Black Silicon Surface-Enhanced Raman Spectroscopy Biosensors: Current Advances and Prospects
Abstract
:1. Introduction
2. SERS Biosensor: Key Prerequisites for Best Performance
- SERS performance. The main quantitative parameter that allows for a comparison of the efficiency of various substrates is the enhancement factor (EF). An experimental EF describes the dominance of the SERS signal over the Raman signal of analytes obtained under non-SERS conditions. The experimental estimation of the SERS substrate EF is often based on the following formula [57]:
- High uniformity and reproducibility of SERS EF. Although high uniformity of SERS EF is not required for some studies, such as single molecule detection, it is needed for quantitative analysis. For such analysis, for example, nanostructured silicon covered with silver nanostructures is a perfect candidate as it allows for SERS with a low relative standard deviation over large areas and provides the possibility of balancing the hot spots with extreme EF by normalizing the signal to the Raman intensity of the silicon band at 520 cm−1 [63].
- High sensitivity (limit of detection, LOD). Nano-to-femtomolar concentrations of bio-analytes circulating in blood and serving as biomarkers of various diseases dictate the corresponding requirements to SERS biosensors.
- Simplicity in fabrication, large scale, cost-efficiency. Most SERS substrates and materials are disposable. Therefore, simplicity, low cost and large-scale production are extremely important parameters that would facilitate the transition of SERS sensing from the laboratory to practice.
- Operation in NIR. NIR irradiation is more favorable for the analysis of biological objects, especially cells and tissues as, in contrast to UV and even visible light, it does not cause sample damage.
3. Black Silicon Fabrication and Metal Deposition: Meeting the Requirements for SERS
3.1. Electrochemical Etching (Or Electrochemical Anodization)
Black Silicon Fabrication | Si Wafer Parameters | Black Silicon Porosity, Morphology | Metal, Thickness, Layer Type | Metal Deposition Method | Enhancement Factor | λex, nm | Detected Object, Detection Limit | Reference |
---|---|---|---|---|---|---|---|---|
Electrochemical anodization | ||||||||
HF (45%): C2H5OH (1:1), 10–50 mA/cm2, 25 min. H-termination: in HF (3.3%), 5 mA/cm2, 40 s | (100) boron doped, 0.02 Ω × cm | Porous silicon: pore diam. 20–40 nm, depth 1.5 μm | – – – | No metallization | N/A | 532 | R6G, 3.2 × 10−8 M | [70] |
HF (45%): DMSO (10:46), 8 mA/cm2, 7 min | (100) boron doped, 12 Ω × cm, size 100 mm | Macro-porous silicon (spongy structure): pore diam. 1 μm, depth 2.5–2.7 μm | Ag; Electrodep. Intermediate Ni; Ag NPs 10–150 nm | Ag (electroless) MID; 5–120 min | 104 (Ag); 105 (Ni/ Ag) | 441.6 514.5 | CuTMpyP4; R6G, 10−11 M | [71] |
HF:C2H5OH (1:1), 20 mA/cm2, 8 min, irradiation: 630 nm, 30 mW/cm2 | (100) n-type, 10 Ω × cm; 1.5 × 1.5 cm2 | Macro-porous: pore diam. 0.75–3.25 μm, depth 2.5 μm, porosity 55% | Au NPs, 50 nm, aggregated | Au MID: HAuCl4 (1 mM): HF (3 M) | 5 × 107 | 532 | Penicillin G, 10−9 M | [72] |
HF (45%): H2O:C3H7OH (or DMSO) (1:3:1), 7–80 mA/cm2 | Monocrystalline Si, 3 × 3 cm2 | Mesoporous: depth 1 μm, porosity 80–85% Macroporous: depth 3 μm, porosity 60–65% | Cu NPs, on top of the pores, 20–280 nm | Cu DID: CuSO4 × 5H2O + 5 mM HF or CuSO4 (25 mM): HF (5 mM): C3H7OH (0.1 M) | N/A | 441.6 532 | CuTMpyP4, 10−6 M | [73] |
HF (18.7 M); (i) Pentanol: butanol: ethane = 1:0.25:0.25 (ii) n-Propanol (iii) Isobutanol (iv) Acetonitrile (v) Ethanol (vi) tert-Butanol (vii) n-Butanol | (100) p++ type, boron doped | Porous | Au, rough layer: (i)-(vi) 30 nm (vii) 10 nm, 30 nm, 50 nm, 100 nm, 200 nm, 300 nm | Au PVD | 108 (p-MBA) | 532, 785 | p-MBA (10−6 M), human blood, cerebrospinal fluids, urine | [92] |
HF: water: ethanol 25:25:50 10 mA/cm2, 5 min | (100) boron doped 5–10 Ω × cm | Meso-porous silicon, pore diam. 10–20 nm | Incorporate Au NPs, 20 nm | Au (electroless) MID: HF (C = 0.15 M): Gold (III): Chloride (AuCl3) (C = 1 mM), 3 min | N/A | 633 | MCF7 breast cancer cells | [93] |
Metal-assisted chemical etching (MACE) | ||||||||
Two-step MACE Au pre-coated (3 nm thick). Etching: HF:H2O2:C2H5OH (1:1:1), 5, 10, 15 min | (100) p-type; 1–10 Ω × cm, 6‘‘ | Porous silicon: pore diam. 0.52–0.76 μm, depth 2.53–5.39 μm, porosity approx. 41–45% | Decoration with Ag NPs | Ag NPs MID | 6 × 107 (R6G) | 532 633 | Melamine, 10−9–10−5 M; R6G, 10−9–10−5 M | [74] |
Two-step MACE Ag pre-coated: HF (4.6 M): AgNO3 (0.44 M), 10 s. Etching: HF (4.6 M): H2O2 (0.44 M) | (100) boron-doped, 1–10 Ω × cm, 1 × 1 cm2 | SiNW arrays: depth 150–300 nm | Au NPs 10–20 nm. Au backplane 10 nm. | Prior OAD-Ag removal: HNO3; OAD NPs, Au metal backplane | 1.8 × 106 | - | MG, 10 nM | [75] |
Two-step MACE Ag pre-coated for 0.5, 1, 3, 10 min. Etching: water-based HF (4.36 M): H2O2 (0.23 M), 60 min. | (100) p-doped (n-type), b-doped (p-type), 4’’ | SiNWs arrays: length 2–10 μm (p-SiNWs), length <4 μm (n-SiNWs) | Ag, Au; NPs 75 nm, Ag NPs between SiNWs, Ag/Au dendrites 300–500 nm | (i) No metallization; (ii) Electroless Au MID: HAuCl4 (3 mM): HF (0.15 M): C2H5OH (1.5 mM) | N/A | 633 | R6G, DTNB; 10−9–10−6 M | [76] |
Two-step MACE Ag NP pre-coated: HF (5.55 M): AgNO3 (0.015 M), 5 s. Etching: 5 mL HF (48%): 2 mL H2O2 (50%): 23 mL deionized H2O, 10 min. | (100) p-type, n-type, 0.01 Ω × cm | Mesoporous SiNWs | Ag NPs 38.9 nm, between/on SiNWs | Prior Ag NP MID-residual Ag removal: HNO3 (10%) Electroless Ag MID: AgNO3 (15 mM): HF (5.55 M), a few s | 108 (MB); 109 (RB) | 514 | MB, RB; 10−12 M | [77] |
Two-step MACE Au NPs pre-coated. Etching: H2SO4 (8%): H2O2 (37%) (3:1), 10 min | Crystalline Si | SiNWs: Pore diam. 100 nm; depth 34–35 µm porosity 55–83% | Au NPs 10 nm, between/on SiNWs | Prior Au MID-residual Au removal: HCl: HNO3 (3:1). Electroless Au MID: HAuCl4/HF, 10, 20, 30 s. | 6.1 × 104 | 633 | MB, 10−15 M | [94] |
