; Han, H.; Wang, X.; Zhang, H.; Yang, L. Graphene-Like Multilayered CuS Nanosheets Assembled into Flower-Like Microspheres and Their Electrocatalytic Oxygen Evolution Properties. ChemElectroChem 2018, 5, 494–500. [Google Scholar] [CrossRef]
- Dubale, A.A.; Tamirat, A.G.; Chen, H.-M.; Berhe, T.A.; Pan, C.-J.; Su, W.-N.; Hwang, B.-J. A Highly Stable CuS and CuS–Pt Modified Cu2O/CuO Heterostructure as An Efficient Photocathode for the Hydrogen Evolution Reaction. J. Mater. Chem. A 2016, 4, 2205–2216. [Google Scholar] [CrossRef]
- Wang, L.; Cao, L.; Liu, X.; Zhang, W.; Liu, W.; Shen, X.; Wang, Y.; Yao, T. Strong Ni–S Hybridization in a Crystalline NiS Electrocatalyst for Robust Acidic Oxygen Evolution. J. Phys. Chem. C 2020, 124, 2756–2761. [Google Scholar] [CrossRef]
- Kwon, I.S.; Kwak, I.H.; Debela, T.T.; Abbas, H.G.; Park, Y.C.; Ahn, J.-P.; Park, J.; Kang, H.S. Se-Rich MoSe2 Nanosheets and Their Superior Electrocatalytic Performance for Hydrogen Evolution Reaction. ACS Nano 2020, 14, 6295–6304. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Gu, M.; Liu, S.; Sheng, T.; Zhang, X. Iron Doped in the Subsurface of CuS Nanosheets by Interionic Redox: Highly Efficient Electrocatalysts toward the Oxygen Evolution Reaction. ACS Appl. Mater. Interfaces 2021, 13, 16210–16217. [Google Scholar] [CrossRef] [PubMed]
- Liao, Z.-Y.; Gao, W.-W.; Shao, N.-N.; Zuo, J.-M.; Wang, T.; Xu, M.-Z.; Zhang, F.-X.; Xia, Y.-M. Iron Phosphate Nanozyme–Hydrogel with Multienzyme-like Activity for Efficient Bacterial Sterilization. ACS Appl. Mater. Interfaces 2022, 14, 18170–18181. [Google Scholar] [CrossRef] [PubMed]
- Song, W.; Chi, M.; Gao, M.; Zhao, B.; Wang, C.; Lu, X. Self-Assembly Directed Synthesis of Au Nanorices Induced by Polyaniline and their Enhanced Peroxidase-Like Catalytic Properties. J. Mater. Chem. C 2017, 5, 7465–7471. [Google Scholar] [CrossRef]
- Wang, M.; Zhou, X.; Wang, S.; Xie, X.; Wang, Y.; Su, X. Fabrication of Bioresource-Derived Porous Carbon-Supported Iron as an Efficient Oxidase Mimic for Dual-Channel Biosensing. Anal. Chem. 2021, 93, 3130–3137. [Google Scholar] [CrossRef]
- Gao, L.; Zhuang, J.; Nie, L.; Zhang, J.; Zhang, Y.; Gu, N.; Wang, T.; Feng, J.; Yang, D.; Perrett, S.; et al. Intrinsic Peroxidase-Like Activity of Ferromagnetic Nanoparticles. Nat. Nanotechnol. 2007, 2, 577–583. [Google Scholar] [CrossRef]
- Wang, Z.; Li, G.; Gao, Y.; Yu, Y.; Yang, P.; Li, B.; Wang, X.; Liu, J.; Chen, K.; Liu, J.; et al. Trienzyme-Like Iron Phosphates-Based (FePOs) Nanozyme for Enhanced Anti-Tumor Efficiency with Minimal Side Effects. Chem. Eng. J. 2021, 404, 125574. [Google Scholar] [CrossRef]
- Xi, J.; Wei, G.; An, L.; Xu, Z.; Xu, Z.; Fan, L.; Gao, L. Copper/Carbon Hybrid Nanozyme: Tuning Catalytic Activity by the Copper State for Antibacterial Therapy. Nano Lett. 2019, 19, 7645–7654. [Google Scholar] [CrossRef]
- Shao, W.; Liu, X.; Min, H.; Dong, G.; Feng, Q.; Zuo, S. Preparation, Characterization, and Antibacterial Activity of Silver Nanoparticle-Decorated Graphene Oxide Nanocomposite. ACS Appl. Mater. Interfaces 2015, 7, 6966–6973. [Google Scholar] [CrossRef]
- Courtney Colleen, M.; Goodman Samuel, M.; Nagy Toni, A.; Levy, M.; Bhusal, P.; Madinger Nancy, E.; Detweiler Corrella, S.; Nagpal, P.; Chatterjee, A. Potentiating Antibiotics in Drug-Resistant Clinical Isolates via Stimuli-Activated Superoxide Generation. Sci. Adv. 2017, 3, e1701776. [Google Scholar] [CrossRef]
