Biosensor Based on Peroxidase-Mimetic Nanozyme and Lactate Oxidase for Accurate L-Lactate Analysis in Beverages
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis and Functionalization of Carbon Microfibers
2.3. Estimation of Peroxidase Activity of Synthesized Nanozymes
2.4. Scanning Electron Microscopy and X-ray Microanalysis
2.5. Electrochemical Analysis
2.6. Preparation of L-Lactate Selective Bioelectrodes
2.7. Preparation and Analysis of Real Samples
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Davis, C.R.; Wibowo, D.; Eschenbruch, R.; Lee, T.H.; Fleet, G.H. Practical Implications of Malolactic Fermentation: A Review. Am. J. Enol. Vitic. 1985, 36, 290–301. [Google Scholar]
- Katrlı́k, J.; Pizzariello, A.; Mastihuba, V.; Švorc, J.; Stred’anský, M.; Miertuš, S. Biosensors for L-malate and L-lactate based on solid binding matrix. Anal. Chim. Acta 1999, 379, 193–200. [Google Scholar] [CrossRef]
- Istrate, O.; Rotariu, L.; Bala, C. Amperometric L-Lactate Biosensor Based upon a Gold Nanoparticles/Reduced Graphene Oxide/Polyallylamine Hydrochloride Modified Screen-Printed Graphite Electrode. Chemosensors 2021, 9, 74. [Google Scholar] [CrossRef]
- Yu, Q.; Chen, J.; Xu, J.; Chen, L.; Song, Y.; Xie, X.; Jin, J.; Liu, H.; Liu, J.; Zhang, F.; et al. Smartphone-Based and Miniaturized Electrochemical Biosensing System for L-Lactate Detection. J. Electrochem. Soc. 2022, 169, 047514. [Google Scholar] [CrossRef]
- Smutok, O.; Karkovska, M.; Serkiz Ya Vus, B.; Čenas, N.; Gonchar, M. Development of a new mediatorless biosensor based on flavocytochrome b2 immobilized onto gold nanolayer for non-invasive L-lactate analysis of human liquids. Sens. Actuators B Chem. 2017, 250, 469–475. [Google Scholar] [CrossRef]
- Karkovska, M.; Smutok, O.; Stasyuk, N.; Gonchar, M. L-lactate-selective microbial sensor based on flavocytochrome b2-enriched yeast cells using recombinant and nanotechnology approaches. Talanta 2015, 144, 1195–1200. [Google Scholar] [CrossRef] [PubMed]
- Smutok, O.; Kavetskyy, T.; Gonchar, M.; Katz, E. Microbial L- and D-lactate selective oxidoreductases as a very prospective but still uncommon tool in commercial biosensors. ChemElectroChem 2021, 8, 4725–4731. [Google Scholar] [CrossRef]
- Bravo, I.; Revenga-Parra, M.; Pariente, F.; Lorenzo, E. Reagent-Less and Robust Biosensor for Direct Determination of Lactate in Food Samples. Sensors 2017, 17, 144. [Google Scholar] [CrossRef] [Green Version]
- Cunha-Silva, H.; Julia Arcos-Martinez, M. Dual range lactate oxidase-based screen printed amperometric biosensor for analysis of lactate in diversified samples. Talanta 2018, 188, 779–787. [Google Scholar] [CrossRef]
- Wang, R.; Zhai, Q.; An, T.; Gong, S.; Cheng, W. Stretchable gold fiber-based wearable textile electrochemical biosensor for lactate monitoring in sweat. Talanta 2021, 222, 121484. [Google Scholar] [CrossRef]
- Chaubey, A.; Pande, K.; Singh, V.; Malhotra, B. Co-immobilization of lactate oxidase and lactate dehy drogenase on conducting polyaniline films. Anal. Chim. Acta 2000, 407, 97–103. [Google Scholar] [CrossRef]
- Kucherenko, D.; Kucherenko, I.; Soldatkin, O.; Topolnikova, Y.; Dzyadevych, S.; Soldatkin, A. A highly selective amperometric biosensor array for the simultaneous determination of glutamate, glucose, choline, acetylcholine, lactate and pyruvate. Bioelectrochemistry 2019, 128, 100–108. [Google Scholar] [CrossRef] [PubMed]
- Shkotova, L.; Bohush, A.; Voloshina, I.; Smutok, O.; Dzyadevych, S. Amperometric biosensor modified with platinum and palladium nanoparticles for detection of lactate concentrations in wine. SN Appl. Sci. 2019, 1, 306. [Google Scholar] [CrossRef] [Green Version]