Single-step MACE Etching: aqueous solution of AgNO3:HF, 2, 3.5, 5, 30 min. | (100) p-type | Si NWs: depth 200–300 nm (2–5 min MACE), depth 6 μm (30 min MACE) | Ag NP aggregates, at the SiNWs tips, a few Ag NPs between/on SiNWs. | (i) No metallization (2, 3.5, 5 min MACE); (ii) Prior MID – residual Ag removal: HNO3, 4 min (5- and 30-min MACE); Electroless Ag MID in MACE etching solution, 3–10 s; | 105–1010 | 514 | R6G 10−13 M | [95] |
3.2. Metal-Assisted Chemical Etching (MACE)
3.3. Inductively Coupled Plasma Reactive Ion Etching (ICP-RIE)
3.3.1. Mixed-Mode Cryogenic ICP-RIE
3.3.2. Mixed-Mode Non-Cryogenic ICP-RIE
3.3.3. Mixed-Mode Room-Temperature ICP-RIE
3.3.4. Bosch Method
3.3.5. SERS Performance of ICP-RIE Produced Black Silicon
3.4. Selection of the Type of Silicon Wafer for the Production of SERS Substrates
4. The Electromagnetic Mechanism of SERS Enhancement with Black Silicon-Based Substrates: Simulations
5. Biosensing with Black Silicon-Based SERS Substrates
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lv, J.; Zhang, T.; Zhang, P.; Zhao, Y.; Li, S. Review Application of Nanostructured Black Silicon. Nanoscale Res. Lett. 2018, 13, 110. [Google Scholar] [CrossRef] [PubMed]
- Hashmi, G.; Hasanuzzaman, M.; Basher, M.K.; Hoq, M.; Rahman, M.H. Texturization of As-Cut p-Type Monocrystalline Silicon Wafer Using Different Wet Chemical Solutions. Appl. Phys. A Mater. Sci. Process 2018, 124, 415. [Google Scholar] [CrossRef]
- Yuan, H.C.; Yost, V.E.; Page, M.R.; Stradins, P.; Meier, D.L.; Branz, H.M. Efficient Black Silicon Solar Cell with a Density-Graded Nanoporous Surface: Optical Properties, Performance Limitations, and Design Rules. Appl. Phys. Lett. 2009, 95, 123501. [Google Scholar] [CrossRef]
- Sarkar, S.; Elsayed, A.A.; Nefzaoui, E.; Drevillon, J.; Basset, P.; Marty, F.; Anwar, M.; Yu, Y.; Zhao, J.; Yuan, X.; et al. NIR and MIR Absorption of Ultra-Black Silicon (UBS). Application to High Emissivity, All-Silicon, Light Source. In Proceedings of the The IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Seoul, Republic of Korea, 27–31 January 2019; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2019; Volume 2019, pp. 860–862. [Google Scholar]
- Lu, J.; Zhuang, W.; Yang, W.; Zhang, X.; Su, G.; Gong, X.; Yuan, J.; Sui, J.; Zhou, Y.; Zhang, G.; et al. Enhanced Absorption in the Wide Wavelength Range: Black Silicon Decorated with Few-Layer PtS2. J. Phys. Chem. C 2021, 125, 27335–27343. [Google Scholar] [CrossRef]
- Steglich, M.; Lehr, D.; Ratzsch, S.; Käsebier, T.; Schrempel, F.; Kley, E.; Tünnermann, A. An Ultra-black Silicon Absorber. Laser Photon. Rev. 2014, 8, L13–L17. [Google Scholar] [CrossRef]
- Wu, C.; Crouch, C.H.; Zhao, L.; Carey, J.E.; Younkin, R.; Levinson, J.A.; Mazur, E.; Farrell, R.M.; Gothoskar, P.; Karger, A. Near-Unity below-Band-Gap Absorption by Microstructured Silicon. Appl. Phys. Lett. 2001, 78, 1850–1852. [Google Scholar] [CrossRef]
- Wen, Z.; Shi, H.; Yue, S.; Li, M.; Zhang, Z.; Wang, R.; Song, Q.; Xu, Z.; Zhang, Z.; Hou, Y. Large-Scale Black Silicon Induced by Femtosecond Laser Assisted With Laser Cleaning. Front. Phys. 2022, 10, 235. [Google Scholar] [CrossRef]
- Zhong, H.; Ilyas, N.; Song, Y.; Li, W.; Jiang, Y. Enhanced Near-Infrared Absorber: Two-Step Fabricated Structured Black Silicon and Its Device Application. Nanoscale Res. Lett. 2018, 13, 316. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.; Cui, D.; Zhang, Z.; Zhao, Z.; Chen, H.; Fan, Y.; Li, P.; Zhang, Z.; Xue, C.; Yan, S. Recent Progress of Black Silicon: From Fabrications to Applications. Nanomaterials 2021, 11, 41. [Google Scholar] [CrossRef]
- Bogue, R. Novel Infrared Detectors Based on Black Silicon. Sens. Rev. 2010, 30, 59–62. [Google Scholar] [CrossRef]
- Hoyer, P.; Theuer, M.; Beigang, R.; Kley, E.B. Terahertz Emission from Black Silicon. Appl. Phys. Lett. 2008, 93, 091106. [Google Scholar] [CrossRef]
- Wang, X.; Bhadra, C.M.; Yen Dang, T.H.; Buividas, R.; Wang, J.; Crawford, R.J.; Ivanova, E.P.; Juodkazis, S. A Bactericidal Microfluidic Device Constructed Using Nano-Textured Black Silicon. RSC Adv. 2016, 6, 26300–26306. [Google Scholar] [CrossRef]
- Hu, F.; Dai, X.-Y.; Zhou, Z.-Q.; Kong, X.-Y.; Sun, S.-L.; Zhang, R.-J.; Wang, S.-Y.; Lu, M.; Sun, J. Black Silicon Schottky Photodetector in Sub-Bandgap near-Infrared Regime. Opt. Express 2019, 27, 3161. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.L.; Zhu, S.W.; Sun, H.B.; Hu, Y.; Ma, S.X.; Ning, X.J.; Zhao, L.; Zhuang, J. “infinite Sensitivity” of Black Silicon Ammonia Sensor Achieved by Optical and Electric Dual Drives. ACS Appl. Mater. Interfaces 2018, 10, 5061–5071. [Google Scholar] [CrossRef] [PubMed]
- Mironenko, A.Y.; Tutov, M.V.; Sergeev, A.A.; Mitsai, E.V.; Ustinov, A.Y.; Zhizhchenko, A.Y.; Linklater, D.P.; Bratskaya, S.Y.; Juodkazis, S.; Kuchmizhak, A.A. Ultratrace Nitroaromatic Vapor Detection via Surface-Enhanced Fluorescence on Carbazole-Terminated Black Silicon. ACS Sens. 2019, 4, 2879–2884. [Google Scholar] [CrossRef]
- Chen, Y.; Kang, G.; Shah, A.; Pale, V.; Tian, Y.; Sun, Z.; Tittonen, I.; Honkanen, S.; Lipsanen, H. Improved SERS Intensity from Silver-Coated Black Silicon by Tuning Surface Plasmons. Adv. Mater. Interfaces 2014, 1, 1300008. [Google Scholar] [CrossRef]
- Golubewa, L.; Karpicz, R.; Matulaitiene, I.; Selskis, A.; Rutkauskas, D.; Pushkarchuk, A.; Khlopina, T.; Michels, D.; Lyakhov, D.; Kulahava, T.; et al. Surface-Enhanced Raman Spectroscopy of Organic Molecules and Living Cells with Gold-Plated Black Silicon. ACS Appl. Mater. Interfaces 2020, 12, 50971–50984. [Google Scholar] [CrossRef]
- Chadha, U.; Bhardwaj, P.; Agarwal, R.; Rawat, P.; Agarwal, R.; Gupta, I.; Panjwani, M.; Singh, S.; Ahuja, C.; Selvaraj, S.K.; et al. Recent Progress and Growth in Biosensors Technology: A Critical Review. J. Ind. Eng. Chem. 2022, 109, 21–51. [Google Scholar] [CrossRef]
- Keiser, G. Light-Tissue Interactions. In Biophotonics; Springer: Singapore, 2016; p. 345. ISBN 9789811009457. [Google Scholar]
- Markus, M.A.; Dullin, C.; Alves, F. Two-Dimensional In Vivo Fluorescence Imaging. In Comprehensive Biomedical Physics; Elsevier: Amsterdam, The Netherlands, 2014; Volume 4, pp. 227–243. ISBN 9780444536327. [Google Scholar]