- Singh, N.; Savanur, M.A.; Srivastava, S.; D’Silva, P.; Mugesh, G. A Redox Modulatory Mn3O4 Nanozyme with Multi-Enzyme Activity Provides Efficient Cytoprotection to Human Cells in a Parkinson’s Disease Model. Angew. Chem. Int. Ed. 2017, 56, 14267–14271. [Google Scholar] [CrossRef] [PubMed]
- Su, W.; Chen, J.; Wu, L.; Wang, X.; Wang, X.; Fu, X. Visible Light Photocatalysis on Praseodymium(III)-Nitrate-Modified TiO2 Prepared by An Ultrasound Method. Appl. Catal. B Environ. 2008, 77, 264–271. [Google Scholar] [CrossRef]
- Tokura, Y.; Moriyama, Y.; Hiruta, Y.; Shiratori, S. Paper-Based Assay for Ascorbic Acid Based on the Formation of Ag Nanoparticles in Layer-by-Layer Multilayers. ACS Appl. Nano Mater. 2019, 2, 241–249. [Google Scholar] [CrossRef]
- He, Y.; Li, N.; Lian, J.; Yang, Z.; Liu, Z.; Liu, Q.; Zhang, X.; Zhang, X. Colorimetric Ascorbic Acid Sensing from A Synergetic Catalytic Strategy Based on 5,10,15,20-Tetra (4-Pyridyl)-21H,23H-Porphyrin Functionalized CuS Nanohexahedrons with the Enhanced Peroxidase-like Activity. Colloids Surf. A 2020, 598, 124855. [Google Scholar] [CrossRef]
- Swaidan, A.; Borthakur, P.; Boruah, P.K.; Das, M.R.; Barras, A.; Hamieh, S.; Toufaily, J.; Hamieh, T.; Szunerits, S.; Boukherroub, R. A Facile Preparation of CuS-BSA Nanocomposite as Enzyme Mimics: Application for Selective and Sensitive Sensing of Cr(VI) Ions. Sens. Actuators B 2019, 294, 253–262. [Google Scholar] [CrossRef]
- Li, Y.; Kang, Z.; Kong, L.; Shi, H.; Zhang, Y.; Cui, M.; Yang, D.-P. MXene-Ti3C2/CuS Nanocomposites: Enhanced Peroxidase-like Activity and Sensitive Colorimetric Cholesterol Detection. Mater. Sci. Eng. C 2019, 104, 110000. [Google Scholar] [CrossRef]
- Tu, X.; Ge, L.; Deng, L.; Zhang, L. Morphology Adjustment and Optimization of CuS as Enzyme Mimics for the High Efficient Colorimetric Determination of Cr(VI) in Water. Nanomaterials 2022, 12, 13423. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.-N.; Sun, X.-T.; Chen, L.; Xu, Z.-R. Boron Nitride Nanosheet/CuS Nanocomposites as Mimetic Peroxidase for Sensitive Colorimetric Detection of Cholesterol. Sens. Actuators B 2017, 246, 118–126. [Google Scholar] [CrossRef]
- Swaidan, A.; Barras, A.; Addad, A.; Tahon, J.-F.; Toufaily, J.; Hamieh, T.; Szunerits, S.; Boukherroub, R. Colorimetric Sensing of Dopamine in Beef Meat using Copper Sulfide Encapsulated within Bovine Serum Albumin Functionalized with Copper Phosphate (CuS-BSA-Cu3(PO4)2) Nanoparticles. J. Colloid Interface Sci. 2021, 582, 732–740. [Google Scholar] [CrossRef]
- Liu, H.-Y.; Xu, H.-X.; Zhu, L.-L.; Wen, J.-J.; Qiu, Y.-B.; Gu, C.-C.; Li, L.-H. Colorimetric Detection of Hydrogen Peroxide and Glutathione Based on Peroxidase Mimetic Activity of Fe3O4-sodium Lignosulfonate Nanoparticles. Chinese J. Anal. Chem. 2021, 49, e21160–e21169. [Google Scholar] [CrossRef]
- Hashmi, S.; Singh, M.; Weerathunge, P.; Mayes, E.L.H.; Mariathomas, P.D.; Prasad, S.N.; Ramanathan, R.; Bansal, V. Cobalt Sulfide Nanosheets as Peroxidase Mimics for Colorimetric Detection of l-Cysteine. ACS Appl. Nano Mater. 2021, 4, 13352–13362. [Google Scholar] [CrossRef]
- Lian, M.; Liu, M.; Zhang, X.; Zhang, W.; Zhao, J.; Zhou, X.; Chen, D. Template-Regulated Bimetallic Sulfide Nanozymes with High Specificity and Activity for Visual Colorimetric Detection of Cellular H2O2. ACS Appl. Mater. Interfaces 2021, 13, 53599–53609. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; Li, H.; Wu, T.; Zhao, H.; Gao, Y.; Zhu, X.; Liu, Q. Pt Deposited on Sea Urchin-like CuCo2O4 Nanowires: Preparation, the Excellent Peroxidase-like Activity and the Colorimetric Detection of Sulfide Ions. J. Environ. Chem. Eng. 2022, 10, 107228. [Google Scholar] [CrossRef]
