Characterizing the Impedance Properties of Dry E-Textile Electrodes Based on Contact Force and Perspiration
Abstract
:1. Introduction
- Dry e-textile electrode design and fabrication: E-textile electrodes (six embroidered [E1–E6], one knit [E7]) were fabricated with different structural characteristics (uniform layout vs non-uniform layout). The changes in electrode layout and stitch density can influence impedance due to factors such as contact area, number, and length of conduction pathways available to the electrode.
- Electrode impedance characterization: To understand the influence of contact force and electrode impedance, electrode characterization uses a conductive agar-based skin phantom. We describe the process of creating the agar skin phantom using a 3D-printed mold with an integrated electrode.
- Perspiration exposure analysis: Prior inquiries have characterized the influence of contact force and electrode shape on impedance. The effect of controlled perspiration exposure, however, has seen limited exploration. We report of changes in impedance for different dry e-textile electrodes under varying loads (weights) before and after exposure to synthetic perspiration using a moisture management tester.
- ECG signal acquisition: The evaluation of the signal-to-noise ratio for ECG signals acquired using these different dry electrodes and gel electrodes.
2. Background and Related Works
2.1. Skin–Electrode Impedance
2.2. Comparison of Dry Electrodes
3. Materials and Methods
3.1. Dry E-Textile Electrode Fabrication
3.2. Agar-Based Skin Electrical Phantom
3.3. Dry Impedance Test
3.4. Controlled Perspiration Exposure Test
- L-histidine monohydrochloride monohydrate (0.5 g) [C6H9O2N3·HCl·H2O]
- Sodium chloride (5 g) [NaCl]
- Disodium hydrogen orthophosphatedodecahydrate (5 g) [Na2HPO4·12H2O]
- Disodium hydrogen orthophosphate dihydrate (2.5 g) [Na2HPO4·2H2O]
3.5. Electrocardiogram (ECG) Signal-to-Noise Test
4. Results
4.1. Dry Impedance Test
4.2. Wet Impedance Test
4.3. Electrocardiogram Signal-to-Noise Test
5. Discussion
5.1. Contact Impedance and Load Weight
5.2. Moisture Management Test
5.3. ECG Signal Quality
5.4. Limitations of the Study
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bin Heyat, M.B.; Akhtar, F.; Abbas, S.J.; Al-Sarem, M.; Alqarafi, A.; Stalin, A.; Abbasi, R.; Muaad, A.Y.; Lai, D.; Wu, K. Wearable flexible electronics based cardiac electrode for researcher mental stress detection sys-tem using machine learning models on single lead electrocardiogram signal. Biosensors 2022, 12, 427. [Google Scholar] [CrossRef] [PubMed]
- Di Giminiani, R.; Cardinale, M.; Ferrari, M.; Quaresima, V. Validation of fabric-based thigh-wearable EMG sensors and oximetry for monitoring quadri-ceps activity during strength and endurance exercises. Sensors 2020, 20, 4664. [Google Scholar] [CrossRef] [PubMed]
- Carneiro, M.R.; de Almeida, A.T.; Tavakoli, M. Wearable and Comfortable e-Textile Headband for Long-Term Acquisition of Forehead EEG Signals. IEEE Sens. J. 2020, 20, 15107–15116. [Google Scholar] [CrossRef]
- Thakor, N.V.; Webster, J.G. Electrode studies for the long-term ambulatory ECG. Med. Biol. Eng. Comput. 1985, 23, 116–121. [Google Scholar] [CrossRef]
- Tam, H.; Webster, J.G. Minimizing electrode motion artifact by skin abrasion. IEEE Trans. Biomed. Eng. 1997, 2, 134–139. [Google Scholar] [CrossRef]
- Yoo, J.; Yoo, H.-J. Fabric circuit board-based dry electrode and its characteristics for long-term physiological signal recording. 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, USA, 30 August–3 September 2011; IEEE: Piscataway, NJ, USA, 2011; 2011, pp. 2497–2500. [Google Scholar] [CrossRef]