- Hasebe, Y.; Gu, T.; Fueki, T. Lactate biosensor based on coupled lactate oxidase/peroxidase system incorporated into the DNA/poly(allylamine) polyelectrolyte membrane. Sens. Lett. 2005, 3, 304–308. [Google Scholar] [CrossRef]
- Wang, X.; Dong, S.; Wei, H. Recent Advances on Nanozyme-based Electrochemical Biosensors. Electroanalysis 2022, 34, 1–13. [Google Scholar] [CrossRef]
- Breslow, R.; Overman, L.E. An “Artificial Enzyme” combining a metal catalytic group and a hydrophobic binding cavity. J. Am. Chem. Soc. 1970, 92, 1075–1077. [Google Scholar] [CrossRef]
- Liang, X.; Han, L. White Peroxidase-Mimicking Nanozymes: Colorimetric Pesticide Assay without Interferences of O2 and Color. Adv. Funct. Mater. 2020, 30, 2001933. [Google Scholar] [CrossRef]
- Komkova, M.; Andreeva, K.; Zarochintsev, A.; Karyakin, A. Nanozymes “ArtificialPeroxidase”: Enzyme Oxidase Mixtures for Single-Step Fabrication of Advanced Electrochemical Biosensors. ChemElectroChem 2021, 8, 1117–1122. [Google Scholar] [CrossRef]
- Stasyuk, N.; Smutok, O.; Demkiv, O.; Prokopiv, T.; Gayda, G.; Nisnevitch, M.; Gonchar, M. Synthesis, catalytic properties and application in biosensorics of nanozymes and electronanocatalysts: A Review. Sensors 2020, 20, 4509. [Google Scholar] [CrossRef]
- Nguyen, P.T.; Lee, J.; Cho, A.; Kim, M.S.; Choi, D.; Han, J.W.; Kim, M.I.; Lee, J. Rational Development of Co-Doped Mesoporous Ceria with High Peroxidase-Mimicking Activity at Neutral pH for Paper-Based Colorimetric Detection of Multiple Biomarkers. Adv. Funct. Mater. 2022, 32, 2112428. [Google Scholar] [CrossRef]
- Maťko, I.; Šauša, O.; Čechová, K.; Novák, I.; Švajdlenková, H.; Berek, D.; Pecz, M. Porous carbon fibers prepared from cellulose. J. Therm. Anal. Calorim. 2019, 138, 1997–2004. [Google Scholar] [CrossRef]
- Kavetskyy, T.; Smutok, O.; Demkiv, O.; Maťko, I.; Švajdlenková, H.; Šauša, O.; Novák, I.; Berek, D.; Čechová, K.; Pecz, M.; et al. Microporous carbon fibers as electroconductive immobilization matrixes: Effect of their structure on operational parameters of laccase-based amperometric biosensor. Mater. Sci. Eng. C 2020, 109, 110570. [Google Scholar] [CrossRef]
- Guo, Y.; Deng, L.; Li, J.; Guo, S.; Wang, E.; Dong, S. Hemin-graphene hybrid nanosheets with intrinsic peroxidase-like activity for label-free colorimetric detection of single-nucleotide polymorphism. ACS Nano 2011, 5, 1282–1290. [Google Scholar] [CrossRef] [PubMed]
- Smutok, O.; Kavetskyy, T.; Prokopiv, T.; Serkiz, R.; Wojnarowska-Nowak, R.; Šauša, O.; Novák, I.; Berek, D.; Melman, A.; Gonchar, M. New micro/nanocomposite with peroxidase-like activity in construction of oxidases-based amperometric biosensors for ethanol and glucose analysis. Anal. Chim. Acta 2021, 1143, 201–209. [Google Scholar] [CrossRef]
- Turkevich, J.; Stevenson, P.L.; Hillier, J. A study of the nucleation and growth process in the synthesis of colloidal gold. Discuss. Faraday Soc. 1951, 11, 55–75. [Google Scholar] [CrossRef]
- Mika, A.; Lüthje, S. Properties of guaiacol peroxidase activities isolated from corn root plasma membranes. Plant. Physiol. 2003, 132, 1489–1498. [Google Scholar] [CrossRef] [Green Version]
- Graham, R.B.; Paramjit, S.G. Estimates of Precision in a Standard Addition Analysis. J. Chem. Educ. 1999, 76, 805–807. [Google Scholar]
- Zhao, Y.; Liang, X.; Chen, D.; Bian, X.; Liu, W.; Han, L. Denatured proteins show new vitality: Green synthesis of germanium oxide hollow microspheres with versatile functions by denaturing proteins around bubbles. Aggregate 2022, e204. [Google Scholar] [CrossRef]
- Gonchar, M.; Smutok, O.; Os’mak, H. Flavocytochrome b2-Based Enzymatic Composition, Method and Kit for L-Lactate. International Patent No. WO/2009/009656, 15 January 2009. Available online: http://www.wipo.int/pctdb/en/wo.jsp?WO=2009009656 (accessed on 8 October 2022).
