Highly Sensitive Detection of PQS Quorum Sensing in Pseudomonas Aeruginosa Using Screen-Printed Electrodes Modified with Nanomaterials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Instruments
2.3. Methods
2.3.1. Electrochemical Methods
2.3.2. Quantification Method
2.3.3. Interference Studies
2.3.4. Real Samples Analysis
2.3.5. Estimation of the Number of Microorganisms
3. Results and Discussion
3.1. Electrochemical Detection of PQS
3.1.1. Electrochemical Behavior on Different Electrode Materials
3.1.2. Influence of Electrolyte pH on the Detection of PQS
3.1.3. The Appropriate Electrochemical Technique for PQS Detection
3.1.4. Influence of the Scan Rate
3.2. Calibration Curve and Limit of Detection
3.3. Reproducibility Studies
3.4. Interference Studies
3.5. Real Samples Analysis
3.5.1. Spiked Human Urine, Serum, and Culture Media
3.5.2. P. aeruginosa Cultures Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Capatina, D.; Feier, B.; Hosu, O.; Tertis, M.; Cristea, C. Analytical Methods for the Characterization and Diagnosis of Infection with Pseudomonas Aeruginosa: A Critical Review. Anal. Chim. Acta 2022, 1204, 339696. [Google Scholar] [CrossRef] [PubMed]
- Szabó, S.; Feier, B.; Capatina, D.; Tertis, M.; Cristea, C.; Popa, A. An Overview of Healthcare Associated Infections and Their Detection Methods Caused by Pathogen Bacteria in Romania and Europe. J. Clin. Med. 2022, 11, 3204. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Publishes List of Bacteria for Which New Antibiotics Are Urgently Needed. Available online: https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed (accessed on 7 July 2022).
- Saeki, E.K.; Kobayashi, R.K.T.; Nakazato, G. Quorum Sensing System: Target to Control the Spread of Bacterial Infections. Microb. Pathog. 2020, 142, 104068. [Google Scholar] [CrossRef]
- Vadakkan, K.; Choudhury, A.A.; Gunasekaran, R.; Hemapriya, J.; Vijayanand, S. Quorum Sensing Intervened Bacterial Signaling: Pursuit of Its Cognizance and Repression. J. Genet. Eng. Biotechnol. 2018, 16, 239–252. [Google Scholar] [CrossRef] [PubMed]
- Miller, C.; Gilmore, J. Detection of Quorum-Sensing Molecules for Pathogenic Molecules Using Cell-Based and Cell-Free Biosensors. Antibiotics 2020, 9, 259. [Google Scholar] [CrossRef] [PubMed]
- Turnpenny, P.; Padfield, A.; Barton, P.; Teague, J.; Rahme, L.G.; Pucci, M.J.; Zahler, R.; Rubio, A. Bioanalysis of Pseudomonas Aeruginosa Alkyl Quinolone Signalling Molecules in Infected Mouse Tissue Using LC–MS/MS; and Its Application to a Pharmacodynamic Evaluation of MvfR Inhibition. J. Pharm. Biomed. Anal. 2017, 139, 44–53. [Google Scholar] [CrossRef] [PubMed]
- Maurer, C.K.; Steinbach, A.; Hartmann, R.W. Development and Validation of a UHPLC-MS/MS Procedure for Quantification of the Pseudomonas Quinolone Signal in Bacterial Culture after Acetylation for Characterization of New Quorum Sensing Inhibitors. J. Pharm. Biomed. Anal. 2013, 86, 127–134. [Google Scholar] [CrossRef]
