Accurate and Rapid Genetic Tracing the Authenticity of Floral Originated Honey with the Molecular Lateral Flow Strip
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Rapid Pre-Treatment of Honey Samples for Genetic Tracing of Authenticity
2.3. Preparation of GNPs and GNP-Labeled Anti-FITC Antibody Conjugates
2.4. Assembly of LFS for Rapid Analysis of Functional Amplicons
2.5. On-Site Rapid Production of Functional Amplicons of Honey for LFS Analysis
3. Results and Discussion
3.1. Working Principle of the Rapid Genetic Authentication Strategy with Molecular LFS
3.2. Optimization of Rapid Pretreatment of Honey Samples
3.3. Optimization of On-Site Amplification and Molecular LFS Detections
3.4. Verification of the Practical Performance of Rapid Genetic Authentication Strategy with Molecular LFS
3.5. Practical Application of Genetic Authentication Strategy for Commercial Honey Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Soares, S.; Amaral, J.S.; Oliveira, M.; Mafra, I.A. Comprehensive Review on the Main Honey Authentication Issues: Production and Origin. Compr. Rev. Food Sci. F 2017, 16, 1072–1100. [Google Scholar] [CrossRef] [Green Version]
- Geana, E.I.; Ciucure, C.T. Establishing authenticity of honey via comprehensive Romanian honey analysis. Food Chem. 2020, 306, 125595. [Google Scholar] [CrossRef]
- Bruni, I.; Galimberti, A.; Caridi, L.; Scaccabarozzi, D.; De Mattia, F.; Casiraghi, M.; Labra, M. A DNA barcoding approach to identify plant species in multiflower honey. Food Chem. 2015, 170, 308–315. [Google Scholar] [CrossRef]
- Kaskoniene, V.; Venskutonis, P.R. Floral Markers in Honey of Various Botanical and Geographic Origins: A Review. Compr. Rev. Food Sci. Food Saf. 2010, 9, 620–634. [Google Scholar] [CrossRef]
- Laube, I.; Hird, H.; Brodmann, P.; Ullmann, S.; Schöne-Michling, M.; Chisholm, J.; Broll, H. Development of primer and probe sets for the detection of plant species in honey. Food Chem. 2010, 118, 979–986. [Google Scholar] [CrossRef]
- Solayman, M.; Islam, M.A.; Paul, S.; Ali, Y.; Khalil, M.I.; Alam, N.; Gan, S.H. Physicochemical Properties, Minerals, Trace Elements, and Heavy Metals in Honey of Different Origins: A Comprehensive Review. Compr. Rev. Food Sci. Food Saf. 2016, 15, 219–233. [Google Scholar] [CrossRef]
- Czipa, N.; Phillips, C.J.C.; Kovacs, B. Composition of acacia honeys following processing, storage and adulteration. J. Food Sci. Technol. 2019, 56, 1245–1255. [Google Scholar] [CrossRef] [Green Version]
- Sobrino-Gregorio, L.; Vilanova, S.; Prohens, J.; Escriche, I. Detection of honey adulteration by conventional and real-time PCR. Food Control 2019, 95, 57–62. [Google Scholar] [CrossRef]
- Li, J.D.; Du, Z.R.; Liu, J.; Xu, Y.Y.; Wang, R.Q.; Yin, J. Characteristics of pollen-related food allergy based on individual pollen allergy profiles in the Chinese population. World Allergy Organ. J. 2020, 13, 100120. [Google Scholar] [CrossRef]
- Muzalyova, A.; Brunner, J.O.; Traidl-Hoffmann, C.; Damialis, A. Pollen allergy and health behavior: Patients trivializing their disease. Aerobiologia 2019, 35, 327–341. [Google Scholar] [CrossRef]
- Wu, Y.; Yang, Y.; Liu, M.; Wang, B.; Li, M.; Chen, Y. Molecular Tracing of the Origin of Six Different Plant Species in Bee Honey Using Real-Time PCR. J. AOAC Int. 2017, 100, 744–752. [Google Scholar] [CrossRef] [PubMed]