Sample | Methods | |
---|---|---|
Biosensor | Enzymatic | |
Must | 1.55 ± 0.04 | 1.55 ± 0.35 |
Wine | 9.8 ± 0.3 | 10.4 ± 0.9 |
R = 0.999 |
Sensing Element/Electrode | Sample | Wp, V | LOD, µM | Linearity, mM | Sensitivity, A·M−1·m−2 | Ref. |
---|---|---|---|---|---|---|
GA-LDH-AuNPs-ERGO-PAH/SPE | wine yogurt | +0.5 | 1.0 | 0.5–3.0 4.0–16.0 | 108.0 28.0 | [3] |
LDH-CS-Fc/SPCE | serum | +0.38 | 9.1 | 0.05–10.0 | N/A | [4] |
FCb2-AuNPs/SPGE | saliva sweat | +0.25 | 100 | 0.3–2.0 | 106.0 | [5] |
Lox-3,4DHS-AuNPs/SPCE | wine beer yogurt | +0.3 | 2.6 | up to 0.8 | 406.1 | [8] |
Lox-Cu-MOF-CS-/Pt-SPCE | wines saliva sweat | +0.15 | 0.75 | 0.00075–1.0 | 1627.7 | [9] |
PB-LOx-CS-AuNWs/TE | sweat juice | −0.1 | 137 | 5.0–30.0 | 1913.0 | [10] |
Lox-BSA-GlOH-GA/PtE | N/A | +0.6 | 3.0 | 0.005–0.4 | 1150.0 | [12] |
Lox-Pt&PdNPs/SPCE | wines | +0.6 | 0.1 | 0.05–0.8 | 300.0 | [13] |
Lox-CF-H-PtMPs/GE | must wine | −0.1 | 2.0 | 0.005–0.14 | 5232.9 | this work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smutok, O.; Kavetskyy, T.; Prokopiv, T.; Serkiz, R.; Šauša, O.; Novák, I.; Švajdlenková, H.; Maťko, I.; Gonchar, M.; Katz, E. Biosensor Based on Peroxidase-Mimetic Nanozyme and Lactate Oxidase for Accurate L-Lactate Analysis in Beverages. Biosensors 2022, 12, 1042. https://doi.org/10.3390/bios12111042
Smutok O, Kavetskyy T, Prokopiv T, Serkiz R, Šauša O, Novák I, Švajdlenková H, Maťko I, Gonchar M, Katz E. Biosensor Based on Peroxidase-Mimetic Nanozyme and Lactate Oxidase for Accurate L-Lactate Analysis in Beverages. Biosensors. 2022; 12(11):1042. https://doi.org/10.3390/bios12111042
Chicago/Turabian StyleSmutok, Oleh, Taras Kavetskyy, Tetiana Prokopiv, Roman Serkiz, Ondrej Šauša, Ivan Novák, Helena Švajdlenková, Igor Maťko, Mykhailo Gonchar, and Evgeny Katz. 2022. "Biosensor Based on Peroxidase-Mimetic Nanozyme and Lactate Oxidase for Accurate L-Lactate Analysis in Beverages" Biosensors 12, no. 11: 1042. https://doi.org/10.3390/bios12111042
APA StyleSmutok, O., Kavetskyy, T., Prokopiv, T., Serkiz, R., Šauša, O., Novák, I., Švajdlenková, H., Maťko, I., Gonchar, M., & Katz, E. (2022). Biosensor Based on Peroxidase-Mimetic Nanozyme and Lactate Oxidase for Accurate L-Lactate Analysis in Beverages. Biosensors, 12(11), 1042. https://doi.org/10.3390/bios12111042