- Montagut, E.J.; Martin-Gomez, M.T.; Marco, M.P. An Immunochemical Approach to Quantify and Assess the Potential Value of the Pseudomonas Quinolone Signal as a Biomarker of Infection. Anal. Chem. 2021, 93, 4859–4866. [Google Scholar] [CrossRef]
- Abdalla, M.Y.; Hoke, T.; Seravalli, J.; Switzer, B.L.; Bavitz, M.; Fliege, J.D.; Murphy, P.J.; Britigan, B.E. Pseudomonas Quinolone Signal Induces Oxidative Stress and Inhibits Heme Oxygenase-1 Expression in Lung Epithelial Cells. Infect. Immun. 2017, 85. [Google Scholar] [CrossRef]
- Buzid, A.; Luong, J.H.T.; Reen, F.J.; O’Gara, F.; Glennon, J.D.; McGlacken, G.P. Rapid Electrochemical Detection of Pseudomonas Aeruginosa Signaling Molecules by Boron-Doped Diamond Electrode. Methods Mol. Biol. 2018, 1673, 107–116. [Google Scholar] [CrossRef]
- Oziat, J.; Cohu, T.; Elsen, S.; Gougis, M.; Malliaras, G.G.; Mailley, P. Electrochemical Detection of Redox Molecules Secreted by Pseudomonas Aeruginosa—Part 1: Electrochemical Signatures of Different Strains. Bioelectrochemistry 2021, 140, 107747. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Glennon, J.D.; Luong, J.H.T.; Reen, F.J.; O’Gara, F.; McSweeney, C.; McGlacken, G.P. Detection of the Pseudomonas Quinolone Signal (PQS) by Cyclic Voltammetry and Amperometry Using a Boron Doped Diamond Electrode. Chem. Commun. 2011, 47, 10347–10349. [Google Scholar] [CrossRef]
- Buzid, A.; Shang, F.; Reen, F.J.; Muimhneacháin, E.; Clarke, S.L.; Zhou, L.; Luong, J.H.T.; O’Gara, F.; McGlacken, G.P.; Glennon, J.D. Molecular Signature of Pseudomonas Aeruginosa with Simultaneous Nanomolar Detection of Quorum Sensing Signaling Molecules at a Boron-Doped Diamond Electrode. Sci. Rep. 2016, 6, 30001. [Google Scholar] [CrossRef] [PubMed]
- Oziat, J.; Gougis, M.; Malliaras, G.G.; Mailley, P. Electrochemical Characterizations of Four Main Redox–Metabolites of Pseudomonas Aeruginosa. Electroanalysis 2017, 29, 1332–1340. [Google Scholar] [CrossRef]
- Buzid, A.; Reen, F.J.; Langsi, V.K.; Muimhneacháin, E.; O’Gara, F.; McGlacken, G.P.; Luong, J.H.T.; Glennon, J.D. Direct and Rapid Electrochemical Detection of Pseudomonas Aeruginosa Quorum Signaling Molecules in Bacterial Cultures and Cystic Fibrosis Sputum Samples through Cationic Surfactant-Assisted Membrane Disruption. ChemElectroChem 2017, 4, 533–541. [Google Scholar] [CrossRef]
- Suresh, R.R.; Lakshmanakumar, M.; Arockia Jayalatha, J.B.B.; Rajan, K.S.; Sethuraman, S.; Krishnan, U.M.; Rayappan, J.B.B. Fabrication of Screen-Printed Electrodes: Opportunities and Challenges. J. Mater. Sci. 2021, 56, 8951–9006. [Google Scholar] [CrossRef]
- Couto, R.A.S.; Lima, J.L.F.C.; Quinaz, M.B. Recent Developments, Characteristics and Potential Applications of Screen-Printed Electrodes in Pharmaceutical and Biological Analysis. Talanta 2016, 146, 801–814. [Google Scholar] [CrossRef]
- Power, A.C.; Gorey, B.; Chandra, S.; Chapman, J. Carbon Nanomaterials and Their Application to Electrochemical Sensors: A Review. Nanotechnol. Rev. 2018, 7, 19–41. [Google Scholar] [CrossRef]
- Capatina, D.; Lupoi, T.; Feier, B.; Blidar, A.; Hosu, O.; Tertis, M.; Olah, D.; Cristea, C.; Oprean, R. Label-Free Electrochemical Aptasensor for the Detection of the 3-O-C12-HSL Quorum-Sensing Molecule in Pseudomonas Aeruginosa. Biosensors 2022, 12, 440. [Google Scholar] [CrossRef]