- Smith, R.; Wright, K.L.; Ashton, L. Raman Spectroscopy: An Evolving Technique for Live Cell Studies. Analyst 2016, 141, 3590–3600. [Google Scholar] [CrossRef]
- Kneipp, K.; Kneipp, H. Single Molecule Raman Scattering. Appl. Spectrosc. 2006, 60, 322A–334A. [Google Scholar] [CrossRef]
- Kuhar, N.; Sil, S.; Umapathy, S. Potential of Raman Spectroscopic Techniques to Study Proteins. Spectrochim. Acta-Part A Mol. Biomol. Spectrosc. 2021, 258, 119712. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Zhang, J.; Yang, Y.; Huang, Z.; Long, N.V.; Fu, C. Engineering of SERS Substrates Based on Noble Metal Nanomaterials for Chemical and Biomedical Applications. Appl. Spectrosc. Rev. 2015, 50, 499–525. [Google Scholar] [CrossRef]
- Stiles, P.L.; Dieringer, J.A.; Shah, N.C.; Van Duyne, R.P. Surface-Enhanced Raman Spectroscopy. Annu. Rev. Anal. Chem. 2008, 1, 601–626. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.-Y.; Li, J.-F.; Ren, B.; Tian, Z.-Q. Electrochemical Surface-Enhanced Raman Spectroscopy of Nanostructures. Chem. Soc. Rev. 2008, 37, 1025. [Google Scholar] [CrossRef]
- Cyrankiewicz, M.; Wybranowski, T.; Kruszewski, S. Study of SERS Efficiency of Metallic Colloidal Systems. J. Phys. Conf. Ser. 2007, 79, 012013. [Google Scholar] [CrossRef]
- Hoang, V.T.; Tufa, L.T.; Lee, J.; Doan, M.Q.; Anh, N.H.; Tran, V.T.; Le, A.T. Tunable SERS Activity of Ag@Fe3O4 Core-Shell Nanoparticles: Effect of Shell Thickness on the Sensing Performance. J. Alloys Compd. 2023, 933, 167649. [Google Scholar] [CrossRef]
- Tang, S.; Liu, H.; Wang, M.; Wang, S.; Wang, C.; Gu, C.; Zhao, Z.; Jiang, T.; Zhou, J. Further Enhancement of SERS Signals from Au@Ag@PSPAA Core–Shell Nanoparticles Surrounded by Ag Nanoplates. Mater. Chem. Phys. 2019, 225, 60–63. [Google Scholar] [CrossRef]
- Yilmaz, A.; Yilmaz, M. Bimetallic Core–Shell Nanoparticles of Gold and Silver via Bioinspired Polydopamine Layer as Surface-Enhanced Raman Spectroscopy (SERS) Platform. Nanomaterials 2020, 10, 688. [Google Scholar] [CrossRef]
- Krajczewski, J.; Kudelski, A. Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy. Front. Chem. 2019, 7, 410. [Google Scholar] [CrossRef]
- Olson, L.G.; Lo, Y.S.; Beebe, T.P.; Harris, J.M. Characterization of Silane-Modified Immobilized Gold Colloids as a Substrate for Surface-Enhanced Raman Spectroscopy. Anal. Chem. 2001, 73, 4268–4276. [Google Scholar] [CrossRef]
- Dao, T.C.; Luong, T.Q.N. Fabrication of Uniform Arrays of Silver Nanoparticles on Silicon by Electrodeposition in Ethanol Solution and Their Use in SERS Detection of Difenoconazole Pesticide. RSC Adv. 2020, 10, 40940–40947. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Xie, J.; Wang, Z.; Zhang, Y. Transparent and Flexible AuNSs/PDMS-Based SERS Substrates for in-Situ Detection of Pesticide Residues. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 267, 120542. [Google Scholar] [CrossRef] [PubMed]
- Rafiq, F.; Wang, N.; Li, K.; Hong, Z.; Cao, D.; Du, J.; Sun, Z. Au-NP-Decorated Cotton Swabs as a Facile SERS Substrate for Food-Safety-Related Molecule Detection. ACS Omega 2023, 8, 8541–8547. [Google Scholar] [CrossRef] [PubMed]
- Romo-Herrera, J.M.; Juarez-Moreno, K.; Guerrini, L.; Kang, Y.; Feliu, N.; Parak, W.J.; Alvarez-Puebla, R.A. Paper-Based Plasmonic Substrates as Surface-Enhanced Raman Scattering Spectroscopy Platforms for Cell Culture Applications. Mater. Today Bio 2021, 11, 100125. [Google Scholar] [CrossRef]
- Mo, S.; Shao, X.; Chen, Y.; Cheng, Z. Increasing Entropy for Colloidal Stabilization. Sci. Rep. 2016, 6, 36836. [Google Scholar] [CrossRef]
- Shi, L.; Zhang, L.; Tian, Y. Rational Design of Surface-Enhanced Raman Scattering Substrate for Highly Reproducible Analysis. Anal. Sens. 2023, 3, e202200064. [Google Scholar] [CrossRef]
- Khnykina, K.A.; Baranov, M.A.; Babaev, A.A.; Dubavik, A.Y.; Fedorov, A.V.; Baranov, A.V.; Bogdanov, K. V Comparison Study of Surface-Enhanced Raman Spectroscopy Substrates. J. Phys. Conf. Ser. 2021, 1984, 12020. [Google Scholar] [CrossRef]
- Mikac, L.; Gotić, M.; Gebavi, H.; Ivanda, M. The Variety of Substrates for Surface-Enhanced Raman Spectroscopy. In Proceedings of the 2017 IEEE 7th International Conference on Nanomaterials: Applications and Properties, NAP, Odessa, Ukraine, 10–15 September 2017; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2017; Volume 2017. [Google Scholar]
- Chirumamilla, A.; Moise, I.M.; Cai, Z.; Ding, F.; Jensen, K.B.; Wang, D.; Kristensen, P.K.; Jensen, L.R.; Fojan, P.; Popok, V.; et al. Lithography-Free Fabrication of Scalable 3D Nanopillars as Ultrasensitive SERS Substrates. Appl. Mater. Today 2023, 31, 101763. [Google Scholar] [CrossRef]
- Bai, S.; Serien, D.; Hu, A.; Sugioka, K. 3D Microfluidic Surface-Enhanced Raman Spectroscopy (SERS) Chips Fabricated by All-Femtosecond-Laser-Processing for Real-Time Sensing of Toxic Substances. Adv. Funct. Mater. 2018, 28, 1706262. [Google Scholar] [CrossRef]
- Liao, W.; Liu, K.; Chen, Y.; Hu, J.; Gan, Y. Au-Ag Bimetallic Nanoparticles Decorated Silicon Nanowires with Fixed and Dynamic Hot Spots for Ultrasensitive 3D SERS Sensing. J. Alloys Compd. 2021, 868, 159136. [Google Scholar] [CrossRef]
- Seo, S.; Chang, T.-W.; Liu, G.L. 3D Plasmon Coupling Assisted Sers on Nanoparticle-Nanocup Array Hybrids. Sci. Rep. 2018, 8, 3002. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.-Y.; Lin, H.-C.; Hung, G.-Y.; Tu, C.-S.; Liu, T.-Y.; Hong, C.-H.; Yu, G.; Hsu, J.-C. High Sensitivity SERS Substrate of a Few Nanometers Single-Layer Silver Thickness Fabricated by DC Magnetron Sputtering Technology. Nanomaterials 2022, 12, 2742. [Google Scholar] [CrossRef]
- Chu, F.; Yan, S.; Zheng, J.; Zhang, L.; Zhang, H.; Yu, K.; Sun, X.; Liu, A.; Huang, Y. A Simple Laser Ablation-Assisted Method for Fabrication of Superhydrophobic SERS Substrate on Teflon Film. Nanoscale Res. Lett. 2018, 13, 244. [Google Scholar] [CrossRef]
- Golubewa, L.; Rehman, H.; Kulahava, T.; Karpicz, R.; Baah, M.; Kaplas, T.; Shah, A.; Malykhin, S.; Obraztsov, A.; Rutkauskas, D.; et al. Macro-, Micro-and Nano-Roughness of Carbon-Based Interface with the Living Cells: Towards a Versatile Bio-Sensing Platform. Sensors 2020, 20, 5028. [Google Scholar] [CrossRef] [PubMed]