- Acar, G.; Ozturk, O.; Golparvar, A.J.; Elboshra, T.A.; Böhringer, K.; Yapici, M.K. Wearable and Flexible Textile Electrodes for Biopotential Signal Monitoring: A review. Electronics 2019, 8, 479. [Google Scholar] [CrossRef] [Green Version]
- Lozano, A. Electrode errors in bioimpedance measurement systems for long-term applications. In Proceedings of the 1997 16 Southern Biomedical Engineering Conference, Biloxi, MS, USA, 4–6 April 1997. [Google Scholar] [CrossRef]
- Beckmann, L.; Neuhaus, C.; Medrano, G.; Jungbecker, N.; Walter, M.; Gries, T.; Leonhardt, S. Characterization of textile electrodes and conductors using standardized measurement setups. Physiol. Meas. 2010, 31, 233–247. [Google Scholar] [CrossRef]
- Owda, Y.A.; Casson, A.J. Electrical properties, accuracy, and multi-day performance of gelatine phantoms for electrophysiology. bioRxiv 2020. [Google Scholar] [CrossRef]
- Kaappa, E.S.; Joutsen, A.; Cömert, A.; Vanhala, J. The electrical impedance measurements of dry electrode materials for the ECG measuring after repeated washing. Res. J. Text. Appar. 2017, 21, 59–71. [Google Scholar] [CrossRef]
- Grimnes, S.; Martinsen, O. Bioimpedance and Bioelectricity Basics, 2nd ed.; Academic Press: Amsterdam, The Netherlands, 2008. [Google Scholar]
- Hua, H.; Tang, W.; Xu, X.; Feng, D.D.; Shu, L. Flexible Multi-Layer Semi-Dry Electrode for Scalp EEG Measurements at Hairy Sites. Micromachines 2019, 10, 518. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Wang, S.; Duan, Y.Y. Towards conductive-gel-free electrodes: Understanding the wet electrode, semi-dry electrode and dry electrode-skin interface impedance using electrochemical impedance spectroscopy fitting. Sens. Actuators B Chem. 2018, 277, 250–260. [Google Scholar] [CrossRef]
- Fu, Y.; Zhao, J.; Dong, Y.; Wang, X. Dry Electrodes for Human Bioelectrical Signal Monitoring. Sensors 2020, 20, 3651. [Google Scholar] [CrossRef]
- Lidón-Roger, J.V.; Prats-Boluda, G.; Ye-Lin, Y.; Garcia-Casado, J.; Garcia-Breijo, E. Textile Concentric Ring Electrodes for ECG Recording Based on Screen-Printing Technology. Sensors 2018, 18, 300. [Google Scholar] [CrossRef] [Green Version]
- Celik, N.; Manivannan, N.; Strudwick, A.; Balachandran, W. Graphene-Enabled Electrodes for Electrocardiogram Monitoring. Nanomaterials 2016, 6, 156. [Google Scholar] [CrossRef] [Green Version]
- Song, H.; Kang, D.; Cho, H.; Lee, J.; Lee, Y. Textile electrodes of jacquard woven fabrics for biosignal measurement. J. Text. Inst. 2010, 101, 758–770. [Google Scholar] [CrossRef]
- Tuna, B.G.; Berk, G.G.; Topcuoglu, N.; Ozorhan, U. A Pilot Study on Electrode–Skin Impedance Analysis of Embroidered EMG Electrodes. In Proceedings of the 13th EAI International Conference on Body Area Networks 13, Oulu, Finland, 2–3 October 2018; pp. 365–371. [Google Scholar] [CrossRef]
- Euler, L.; Guo, L.; Persson, N.-K. Textile Electrodes: Influence of Knitting Construction and Pressure on the Contact Impedance. Sensors 2021, 21, 1578. [Google Scholar] [CrossRef]
- Krishnan, A.; Kumar, R.; Venkatesh, P.; Kelly, S.; Grover, P. Low-cost carbon fiber-based conductive silicone sponge EEG electrodes. In Proceedings of the 2018 40th Annual Inter-national Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 18–21 July 2018. [Google Scholar]
- Tang, Z.-H.; Zhu, W.-B.; Chen, J.-Z.; Li, Y.-Q.; Huang, P.; Liao, K.; Fu, S.-Y. Flexible and electrically robust graphene-based nanocomposite paper with hierarchical microstructures for multifunctional wearable devices. Nano Mater. Sci. 2021. [Google Scholar] [CrossRef]