- Lépine, F.; Déziel, E.; Milot, S.; Rahme, L.G. A Stable Isotope Dilution Assay for the Quantification of the Pseudomonas Quinolone Signal in Pseudomonas Aeruginosa Cultures. Biochim. Biophys. Acta-Gen. Subj. 2003, 1622, 36–41. [Google Scholar] [CrossRef]
- Oziat, J.; Elsen, S.; Qwens, R.M.; Malliaras, G.; Mailley, P. Electrochemistry Provides a Simple Way to Monitor Pseudomonas Aeruginosa Metabolites. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015. [Google Scholar]
- Burgoyne, E.D.; Molina-Osorio, A.F.; Moshrefi, R.; Shanahan, R.; McGlacken, G.P.; Stockmann, T.J.; Scanlon, M.D. Detection of Pseudomonas Aeruginosa Quorum Sensing Molecules at an Electrified Liquid|liquid Micro-Interface through Facilitated Proton Transfer. Analyst 2020, 145, 7000–7008. [Google Scholar] [CrossRef] [PubMed]
- Fujitani, S.; Moffett, K.S.; Yu, V.L. Pseudomonas Aeruginosa. Antimicrobe: Infect. Dis. Antimicrob. Agents 2019, 2, 1–25. [Google Scholar] [CrossRef]
- Blidar, A.; Feier, B.; Tertis, M.; Galatus, R.; Cristea, C. Electrochemical Surface Plasmon Resonance (EC-SPR) Aptasensor for Ampicillin Detection. Anal. Bioanal. Chem. 2019, 411, 1053–1065. [Google Scholar] [CrossRef] [PubMed]
Electrode | Peak 1 | Peak 2 | Peak 3 | Peak 4 | ||||
---|---|---|---|---|---|---|---|---|
Height (µA) | Position (V) | Height (µA) | Position (V) | Height (µA) | Position (V) | Height (µA) | Position (V) | |
C-SPE | 5.741 | 0.240 | 2.117 | 0.565 | 2.638 | 0.802 | 6.547 | 1.070 |
BDD-SPE | 2.358 | 0.430 | 0.912 | 0.802 | 1.091 | 1.0458 | −3.000 | −0.304 |
Pt-SPE | - | - | 5.500 | 0.579 | - | - | - | - |
C-SPE/AuNPs (35 cycles of 1.5 mM HAuCl4) | 4.860 | 0.269 | 2.046 | 0.603 | 6.856 | 0.987 | 1.034 | 1.099 |
C-SPE/AuNPs (35 cycles of 5 mM HAuCl4) | 8.724 | 0.252 | 3.039 | 0.565 | 10.212 | 0.950 | 2.640 | 1.078 |
GNP-SPE | 3.608 | 0.252 | 0.903 | 0.582 | 1.163 | 0.816 | 1.556 | 1.082 |
OMC-SPE | 21.640 | 0.318 | 6.200 | 0.600 | 1.792 | 0.858 | 6.240 | 1.150 |
CNT-SPE | 11.913 | 0.274 | 3.241 | 0.582 | 3.161 | 0.826 | 5.646 | 1.104 |
GPH-SPE | 8.301 | 0.276 | 1.890 | 0.525 | 0.034 | 0.857 | 0.697 | 1.146 |
GCE | - | - | 3.542 | 0.640 | 0.742 | 0.980 | 0.923 | 1.202 |
CPE | - | - | 2.206 | 0.667 | 0.632 | 1.034 | 1.292 | 1.212 |
Electrolyte | Peak 1 | Peak 2 | Peak 3 | Peak 4 | ||||
---|---|---|---|---|---|---|---|---|
Height (µA) | Position (V) | Height (µA) | Position (V) | Height (µA) | Position (V) | Height (µA) | Position (V) | |
H2SO4 1 M | 95.877 | 0.287 | 2.672 | 0.544 | 7.764 | 0.871 | 11.091 | 1.058 |
H2SO4 0.5 M | 99.677 | 0.237 | 3.672 | 0.524 | 4.613 | 0.771 | 16.494 | 1.023 |
H2SO4 0.1 M | 73.367 | 0.207 | 3.741 | 0.549 | 4.456 | 0.766 | 11.983 | 1.028 |
H2SO4 0.01 M | 1.275 | 0.171 | - | - | - | - | - | - |
PB 0.02 M, pH 2 | 28.532 | 0.222 | 0.774 | 0.600 | 0.746 | 0.801 | 2.293 | 1.048 |
PB 0.02 M, pH 3 | 14.823 | 0.197 | 0.290 | 0.590 | 0.594 | 0.786 | 1.268 | 1.022 |