- Handorf, A.M.; Zhou, Y.; Halanski, M.A.; Li, W.J. Tissue Stiffness Dictates Development, Homeostasis, and Disease Progression. Organogenesis 2015, 11, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Xie, K.; Yang, Y.; Jiang, H. Controlling Cellular Volume via Mechanical and Physical Properties of Substrate. Biophys. J. 2018, 114, 675–687. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, J.; Xu, Z.; Lin, X.; Zhang, X.; Li, L.; Li, Y. Matrix Stiffness Regulates Myocardial Differentiation of Human Umbilical Cord Mesenchymal Stem Cells. Aging 2021, 13, 2231–2250. [Google Scholar] [CrossRef]
- Naganuma, T. The Relationship between Cell Adhesion Force Activation on Nano/Micro-Topographical Surfaces and Temporal Dependence of Cell Morphology. Nanoscale 2017, 9, 13171–13186. [Google Scholar] [CrossRef]
- Akhmanova, M.; Osidak, E.; Domogatsky, S.; Rodin, S.; Domogatskaya, A. Physical, Spatial, and Molecular Aspects of Extracellular Matrix of In Vivo Niches and Artificial Scaffolds Relevant to Stem Cells Research. Stem Cells Int. 2015, 2015, 167025. [Google Scholar] [CrossRef]
- Le Ru, E.C.; Etchegoin, P.G. A Quick Overview of Surface-Enhanced Raman Spectroscopy. In Principles of Surface-Enhanced Raman Spectroscopy: And Related Plasmonic Effects; Le Ru, E.C., Etchegoin, P.G., Eds.; Elsevier Science: Amsterdam, The Netherlands, 2009; pp. 1–27. [Google Scholar]
- Rodríguez-Oliveros, R.; Paniagua-Domínguez, R.; Sánchez-Gil, J.A.; Macías, D. Plasmon Spectroscopy: Theoretical and Numerical Calculations, and Optimization Techniques. Nanospectroscopy 2016, 1, 67–96. [Google Scholar] [CrossRef]
- Li, D.; Aubertin, K.; Onidas, D.; Nizard, P.; Félidj, N.; Gazeau, F.; Mangeney, C.; Luo, Y. Recent Advances in Non-Plasmonic Surface-Enhanced Raman Spectroscopy Nanostructures for Biomedical Applications. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2022, 14, e1795. [Google Scholar] [CrossRef] [PubMed]
- Le Ru, E.C.; Blackie, E.; Meyer, M.; Etchegoint, P.G. Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study. J. Phys. Chem. C 2007, 111, 13794–13803. [Google Scholar] [CrossRef]
- Le Ru, E.C.; Etchegoin, P.G. SERS Enhancement Factors and Related Topics. In Principles of Surface-Enhanced Raman Spectroscopy: And Related Plasmonic Effects; Le Ru, E.C., Etchegoin, P.G., Eds.; Elsevier Science: Amsterdam, The Netherlands, 2009; pp. 185–264. ISBN 978-0444527790. [Google Scholar]
- Le Ru, E.C.; Etchegoin, P.G. Quantifying SERS Enhancements. MRS Bull. 2013, 38, 631–640. [Google Scholar] [CrossRef]
- Rodrigues, D.C.; de Souza, M.L.; Souza, K.S.; dos Santos, D.P.; Andrade, G.F.S.; Temperini, M.L.A. Critical Assessment of Enhancement Factor Measurements in Surface-Enhanced Raman Scattering on Different Substrates. Phys. Chem. Chem. Phys. 2015, 17, 21294–21301. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wang, Z.; Meng, Y.; Chen, C.; Chen, Q.; Wang, Y.; Dou, S.; Liu, X.; Lu, N. Increasing Hotspots Density for High-Sensitivity SERS Detection by Assembling Array of Ag Nanocubes. Talanta 2023, 258, 124408. [Google Scholar] [CrossRef]
- Hou, L.; Shao, M.; Li, Z.; Zhao, X.; Liu, A.; Zhang, C.; Xiu, X.; Yu, J.; Li, Z. Elevating the Density and Intensity of Hot Spots by Repeated Annealing for High-Efficiency SERS. Opt. Express 2020, 28, 29357. [Google Scholar] [CrossRef]
- Fu, H.; Bao, H.; Zhang, H.; Zhao, Q.; Zhou, L.; Zhu, S.; Wei, Y.; Li, Y.; Cai, W. Quantitative Surface-Enhanced Raman Spectroscopy for Field Detections Based on Structurally Homogeneous Silver-Coated Silicon Nanocone Arrays. ACS Omega 2021, 6, 18928–18938. [Google Scholar] [CrossRef]
- Scheul, T.E.; Khorani, E.; Rahman, T.; Charlton, M.D.B.; Boden, S.A. Light Scattering from Black Silicon Surfaces and Its Benefits for Encapsulated Solar Cells. Sol. Energy Mater. Sol. Cells 2022, 235, 111448. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Y.; Stensby Hansen, P.A.; Du, K.; Gustavsen, K.R.; Liu, G.; Karlsen, F.; Nilsen, O.; Xue, C.; Wang, K. Black Silicon with Order-Disordered Structures for Enhanced Light Trapping and Photothermic Conversion. Nano Energy 2019, 65, 103992. [Google Scholar] [CrossRef]
- Zhang, Z.; Martinsen, T.; Liu, G.; Tayyib, M.; Cui, D.; de Boer, M.J.; Karlsen, F.; Jakobsen, H.; Xue, C.; Wang, K. Ultralow Broadband Reflectivity in Black Silicon via Synergy between Hierarchical Texture and Specific-Size Au Nanoparticles. Adv. Opt. Mater. 2020, 8, 2000668. [Google Scholar] [CrossRef]
- Chang, T.W.; Gartia, M.R.; Seo, S.; Hsiao, A.; Liu, G.L. A Wafer-Scale Backplane-Assisted Resonating Nanoantenna Array SERS Device Created by Tunable Thermal Dewetting Nanofabrication. Nanotechnology 2014, 25, 145304. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, M.S.; Hübner, J.; Boisen, A. Large Area Fabrication of Leaning Silicon Nanopillars for Surface Enhanced Raman Spectroscopy. Adv. Mater. 2012, 24, OP11–OP18. [Google Scholar] [CrossRef] [PubMed]
- Gervinskas, G.; Seniutinas, G.; Hartley, J.S.; Kandasamy, S.; Stoddart, P.R.; Fahim, N.F.; Juodkazis, S. Surface-Enhanced Raman Scattering Sensing on Black Silicon. Ann. Phys. 2013, 525, 907–914. [Google Scholar] [CrossRef]
- Yang, Y.; Wu, H.; Li, Y.; Kong, F.; Fan, J. Highly Efficient Surface Enhanced Raman Scattering Activation of Vertically Etched Hydrogen-Terminated Semiconducting Mesoporous Silicon. Thin Solid Films 2023, 780, 139976. [Google Scholar] [CrossRef]
- Artsemyeva, K.; Bandarenka, H.; Panarin, A.; Terekhov, S.; Bondarenko, V. Fabrication of SERS-Active Substrates by Electrochemical and Electroless Deposition of Metals in Macroporous Silicon. ECS Meet. Abstr. 2013, 53, 85. [Google Scholar] [CrossRef]
- Wali, L.A.; Hasan, K.K.; Alwan, A.M. Rapid and Highly Efficient Detection of Ultra-Low Concentration of Penicillin G by Gold Nanoparticles/Porous Silicon SERS Active Substrate. Spectrochim. Acta-Part A Mol. Biomol. Spectrosc. 2019, 206, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Bandarenka, H.; Redko, S.; Smirnov, A.; Panarin, A.; Terekhov, S.; Nenzi, P.; Balucani, M.; Bondarenko, V. Nanostructures Formed by Displacement of Porous Silicon with Copper: From Nanoparticles to Porous Membranes. Nanoscale Res. Lett. 2012, 7, 477. [Google Scholar] [CrossRef]