- Zhao, T.; Zhu, C.; Xu, S.; Wu, X.; Zhang, X.; Zheng, Y.; Wu, M.; Tong, Z.; Fang, W.; Zhang, K. Fluorescent Color Analysis of Ascorbic Acid by Ratiometric Fluorescent Paper Utilizing Hybrid Carbon Dots-Silica Coated Quantum dots. Dyes Pigm. 2021, 186, 108995. [Google Scholar] [CrossRef]
- Tarighat, M.A.; Ghorghosheh, F.H.; Abdi, G. Fe3O4@SiO2-Ag Nanocomposite Colorimetric Sensor for Determination of Arginine and Ascorbic Acid Based on Synthesized Small Size AgNPs by Cystoseria Algae Extract. Mater. Sci. Eng. B-Adv. 2022, 283, 115855. [Google Scholar] [CrossRef]
- Wang, Y.-N.; Wang, S.-D.; Fan, Y.; Yu, L.; Zha, R.-H.; Liu, L.-J.; Wen, L.-M.; Chang, X.-P.; Liu, H.-Q.; Zou, G.-D. A Dual-Chemosensor Based on Ni-CP: Fluorescence Turn-on Sensing toward Ascorbic Acid and Turn-Off Sensing toward Acetylacetone. J. Lumin. 2022, 243, 118680. [Google Scholar] [CrossRef]
- Han, Y.; Luo, L.; Zhang, L.; Kang, Y.; Sun, H.; Dan, J.; Sun, J.; Zhang, W.; Yue, T.; Wang, J. Oxidase-like Fe–Mn Bimetallic Nanozymes for Colorimetric Detection of Ascorbic Acid in Kiwi Fruit. LWT 2022, 154, 112821. [Google Scholar] [CrossRef]
- Doan, V.-D.; Nguyen, V.-C.; Nguyen, T.-L.-H.; Nguyen, A.-T.; Nguyen, T.-D. Highly Sensitive and Low-Cost Colourimetric Detection of Glucose and Ascorbic Acid Based on Silver Nanozyme Biosynthesized by Gleditsia Australis Fruit. Spectrochim. Acta Part A 2022, 268, 120709. [Google Scholar] [CrossRef]
- He, J.; He, D.; Yang, L.; Wu, G.-L.; Tian, J.; Liu, Y.; Wang, W. Preparation of Urchin-like Pd-Pt-Ir Nanozymes and Their Application for the Detection of Ascorbic Acid and Hydrogen Peroxide. Mater. Lett. 2022, 314, 131851. [Google Scholar] [CrossRef]
- Wu, P.; Huang, Y.; Zhao, X.; Lin, D.; Xie, L.; Li, Z.; Zhu, Z.; Zhao, H.; Lan, M. MnFe2O4/MoS2 Nanocomposite as Oxidase-like for Electrochemical Simultaneous Detection of Ascorbic Acid, Dopamine and Uric Acid. Microchem. J. 2022, 181, 107780. [Google Scholar] [CrossRef]
- Lin, S.; Liu, S.; Dai, G.; Zhang, X.; Xia, F.; Dai, Y. A Click-Induced Fluorescence-Quenching Sensor Based on Gold Nanoparticles for Detection of Copper(II) Ion and Ascorbic Acid. Dyes Pigm. 2021, 195, 109726. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; Lai, Y.; Cao, J.; Peng, Y.; Tian, T.; Fu, W. Exploring the Antibacterial and Biosensing Applications of Peroxidase-Mimetic Ni0.1Cu0.9S Nanoflower. Biosensors 2022, 12, 874. https://doi.org/10.3390/bios12100874
Liu L, Lai Y, Cao J, Peng Y, Tian T, Fu W. Exploring the Antibacterial and Biosensing Applications of Peroxidase-Mimetic Ni0.1Cu0.9S Nanoflower. Biosensors. 2022; 12(10):874. https://doi.org/10.3390/bios12100874
Chicago/Turabian StyleLiu, Li, Yayu Lai, Jinming Cao, Yu Peng, Tian Tian, and Wensheng Fu. 2022. "Exploring the Antibacterial and Biosensing Applications of Peroxidase-Mimetic Ni0.1Cu0.9S Nanoflower" Biosensors 12, no. 10: 874. https://doi.org/10.3390/bios12100874
APA StyleLiu, L., Lai, Y., Cao, J., Peng, Y., Tian, T., & Fu, W. (2022). Exploring the Antibacterial and Biosensing Applications of Peroxidase-Mimetic Ni0.1Cu0.9S Nanoflower. Biosensors, 12(10), 874. https://doi.org/10.3390/bios12100874