PB 0.02 M, pH 4 | 5.780 | 0.096 | 0.114 | 0.564 | - | - | 0.652 | 0.967 |
Acetate buffer 0.1 M, pH 4 | 5.634 | 0.242 | 0.125 | 0.433 | 0.850 | 0.871 | 0.570 | 1.073 |
Acetate buffer 0.1 M, pH 5 | 3.135 | 0.041 | 0.281 | 0.529 | 1.049 | 0.892 | - | - |
PBS 0.02 M, pH 6 | 2.315 | 0.167 | 0.187 | 0.670 | - | - | - | - |
PBS 0.02 M, pH 7 | 2.144 | 0.111 | 0.201 | 0.620 | - | - | - | - |
PBS 0.02 M, pH 8 | 1.777 | 0.056 | 0.114 | 0.584 | - | - | - | - |
PBS 0.02 M, pH 9 | 1.512 | 0.015 | 0.140 | 0.554 | - | - | - | - |
NaOH 0.5 M | - | - | 5.66 | 0.509 | - | - | - | - |
Electrode | Technique | Linear Range (µM) | LOD (µM) | Interferents | Sample | Ref. |
---|---|---|---|---|---|---|
GCE | SWV | 5–80 | - | - | Standard solution | [15] |
GCE/ PEDOT-GCE | SWV | 5–70 | 5 | PYO, 2-AA | LB medium with P. aeruginosa | [22] |
BDDE | DPV | 5–50 | 4.85 | PYO, HHQ | Spiked LB broth and CF sputum samples | [11] |
BDDE | DPV | 2–100 | 0.25 | PYO, HHQ | Spiked sputum samples | [14] |
BDDE | Amperometry | - | 0.001 | HHQ | Culture media with bacteria | [13] |
Micro-liquid–liquid interface | ITIES | 2–100 | 1.1 | HHQ | Sputum extracts | [23] |
CNT-SPE | DPV | 0.05–20 | 0.05 | C4-HSL, 3-O-C12-HSL, PYO, APAP, GEN, CEF, UA, GLU | Spiked urine, serum and culture media; culture media with bacteria | This work |
Sample | Spiked PQS Conc. (μM) | Found PQS Conc. (μM) | Recovery (%) |
---|---|---|---|
Urine | 1 | 1.18 | 118 ± 0.05 |
Serum | 1 | 0.9684 | 96.84 ± 0.15 |
NB | 1 | 1.022 | 102.2 ± 0.10 |
Time | P. aeruginosa ATCC 27853 | P. aeruginosa Clinical Isolate | ||
---|---|---|---|---|
No. of Colonies (CFU mL−1) | PQS Conc. (µM) | No. of Colonies (CFU mL−1) | PQS Conc. (µM) | |
16 h | 6.35 × 107 | 1.77 ± 0.01 | 3.6 × 107 | 1.87 ± 0.02 |
24 h | 59 × 107 | 1.79 ± 0.03 | 32 × 107 | 2.19 ± 0.02 |
48 h | 14.51 × 1010 | 1.84 ± 0.04 | 7.85 × 1010 | 3.57 ± 0.01 |
72 h | 3587 × 1010 | 2.58 ± 0.01 | 2017 × 1010 | 7.25 ± 0.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Capatina, D.; Lupoi, T.; Feier, B.; Olah, D.; Cristea, C.; Oprean, R. Highly Sensitive Detection of PQS Quorum Sensing in Pseudomonas Aeruginosa Using Screen-Printed Electrodes Modified with Nanomaterials. Biosensors 2022, 12, 638. https://doi.org/10.3390/bios12080638
Capatina D, Lupoi T, Feier B, Olah D, Cristea C, Oprean R. Highly Sensitive Detection of PQS Quorum Sensing in Pseudomonas Aeruginosa Using Screen-Printed Electrodes Modified with Nanomaterials. Biosensors. 2022; 12(8):638. https://doi.org/10.3390/bios12080638
Chicago/Turabian StyleCapatina, Denisa, Teodora Lupoi, Bogdan Feier, Diana Olah, Cecilia Cristea, and Radu Oprean. 2022. "Highly Sensitive Detection of PQS Quorum Sensing in Pseudomonas Aeruginosa Using Screen-Printed Electrodes Modified with Nanomaterials" Biosensors 12, no. 8: 638. https://doi.org/10.3390/bios12080638
APA StyleCapatina, D., Lupoi, T., Feier, B., Olah, D., Cristea, C., & Oprean, R. (2022). Highly Sensitive Detection of PQS Quorum Sensing in Pseudomonas Aeruginosa Using Screen-Printed Electrodes Modified with Nanomaterials. Biosensors, 12(8), 638. https://doi.org/10.3390/bios12080638