- Tsao, C.W.; Zheng, Y.S.; Sun, Y.S.; Cheng, Y.C. Surface-Enhanced Raman Scattering (SERS) Spectroscopy on Localized Silver Nanoparticle-Decorated Porous Silicon Substrate. Analyst 2021, 146, 7645–7652. [Google Scholar] [CrossRef]
- Lee, B.S.; Lin, D.Z.; Yen, T.J. A Low-Cost, Highly-Stable Surface Enhanced Raman Scattering Substrate by Si Nanowire Arrays Decorated with Au Nanoparticles and Au Backplate. Sci. Rep. 2017, 7, 4604. [Google Scholar] [CrossRef]
- Grevtsov, N.; Burko, A.; Redko, S.; Khinevich, N.; Zavatski, S.; Niauzorau, S.; Bandarenka, H. Silicon Nanowire Arrays Coated with Ag and Au Dendrites for Surface-Enhanced Raman Scattering. MRS Adv. 2020, 5, 2023–2032. [Google Scholar] [CrossRef]
- Ghosh, R.; Ghosh, J.; Das, R.; Mawlong, L.P.L.; Paul, K.K.; Giri, P.K. Multifunctional Ag Nanoparticle Decorated Si Nanowires for Sensing, Photocatalysis and Light Emission Applications. J. Colloid Interface Sci. 2018, 532, 464–473. [Google Scholar] [CrossRef] [PubMed]
- Jansen, H.; de Boer, M.; Burger, J.; Legtenberg, R.; Elwenspoek, M. The Black Silicon Method II:The Effect of Mask Material and Loading on the Reactive Ion Etching of Deep Silicon Trenches. Microelectron. Eng. 1995, 27, 475–480. [Google Scholar] [CrossRef]
- Deng, Y.-L.; Juang, Y.-J. Black Silicon SERS Substrate: Effect of Surface Morphology on SERS Detection and Application of Single Algal Cell Analysis. Biosens. Bioelectron. 2014, 53, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Seniutinas, G.; Gervinskas, G.; Verma, R.; Gupta, B.D.; Lapierre, F.; Stoddart, P.R.; Clark, F.; McArthur, S.L.; Juodkazis, S. Versatile SERS Sensing Based on Black Silicon. Opt. Express 2015, 23, 6763. [Google Scholar] [CrossRef]
- Mitsai, E.; Kuchmizhak, A.; Pustovalov, E.; Sergeev, A.; Mironenko, A.; Bratskaya, S.; Linklater, D.P.; Balčytis, A.; Ivanova, E.; Juodkazis, S. Chemically Non-Perturbing SERS Detection of a Catalytic Reaction with Black Silicon. Nanoscale 2018, 10, 9780–9787. [Google Scholar] [CrossRef] [PubMed]
- Serpenguzel, A. Luminescence of Black Silicon. J. Nanophotonics 2008, 2, 021770. [Google Scholar] [CrossRef]
- Kafle, B.; Ridoy, A.I.; Miethig, E.; Clochard, L.; Duffy, E.; Hofmann, M.; Rentsch, J. On the Formation of Black Silicon Features by Plasma-Less Etching of Silicon in Molecular Fluorine Gas. Nanomaterials 2020, 10, 2214. [Google Scholar] [CrossRef] [PubMed]
- Cui, Z. Nanofabrication: Principles, Capabilities and Limits, 2nd ed.; Springer International Publishing: Berlin/Heidelberg, Germany, 2017; ISBN 9783319393612. [Google Scholar]
- Soueiti, J.; Sarieddine, R.; Kadiri, H.; Alhussein, A.; Lerondel, G.; Habchi, R. A Review of Cost-Effective Black Silicon Fabrication Techniques and Applications. Nanoscale 2023, 15, 4738–4761. [Google Scholar] [CrossRef]
- Liu, X.; Coxon, P.R.; Peters, M.; Hoex, B.; Cole, J.M.; Fray, D.J. Black Silicon: Fabrication Methods, Properties and Solar Energy Applications. Energy Environ. Sci. 2014, 7, 3223–3263. [Google Scholar] [CrossRef]
- Hsu, C.H.; Wu, J.R.; Lu, Y.T.; Flood, D.J.; Barron, A.R.; Chen, L.C. Fabrication and Characteristics of Black Silicon for Solar Cell Applications: An Overview. Mater. Sci. Semicond. Process. 2014, 25, 2–17. [Google Scholar] [CrossRef]
- Chai, J.Y.H.; Wong, B.T.; Juodkazis, S. Black-Silicon-Assisted Photovoltaic Cells for Better Conversion Efficiencies: A Review on Recent Research and Development Efforts. Mater. Today Energy 2020, 18, 100539. [Google Scholar] [CrossRef]
- Kleimann, P.; Badel, X.; Linnros, J. Toward the Formation of Three-Dimensional Nanostructures by Electrochemical Etching of Silicon. Appl. Phys. Lett. 2005, 86, 183108. [Google Scholar] [CrossRef]
- Canham, L. Handbook of Porous Silicon; Springer: Berlin/Heidelberg, Germany, 2014; ISBN 9783319057446. [Google Scholar]
- Sigle, D.O.; Perkins, E.; Baumberg, J.J.; Mahajan, S. Reproducible Deep-UV SERRS on Aluminum Nanovoids. J. Phys. Chem. Lett. 2013, 4, 1449–1452. [Google Scholar] [CrossRef] [PubMed]
- Kamińska, A.; Szymborski, T.; Jaroch, T.; Zmysłowski, A.; Szterk, A. Gold-Capped Silicon for Ultrasensitive SERS-Biosensing: Towards Human Biofluids Analysis. Mater. Sci. Eng. C 2018, 84, 208–217. [Google Scholar] [CrossRef]
- Coluccio, M.L.; De Vitis, S.; Strumbo, G.; Candeloro, P.; Perozziello, G.; Di Fabrizio, E.; Gentile, F. Inclusion of Gold Nanoparticles in Meso-Porous Silicon for the SERS Analysis of Cell Adhesion on Nano-Structured Surfaces. Microelectron. Eng. 2016, 158, 102–106. [Google Scholar] [CrossRef]
- Ikramova, S.B.; Utegulov, Z.N.; Dikhanbayev, K.K.; Gaipov, A.E.; Nemkayeva, R.R.; Yakunin, V.G.; Savinov, V.P.; Timoshenko, V.Y. Surface-Enhanced Raman Scattering from Dye Molecules in Silicon Nanowire Structures Decorated by Gold Nanoparticles. Int. J. Mol. Sci. 2022, 23, 2590. [Google Scholar] [CrossRef]
- Kochylas, I.; Gardelis, S.; Likodimos, V.; Giannakopoulos, K.; Falaras, P.; Nassiopoulou, A. Improved Surface-Enhanced-Raman Scattering Sensitivity Using Si Nanowires/Silver Nanostructures by a Single Step Metal-Assisted Chemical Etching. Nanomaterials 2021, 11, 1760. [Google Scholar] [CrossRef]
- Bondarenko, A.V. Chemical Corrosive Deposition of Copper on Porous Silicon. In Proceedings of the Physics, Chemistry, and Application of Nanostructures: Reviews and Short Notes to Nanomeeting 2005, Minsk, Belarus, 24–27 May 2005; World Scientific Publishing Co.: Singapore, 2005; pp. 435–438, ISBN 9789812701947. [Google Scholar]
- Formentín, P.; Marsal, L.F. Hydrophobic/Oleophilic Structures Based on Macroporous Silicon: Effect of Topography and Fluoroalkyl Silane Functionalization on Wettability. Nanomaterials 2021, 11, 670. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Song, S.; Zhang, J. Surface Texturing of Porous Silicon with Capillary Stress and Its Superhydrophobicity. Chem. Commun. 2009, 28, 4239–4241. [Google Scholar] [CrossRef]