- Prosser, S.W.J.; Hebert, P.D.N. Rapid identification of the botanical and entomological sources of honey using DNA metabarcoding. Food Chem. 2017, 214, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Naila, A.; Flint, S.H.; Sulaiman, A.Z.; Ajit, A.; Weeds, Z. Classical and novel approaches to the analysis of honey and detection of adulterants. Food Control 2018, 90, 152–165. [Google Scholar] [CrossRef]
- Soares, S.; Amaral, J.S.; Oliveira, M.B.P.P.; Mafra, I. Improving DNA isolation from honey for the botanical origin identification. Food Control 2015, 48, 130–136. [Google Scholar] [CrossRef] [Green Version]
- Soares, S.; Grazina, L.; Mafra, I.; Costa, J.; Pinto, M.A.; Oliveira, M.; Amaral, J.S. Towards honey authentication: Differentiation of Apis mellifera subspecies in European honeys based on mitochondrial DNA markers. Food Chem. 2019, 283, 294–301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, H.; Jin, W.; Wu, H.; Wang, F.; You, C.; Peng, Y.; Jia, S. Isolation and PCR Detection of Foreign DNA Sequences in Bee Honey Raised on Genetically Modified Bt (Cry 1 Ac) Cotton. Food Bioprod. Process. 2007, 85, 141–145. [Google Scholar] [CrossRef]
- Yao, H.; Song, J.; Liu, C.; Luo, K.; Han, J.; Li, Y.; Pang, X.; Xu, H.; Zhu, Y.; Xiao, P.; et al. Use of ITS2 region as the universal DNA barcode for plants and animals. PLoS ONE 2010, 5, e13102. [Google Scholar] [CrossRef] [Green Version]
- Valentini, A.; Miquel, C.; Taberlet, P. DNA Barcoding for Honey Biodiversity. Diversity 2010, 2, 610–617. [Google Scholar] [CrossRef] [Green Version]
- Waiblinger, H.U.; Ohmenhaeuser, M.; Meissner, S.; Schillinger, M.; Pietsch, K.; Goerlich, O.; Mankertz, J.; Lieske, K.; Broll, H. In-house and interlaboratory validation of a method for the extraction of DNA from pollen in honey. J. Verbrauch Leb. 2012, 7, 243–254. [Google Scholar] [CrossRef]
- Guertler, P.; Eicheldinger, A.; Muschler, P.; Goerlich, O.; Busch, U. Automated DNA extraction from pollen in honey. Food Chem. 2014, 149, 302–306. [Google Scholar] [CrossRef]
- Qin, P.; Qiao, D.; Xu, J.; Song, Q.; Yao, L.; Lu, J.; Chen, W. Rapid visual sensing and quantitative identification of duck meat in adulterated beef with a lateral flow strip platform. Food Chem. 2019, 294, 224–230. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Cai, F.; Wu, Q.; Wu, Y.; Xu, J. Prediction, evaluation, confirmation, and elimination of matrix effects for lateral flow test strip based rapid and on-site detection of aflatoxin B1 in tea soups. Food Chem. 2020, 328, 127081. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Q.; Chen, Q.; Yan, C.; Xu, J.; Chen, Z.; Yao, L.; Lu, J.; Yao, B.; Chen, W. Accurate and Rapid Genetic Tracing the Authenticity of Floral Originated Honey with the Molecular Lateral Flow Strip. Biosensors 2022, 12, 971. https://doi.org/10.3390/bios12110971
Wu Q, Chen Q, Yan C, Xu J, Chen Z, Yao L, Lu J, Yao B, Chen W. Accurate and Rapid Genetic Tracing the Authenticity of Floral Originated Honey with the Molecular Lateral Flow Strip. Biosensors. 2022; 12(11):971. https://doi.org/10.3390/bios12110971
Chicago/Turabian StyleWu, Qian, Qi Chen, Chao Yan, Jianguo Xu, Zhaoran Chen, Li Yao, Jianfeng Lu, Bangben Yao, and Wei Chen. 2022. "Accurate and Rapid Genetic Tracing the Authenticity of Floral Originated Honey with the Molecular Lateral Flow Strip" Biosensors 12, no. 11: 971. https://doi.org/10.3390/bios12110971
APA StyleWu, Q., Chen, Q., Yan, C., Xu, J., Chen, Z., Yao, L., Lu, J., Yao, B., & Chen, W. (2022). Accurate and Rapid Genetic Tracing the Authenticity of Floral Originated Honey with the Molecular Lateral Flow Strip. Biosensors, 12(11), 971. https://doi.org/10.3390/bios12110971