- Lee, X.J.; Hiew, B.Y.Z.; Lai, K.C.; Lee, L.Y.; Gan, S.; Thangalazhy-Gopakumar, S.; Rigby, S. Review on graphene and its derivatives: Synthesis methods and potential industrial implementation. J. Taiwan Inst. Chem. Eng. 2018, 98, 163–180. [Google Scholar] [CrossRef]
- Poggio, C.; Trovati, F.; Ceci, M.; Chiesa, M.; Colombo, M.; Pietrocola, G. Biological and antibacterial properties of a new silver fiber post: In vitro evaluation. J. Clin. Exp. Dent. 2017, 9, e387–e393. [Google Scholar] [CrossRef] [Green Version]
- Arquilla, K.; Webb, A.K.; Anderson, A.P. Woven electrocardiogram (ECG) electrodes for health moni-toring in operational environments. In Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montréal, QC, Canada, 20–24 July 2020. [Google Scholar]
- Xu, P.J.; Zhang, H.; Tao, X.M. Textile-structured electrodes for electrocardiogram. Text. Prog. 2008, 40, 183–213. [Google Scholar] [CrossRef]
- Hoffmann, K.P.; Ruff, R.; Poppendieck, W. Long-term characterization of electrode materials for surface electrodes in biopotential recording. In Proceedings of the 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, New York, NY, USA, 30 August–3 September 2006. [Google Scholar]
- Eskandarian, L.; Toossi, A.; Nassif, F.; Rostami, S.G.; Ni, S.; Mahnam, A.; Meghrazi, M.A.; Takarada, W.; Kikutani, T.; Naguib, H.E. 3D-Knit Dry Electrodes using Conductive Elastomeric Fibers for Long-Term Continuous Electrophysiological Monitoring. Adv. Mater. Technol. 2022, 7, 2101572. [Google Scholar] [CrossRef]
- Ismar, E.; Tao, X.; Rault, F.; Dassonville, F.; Cochrane, C. Towards Embroidered Circuit Board from Conductive Yarns for E-Textiles. IEEE Access 2020, 8, 155329–155336. [Google Scholar] [CrossRef]
- Logothetis, I.; Fernandez-Garcia, R.; Troynikov, O.; Dabnichki, P.; Pirogova, E.; Gil, I. Embroidered electrodes for bioelectrical impedance analysis: Impact of surface area and stitch parameters. Meas. Sci. Technol. 2019, 30, 115103. [Google Scholar] [CrossRef]
- Hirman, M.; Navratil, J.; Radouchova, M.; Stulik, J.; Soukup, R. Influence of Perspiration on Joint and Sensor Reliability of E-Textiles. Energies 2022, 15, 506. [Google Scholar] [CrossRef]
- Westbroek, P.; Priniotakis, G.; Palovuori, E.; De Clerck, K.; Van Langenhove, L.; Kiekens, P. Quality Control of Textile Electrodes by Electrochemical Impedance Spectroscopy. Text. Res. J. 2006, 76, 152–159. [Google Scholar] [CrossRef]
- Goyal, K.; Borkholder, D.A.; Steven, W.D. A biomimetic skin phantom for characterizing wearable electrodes in the low-frequency regime. Sens. Actuators A Phys. 2022, 340, 113513. [Google Scholar] [CrossRef]
- Atlast MMT: (Moisture Management Tester). SDL Atlas. (n.d.). Available online: https://sdlatlas.com/products/mmt-moisture-management-tester#product-details (accessed on 28 April 2023).
- Hu, J.; Li, Y.; Yeung, K.-W.; Wong, A.S.W.; Xu, W. Moisture Management Tester: A Method to Characterize Fabric Liquid Moisture Management Properties. Text. Res. J. 2005, 75, 57–62. [Google Scholar] [CrossRef]
- ISO 105-E04; 2013 Colorfastness Test. ISO: Geneva, Switzerland, 2013. Available online: www.iso.org/standard/57973.html (accessed on 15 April 2023).
- DataColor Sample Conditioning: Conditioner MB2. Datacolor. Available online: www.datacolor.com/business-solutions/product/datacolor-conditioner/ (accessed on 14 February 2023).
- BIOPAC Systems, Inc. BioNomadix Wireless Respiration-ECG Transmitter+receiver: BN-RSPEC: Research: BIOPAC. Available online: www.biopac.com/product/bionomadix-rsp-with-ecg-amplifier/ (accessed on 14 May 2023).