- Han, H.; Huang, Z.; Lee, W. Metal-Assisted Chemical Etching of Silicon and Nanotechnology Applications. Nano Today 2014, 9, 271–304. [Google Scholar] [CrossRef]
- Alhmoud, H.; Brodoceanu, D.; Elnathan, R.; Kraus, T.; Voelcker, N.H. A MACEing Silicon: Towards Single-Step Etching of Defined Porous Nanostructures for Biomedicine. Prog. Mater. Sci. 2021, 116, 100636. [Google Scholar] [CrossRef]
- Arafat, M.Y.; Islam, M.A.; Bin Mahmood, A.W.; Abdullah, F.; Nur-E-Alam, M.; Kiong, T.S.; Amin, N. Fabrication of Black Silicon via Metal-Assisted Chemical Etching—A Review. Sustainability 2021, 13, 10766. [Google Scholar] [CrossRef]
- Chen, C.Y.; Li, W.J.; Chen, H.H. Tailoring Broadband Antireflection on a Silicon Surface through Two-Step Silver-Assisted Chemical Etching. ChemPhysChem 2012, 13, 1415–1420. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Cheung, H.Y.; Xiu, F.; Wang, F.; Yip, S.; Han, N.; Hung, T.; Zhou, J.; Ho, J.C.; Wong, C.Y. Developing Controllable Anisotropic Wet Etching to Achieve Silicon Nanorods, Nanopencils and Nanocones for Efficient Photon Trapping. J. Mater. Chem. A 2013, 1, 9942–9946. [Google Scholar] [CrossRef]
- Lo Faro, M.J.; Ielo, I.; Morganti, D.; Leonardi, A.A.; Conoci, S.; Fazio, B.; De Luca, G.; Irrera, A. Alkoxysilane-Mediated Decoration of Si Nanowires Vertical Arrays with Au Nanoparticles as Improved SERS-Active Platforms. Int. J. Mol. Sci. 2023, 24, 16685. [Google Scholar] [CrossRef]
- Peng, Y.; Cui, L.; Gao, J.; Jiang, S.; Wang, H.; Yu, B.; Qian, L. Fabrication of High-Performance Microfluidic SERS Substrates by Metal-Assisted Chemical Etching of Silicon Scratches. Surf. Topogr. Metrol. Prop. 2022, 10, 035008. [Google Scholar] [CrossRef]
- Kara, S.A.; Keffous, A.; Giovannozzi, A.M.; Rossi, A.M.; Cara, E.; D’Ortenzi, L.; Sparnacci, K.; Boarino, L.; Gabouze, N.; Soukane, S. Fabrication of Flexible Silicon Nanowires by Self-Assembled Metal Assisted Chemical Etching for Surface Enhanced Raman Spectroscopy. RSC Adv. 2016, 6, 93649–93659. [Google Scholar] [CrossRef]
- Thi Hoang Nguyen, V.; Silvestre, C.; Shi, P.; Cork, R.; Jensen, F.; Hubner, J.; Ma, K.; Leussink, P.; de Boer, M.; Jansen, H. The CORE Sequence: A Nanoscale Fluorocarbon-Free Silicon Plasma Etch Process Based on SF6/O2 Cycles with Excellent 3D Profile Control at Room Temperature. ECS J. Solid State Sci. Technol. 2020, 9, 024002. [Google Scholar] [CrossRef]
- Dussart, R.; Mellhaoui, X.; Tillocher, T.; Lefaucheux, P.; Volatier, M.; Socquet-Clerc, C.; Brault, P.; Ranson, P. Silicon Columnar Microstructures Induced by an SF6/O2 Plasma. J. Phys. D. Appl. Phys. 2005, 38, 3395–3402. [Google Scholar] [CrossRef]
- Dussart, R.; Mellhaoui, X.; Tillocher, T.; Lefaucheux, P.; Boufnichel, M.; Ranson, P. The Passivation Layer Formation in the Cryo-Etching Plasma Process. Microelectron. Eng. 2007, 84, 1128–1131. [Google Scholar] [CrossRef]
- Sainiemi, L.; Jokinen, V.; Shah, A.; Shpak, M.; Aura, S.; Suvanto, P.; Franssila, S. Non-Reflecting Silicon and Polymer Surfaces by Plasma Etching and Replication. Adv. Mater. 2011, 23, 122–126. [Google Scholar] [CrossRef] [PubMed]
- De Boer, M.J.; Gardeniers, J.G.E.; Jansen, H.V.; Smulders, E.; Gilde, M.J.; Roelofs, G.; Sasserath, J.N.; Elwenspoek, M. Guidelines for Etching Silicon MEMS Structures Using Fluorine High-Density Plasmas at Cryogenic Temperatures. J. Microelectromechanical Syst. 2002, 11, 385–401. [Google Scholar] [CrossRef]
- Xu, J.; Refino, A.D.; Delvallée, A.; Seibert, S.; Schwalb, C.; Hansen, P.E.; Foldyna, M.; Siaudinyte, L.; Hamdana, G.; Wasisto, H.S.; et al. Deep-Reactive Ion Etching of Silicon Nanowire Arrays at Cryogenic Temperatures. Appl. Phys. Rev. 2024, 11, 21411. [Google Scholar] [CrossRef]
- Miakonkikh, A.; Kuzmenko, V. Formation of Black Silicon in a Process of Plasma Etching with Passivation in a SF6/O2 Gas Mixture. Nanomaterials 2024, 14, 945. [Google Scholar] [CrossRef] [PubMed]
- Pezoldt, J.; Kups, T.; Stubenrauch, M.; Fischer, M. Black Luminescent Silicon. Phys. Status Solidi Curr. Top. Solid State Phys. 2011, 8, 1021–1026. [Google Scholar] [CrossRef]
- Franz, L.; Andrea, S. Method of Anisotropically Etching Silicon. US Patent 5501893A, 26 March 1996. [Google Scholar]
- Golubewa, L.; Rehman, H.; Padrez, Y.; Basharin, A.; Sumit, S.; Timoshchenko, I.; Karpicz, R.; Svirko, Y.; Kuzhir, P. Black Silicon: Breaking through the Everlasting Cost vs. Effectivity Trade-Off for SERS Substrates. Materials 2023, 16, 1948. [Google Scholar] [CrossRef]
- Atteia, F.; Le Rouzo, J.; Berginc, G.; Simon, J.-J.; Escoubas, L. Black Silicon (BS) Using Room-Temperature Reactive Ion Etching (RT-RIE) for Interdigitated Back Contact (IBC) Silicon Solar Cells. In Proceedings of the SPIE 10913, Physics, Simulation, and Photonic Engineering of Photovoltaic Devices VIII, San Francisco, CA, USA, 5–7 February 2019; SPIE: San Francisco, CA, USA, 2019; Volume 10913, p. 29. [Google Scholar]
- Kim, H.J.; Kim, B.; Lee, D.; Lee, B.-H.; Cho, C. Fabrication of Surface-Enhanced Raman Scattering Substrate Using Black Silicon Layer Manufactured through Reactive Ion Etching. J. Sens. Sci. Technol. 2021, 30, 267–272. [Google Scholar] [CrossRef]
- Talian, I.; Mogensen, K.B.; Oriňák, A.; Kaniansky, D.; Hübner, J. Surface-Enhanced Raman Spectroscopy on Novel Black Silicon-Based Nanostructured Surfaces. J. Raman Spectrosc. 2009, 40, 982–986. [Google Scholar] [CrossRef]
- Asiala, S.M.; Marr, J.M.; Gervinskas, G.; Juodkazis, S.; Schultz, Z.D. Plasmonic Color Analysis of Ag-Coated Black-Si SERS Substrate. Phys. Chem. Chem. Phys. 2015, 17, 30461–30467. [Google Scholar] [CrossRef]
- Golubewa, L.; Klimovich, A.; Timoshchenko, I.; Padrez, Y.; Fetisova, M.; Rehman, H.; Karvinen, P.; Selskis, A.; Adomavičiūtė-Grabusovė, S.; Matulaitienė, I.; et al. Stable and Reusable Lace-like Black Silicon Nanostructures Coated with Nanometer-Thick Gold Films for SERS-Based Sensing. ACS Appl. Nano Mater. 2023, 6, 4770–4781. [Google Scholar] [CrossRef]
- Li, Y.; Wang, D.; Liang, Z.; Zeng, L.; Li, W.; Xie, P.; Ding, Q.; Zhang, H.; Schaaf, P.; Wang, W. Evaluating the Optical Response of Heavily Decorated Black Silicon Based on a Realistic 3D Modeling Methodology. ACS Appl. Mater. Interfaces 2022, 14, 36189–36199. [Google Scholar] [CrossRef] [PubMed]
- Pellacani, P.; Morasso, C.; Picciolini, S.; Gallach, D.; Fornasari, L.; Marabelli, F.; Manso Silvan, M. Plasma Fabrication and SERS Functionality of Gold Crowned Silicon Submicrometer Pillars. Materials 2020, 13, 1244. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.H.; Cui, S.H.; Fu, T.Z.; Yuan, Y.; Li, C.B. Effect of Concentration on the Position of Fluorescence Peak Based on Black-Silicon SERS Substrate. Appl. Surf. Sci. 2019, 464, 337–343. [Google Scholar] [CrossRef]
- Zhang, C.; Jiang, S.Z.; Huo, Y.Y.; Liu, A.H.; Xu, S.C.; Liu, X.Y.; Sun, Z.C.; Xu, Y.Y.; Li, Z.; Man, B.Y. SERS Detection of R6G Based on a Novel Graphene Oxide/Silver Nanoparticles/Silicon Pyramid Arrays Structure. Opt. Express 2015, 23, 24811. [Google Scholar] [CrossRef] [PubMed]
- Weigel, C.; Brokmann, U.; Hofmann, M.; Behrens, A.; Rädlein, E.; Hoffmann, M.; Strehle, S.; Sinzinger, S. Perspectives of Reactive Ion Etching of Silicate Glasses for Optical Microsystems. J. Opt. Microsystems 2021, 1, 040901. [Google Scholar] [CrossRef]
- Tang, Y.H.; Lin, Y.H.; Chen, P.L.; Shiao, M.H.; Hsiao, C.N. Comparison of Optimised Conditions for Inductively Coupled Plasma-Reactive Ion Etching of Quartz Substrates and Its Optical Applications. Micro Nano Lett. 2014, 9, 395–398. [Google Scholar] [CrossRef]
- Parmar, V.; Kanaujia, P.K.; Bommali, R.K.; Vijaya Prakash, G. Efficient Surface Enhanced Raman Scattering Substrates from Femtosecond Laser Based Fabrication. Opt. Mater. 2017, 72, 86–90. [Google Scholar] [CrossRef]
- Dwivedi, O.D.; Barsukov, Y.; Jubin, S.; Vella, J.R.; Kaganovich, I. Orientation-Dependent Etching of Silicon by Fluorine Molecules: A Quantum Chemistry Computational Study. J. Vac. Sci. Technol. A 2023, 41, 052602. [Google Scholar] [CrossRef]
- Chern, W.; Hsu, K.; Chun, I.S.; Azeredo, B.P.D.; Ahmed, N.; Kim, K.H.; Zuo, J.M.; Fang, N.; Ferreira, P.; Li, X. Nonlithographic Patterning and Metal-Assisted Chemical Etching for Manufacturing of Tunable Light-Emitting Silicon Nanowire Arrays. Nano Lett. 2010, 10, 1582–1588. [Google Scholar] [CrossRef]
- Zhou, Y.; Lu, Y.; Liu, Y.; Hu, X.; Chen, H. Current Strategies of Plasmonic Nanoparticles Assisted Surface-Enhanced Raman Scattering toward Biosensor Studies. Biosens. Bioelectron. 2023, 228, 115231. [Google Scholar] [CrossRef]
- Hardy, M.; Goldberg Oppenheimer, P. ‘When Is a Hotspot a Good Nanospot’—Review of Analytical and Hotspot-Dominated Surface Enhanced Raman Spectroscopy Nanoplatforms. Nanoscale 2024, 16, 3293–3323. [Google Scholar] [CrossRef] [PubMed]
- McNay, G.; Eustace, D.; Smith, W.E.; Faulds, K.; Graham, D. Surface-Enhanced Raman Scattering (SERS) and Surface-Enhanced Resonance Raman Scattering (SERRS): A Review of Applications. Appl. Spectrosc. 2011, 65, 825–837. [Google Scholar] [CrossRef] [PubMed]
- Bartschmid, T.; Menath, J.; Roemling, L.; Vogel, N.; Atalay, F.; Farhadi, A.; Bourret, G.R. Au Nanoparticles@Si Nanowire Oligomer Arrays for SERS: Dimers Are Best. ACS Appl. Mater. Interfaces 2024, 16, 23. [Google Scholar] [CrossRef]
- Wu, K.; Rindzevicius, T.; Stenbæk Schmidt, M.; Mogensen, K.B.; Hakonen, A.; Boisen, A. Wafer-Scale Leaning Silver Nanopillars for Molecular Detection at Ultra-Low Concentrations. J. Phys. Chem. C 2015, 119, 2053–2062. [Google Scholar] [CrossRef]
- Wu, K.; Rindzevicius, T.; Schmidt, M.S.; Mogensen, K.B.; Xiao, S.; Boisen, A. Plasmon Resonances of Ag Capped Si Nanopillars Fabricated Using Mask-Less Lithography. Opt. Express 2015, 23, 12965. [Google Scholar] [CrossRef]
- Pandey, P.C.; Pandey, G.; Narayan, R.J. Minimally Invasive Platforms in Biosensing. Front. Bioeng. Biotechnol. 2020, 8, 894. [Google Scholar] [CrossRef] [PubMed]
- Carroll, D.P.; Mendes, P.M. Recent Advances in Surface Modification and Antifouling Strategies for Electrochemical Sensing in Complex Biofluids. Curr. Opin. Electrochem. 2023, 40, 101319. [Google Scholar] [CrossRef]
- Irfan Azizan, M.A.; Taufik, S.; Norizan, M.N.; Abdul Rashid, J.I. A Review on Surface Modification in the Development of Electrochemical Biosensor for Malathion. Biosens. Bioelectron. X 2023, 13, 100291. [Google Scholar] [CrossRef]
- Almehmadi, L.M.; Curley, S.M.; Tokranova, N.A.; Tenenbaum, S.A.; Lednev, I.K. Surface Enhanced Raman Spectroscopy for Single Molecule Protein Detection. Sci. Rep. 2019, 9, 12356. [Google Scholar] [CrossRef]
- Schorr, H.C.; Schultz, Z.D. Digital Surface Enhanced Raman Spectroscopy for Quantifiable Single Molecule Detection in Flow. Analyst 2024, 149, 3711–3715. [Google Scholar] [CrossRef]
- Xu, L.; Ren, B.; Pu, M.; Guo, Y.; Li, X.; Luo, X. Rapid Identification of Living Cancer Cells Based on Label-Free Surface-Enhanced Raman Spectroscopy. Opt. Commun. 2024, 569, 130806. [Google Scholar] [CrossRef]
- Gao, S.; Zhang, Y.; Cui, K.; Zhang, S.; Qiu, Y.; Liao, Y.; Wang, H.; Yu, S.; Ma, L.; Chen, H.; et al. Self-Stacked Small Molecules for Ultrasensitive, Substrate-Free Raman Imaging in Vivo. Nat. Biotechnol. 2024, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Downes, A.; Elfick, A. Raman Spectroscopy and Related Techniques in Biomedicine. Sensors 2010, 10, 1871–1889. [Google Scholar] [CrossRef] [PubMed]
- Yue, X.; Zheng, X.; Lv, G.; Mo, J.; Yu, X.; Liu, J.; Jia, Z.; Lv, X.; Tang, J. Synthesis of a Low-Cost, Stable, Silicon-Based SERS Substrate for Rapid, Nondestructive Biosensing. Optik 2019, 192, 162959. [Google Scholar] [CrossRef]
- Bu, Y.; Zhu, G.; Li, S.; Qi, R.; Bhave, G.; Zhang, D.; Han, R.; Sun, D.; Liu, X.; Hu, Z.; et al. Silver-Nanoparticle-Embedded Porous Silicon Disks Enabled SERS Signal Amplification for Selective Glutathione Detection. ACS Appl. Nano Mater. 2018, 1, 410–417. [Google Scholar] [CrossRef]
- Chen, J.J.; Thiyagarajah, M.; Song, J.; Chen, C.; Herrmann, N.; Gallagher, D.; Rapoport, M.J.; Black, S.E.; Ramirez, J.; Andreazza, A.C.; et al. Altered Central and Blood Glutathione in Alzheimer’s Disease and Mild Cognitive Impairment: A Meta-Analysis. Alzheimers. Res. Ther. 2022, 14, 23. [Google Scholar] [CrossRef]