- Makowski, D.; Pham, T.; Lau, Z.J.; Brammer, J.C.; Lespinasse, F.; Pham, H.; Schölzel, C. NeuroKit2: A Python toolbox for neurophysiological signal processing. Behav. Res. Methods 2021, 53, 1689–1696. [Google Scholar] [CrossRef]
- Kim, H.; Kim, S.; Lim, D.; Jeong, W. Development and Characterization of Embroidery-Based Textile Electrodes for Surface EMG Detection. Sensors 2022, 22, 4746. [Google Scholar] [CrossRef]
Type | Fabrication Approach | Dimensions and Material | Surface Impedance (High to Low) [20–1000 Hz] | Biosignal Measured | Application Area | Mechanical Characteristics |
---|---|---|---|---|---|---|
Film | Inkjet Printing [16] | 36 mm diameter (Polymer PEDOT: PSS) | 500 kΩ to 250 kΩ | ECG | Wearable patch | Stretchable |
Laser Patterning [17] | 24 mm diameter (Graphene) | 13.8 kΩ to 445 Ω | ECG | Wearable patch | Stretchable, Permeable | |
Textile | Woven [18] | 10 mm square (Silver polymer yarn) | 200 kΩ to 3 kΩ | ECG | Clothing | Stretchable |
Embroidered [19] | 20 mm diameter (Silver plated nylon) | 400 kΩ to 800 Ω | EMG | Clothing | Flexible | |
Knitting [20] | 45 mm diameter (Silver polymer yarn) | 5 kΩ to 400 Ω | Bio- impedance | Clothing | Stretchable | |
Sponge | Silicone- Molding [21] | 10 mm diameter (Carbon fiber) | 100 kΩ to 20 kΩ | EEG | Headcap | Water retention |
Electrode Type | Minimum Thickness [µm] | Maximum Thickness [µm] | Mean Thickness [µm] |
---|---|---|---|
E1 | 1097.2 | 3225.8 | 1867.7 |
E2 | 1122.7 | 3235.96 | 1879.6 |
E3 | 1066.8 | 2880.36 | 1973.58 |
E4 | 1468.12 | 3266.4 | 2367.28 |
E5 | 1295.4 | 3855.72 | 1333.5 |
E6 | 1300.48 | 3296.92 | 1967.65 |
E7 | 1082.04 | 3154.68 | 2118.36 |
Weight Level | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
Weight (g) | 3.6 | 13.6 | 23.6 | 33.6 | 43.6 | 53.6 |
Force (N) | 0.035 | 0.133 | 0.231 | 0.329 | 0.427 | 0.525 |
Electrode | Electrode Weight Change [After Exposure] (g) | Top Wetting Radius (mm) | Top Wetting Time (s) | Bottom Wetting Radius (mm) | Bottom Wetting Time (s) |
---|---|---|---|---|---|
E1 | 0.092 | 15 | 3.781 | 5 | 11.969 |
E2 | 0.0204 | 10 | 0.188 | 5 | 14.657 |
E3 | 0.0099 | 10 | 2.156 | 5 | 13.437 |
E4 | 0.0114 | 5 | 6.86 | 5 | 12.781 |
E5 | 0.0195 | 5 | 3.282 | 5 | 11.938 |
E6 | 0.0134 | 20 | 6 | 5 | 8.543 |
E7 | 0.0296 | 25 | 0.187 | 0 | 61.437 |
Electrode Type | SNR QRS/TP (dB) | SNR Reg (dB) |
---|---|---|
E1 | 14.92672 | 12.04991 |
E2 | 15.48768 | 13.06902 |
E3 | 15.73079 | 11.38893 |
E4 | 15.31972 | 12.96527 |
E5 | 14.46775 | 12.70831 |
E6 | 14.91565 | 13.3378 |
E7 | 15.77633 | 15.41361 |
Gel | 16.3097 | 16.72565 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ravichandran, V.; Ciesielska-Wrobel, I.; Rumon, M.A.a.; Solanki, D.; Mankodiya, K. Characterizing the Impedance Properties of Dry E-Textile Electrodes Based on Contact Force and Perspiration. Biosensors 2023, 13, 728. https://doi.org/10.3390/bios13070728
Ravichandran V, Ciesielska-Wrobel I, Rumon MAa, Solanki D, Mankodiya K. Characterizing the Impedance Properties of Dry E-Textile Electrodes Based on Contact Force and Perspiration. Biosensors. 2023; 13(7):728. https://doi.org/10.3390/bios13070728
Chicago/Turabian StyleRavichandran, Vignesh, Izabela Ciesielska-Wrobel, Md Abdullah al Rumon, Dhaval Solanki, and Kunal Mankodiya. 2023. "Characterizing the Impedance Properties of Dry E-Textile Electrodes Based on Contact Force and Perspiration" Biosensors 13, no. 7: 728. https://doi.org/10.3390/bios13070728
APA StyleRavichandran, V., Ciesielska-Wrobel, I., Rumon, M. A. a., Solanki, D., & Mankodiya, K. (2023). Characterizing the Impedance Properties of Dry E-Textile Electrodes Based on Contact Force and Perspiration. Biosensors, 13(7), 728. https://doi.org/10.3390/bios13070728