- Huang, C.-Y.; Chung, Y.-H.; Wu, S.-Y.; Wang, H.-Y.; Lin, C.-Y.; Yang, T.-J.; Fang, J.-M.; Hu, C.-M.; Chang, Z.-F. Glutathione Determines Chronic Myeloid Leukemia Vulnerability to an Inhibitor of CMPK and TMPK. Commun. Biol. 2024, 7, 843. [Google Scholar] [CrossRef]
- Lu, L.; Guan, S.; Guan, Y.; Hong, M. Dual-Modal Fluorescence-SERS Detection of Blood Glucose Engineered by Hierarchical Laser-Induced Micro/Nano Structures for Diabetes Screening. Adv. Mater. Interfaces 2022, 9, 2102532. [Google Scholar] [CrossRef]
- Wang, Q.; Sun, D.; Ma, X.; Huang, R.; Xu, J.; Xu, X.; Cai, L.; Xu, L. Surface Enhanced Raman Scattering Active Substrate Based on Hydrogel Microspheres for Pretreatment-Free Detection of Glucose in Biological Samples. Talanta 2023, 260, 124657. [Google Scholar] [CrossRef]
- Jiang, S.; Li, Q.; Wu, G.; Mu, X.; Wang, X.; Wang, Y.; Wu, Y.; Wu, J.; Li, Y. Advances in Label-Free Glucose Detection Using Self-Assembled Nanoparticles and Surface-Enhanced Raman Spectroscopy. Anal. Chem. 2024, 96, 11533–11541. [Google Scholar] [CrossRef]
- Perez-Mayen, L.; Oliva, J.; Salas, P.; De la Rosa, E. Nanomolar Detection of Glucose Using SERS Substrates Fabricated with Albumin Coated Gold Nanoparticles. Nanoscale 2016, 8, 11862–11869. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Li, Y.; Lv, X.; Jiang, S.; Jiang, S.; Sun, Z.; Zhang, M.; Li, Y. Ultra-Sensitive and Unlabeled SERS Nanosheets for Specific Identification of Glucose in Body Fluids. Adv. Funct. Mater. 2024, 34, 2315668. [Google Scholar] [CrossRef]
- Ren, X.; Cao, E.; Lin, W.; Song, Y.; Liang, W.; Wang, J. Recent Advances in Surface Plasmon-Driven Catalytic Reactions. RSC Adv. 2017, 7, 31189–31203. [Google Scholar] [CrossRef]
- Goykhman, I.; Desiatov, B.; Khurgin, J.; Shappir, J.; Levy, U. Locally Oxidized Silicon Surface-Plasmon Schottky Detector for Telecom Regime. Nano Lett. 2011, 11, 2219–2224. [Google Scholar] [CrossRef]
- Kang, S.K.; Murphy, R.K.J.; Hwang, S.W.; Lee, S.M.; Harburg, D.V.; Krueger, N.A.; Shin, J.; Gamble, P.; Cheng, H.; Yu, S.; et al. Bioresorbable Silicon Electronic Sensors for the Brain. Nature 2016, 530, 71–76. [Google Scholar] [CrossRef]
- Sun, C.; Zhang, S.; Wang, J.; Ge, F. Enhancement of SERS Performance Using Hydrophobic or Superhydrophobic Cotton Fabrics. Surf. Interfaces 2022, 28, 101616. [Google Scholar] [CrossRef]
- Norouzi, N.; Woudstra, W.; Smith, E.J.W.; Zulpukarova, G.; Yao, K.; Damle, V.G.; Schirhagl, R.; May, P.W.; Kamp, T. Antimicrobial Studies of Black Silicon and Black Diamond Using Gram-Positive Bacteria. Adv. Eng. Mater. 2023, 25, 2301031. [Google Scholar] [CrossRef]
- Hazell, G.; May, P.W.; Taylor, P.; Nobbs, A.H.; Welch, C.C.; Su, B. Studies of Black Silicon and Black Diamond as Materials for Antibacterial Surfaces. Biomater. Sci. 2018, 6, 1424–1432. [Google Scholar] [CrossRef]
- Kayes, M.I.; Zarei, M.; Feng, F.; Leu, P.W. Black Silicon Spacing Effect on Bactericidal Efficacy against Gram-Positive Bacteria. Nanotechnology 2024, 35, 025102. [Google Scholar] [CrossRef]
- Hartley, J.S.; Hlaing, M.; Seniutinas, G.; Juodkazis, S.; Stoddart, P.R. Black Silicon as a Platform for Bacterial Detection. Biomicrofluidics 2015, 9, 061101. [Google Scholar] [CrossRef]
- Li, X.; Keshavarz, M.; Kassanos, P.; Kidy, Z.; Roddan, A.; Yeatman, E.; Thompson, A.J. SERS Detection of Breast Cancer-Derived Exosomes Using a Nanostructured Pt-Black Template. Adv. Sens. Res. 2023, 2, 2200039. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, A.; Kim, G.H.; Rhim, W.K.; Hartman, K.L.; Nam, J.M. Myoglobin and Polydopamine-Engineered Raman Nanoprobes for Detecting, Imaging, and Monitoring Reactive Oxygen Species in Biological Samples and Living Cells. Small 2017, 13, 1701584. [Google Scholar] [CrossRef] [PubMed]
- Navas-Moreno, M.; Mehrpouyan, M.; Chernenko, T.; Candas, D.; Fan, M.; Li, J.J.; Yan, M.; Chan, J.W. Nanoparticles for Live Cell Microscopy: A Surface-Enhanced Raman Scattering Perspective. Sci. Rep. 2017, 7, 4471. [Google Scholar] [CrossRef]
- Chuang, Y.T.; Cheng, T.Y.; Kao, T.L.; Liao, M.Y. Hollow AuxCu1- XAlloy Nanoshells for Surface-Enhanced Raman-Based Tracking of Bladder Cancer Cells Followed by Triggerable Secretion Removal. ACS Appl. Nano Mater. 2020, 3, 7888–7898. [Google Scholar] [CrossRef]
- Ren, X.; Nam, W.; Ghassemi, P.; Strobl, J.S.; Kim, I.; Zhou, W.; Agah, M. Scalable Nanolaminated SERS Multiwell Cell Culture Assay. Microsyst. Nanoeng. 2020, 6, 1–11. [Google Scholar] [CrossRef]
- Yi, N.; Zhang, C.; Song, Q.; Xiao, S. A Hybrid System with Highly Enhanced Graphene SERS for Rapid and Tag-Free Tumor Cells Detection. Sci. Rep. 2016, 6, 47. [Google Scholar] [CrossRef] [PubMed]
- Karaballi, R.A.; Merchant, S.; Power, S.R.; Brosseau, C.L. Electrochemical Surface-Enhanced Raman Spectroscopy (EC-SERS) Study of the Interaction between Protein Aggregates and Biomimetic Membranes. Phys. Chem. Chem. Phys. 2018, 20, 4513–4526. [Google Scholar] [CrossRef]
- Markin, A.V.; Arzhanukhina, A.I.; Markina, N.E.; Goryacheva, I.Y. Analytical Performance of Electrochemical Surface-Enhanced Raman Spectroscopy: A Critical Review. TrAC Trends Anal. Chem. 2022, 157, 116776. [Google Scholar] [CrossRef]
- Moldovan, R.; Vereshchagina, E.; Milenko, K.; Iacob, B.-C.; Bodoki, A.E.; Falamas, A.; Tosa, N.; Muntean, C.M.; Farcău, C.; Bodoki, E. Review on Combining Surface-Enhanced Raman Spectroscopy and Electrochemistry for Analytical Applications. Anal. Chim. Acta 2022, 1209, 339250. [Google Scholar] [CrossRef]
- Viehrig, M.; Rajendran, S.T.; Sanger, K.; Schmidt, M.S.; Alstrøm, T.S.; Rindzevicius, T.; Zór, K.; Boisen, A. Quantitative SERS Assay on a Single Chip Enabled by Electrochemically Assisted Regeneration: A Method for Detection of Melamine in Milk. Anal. Chem. 2020, 92, 4317–4325. [Google Scholar] [CrossRef]
- Brazhe, N.A.; Nikelshparg, E.I.; Baizhumanov, A.A.; Grivennikova, V.G.; Semenova, A.A.; Novikov, S.M.; Volkov, V.S.; Arsenin, A.V.; Yakubovsky, D.I.; Evlyukhin, A.B.; et al. SERS Uncovers the Link between Conformation of Cytochrome c Heme and Mitochondrial Membrane Potential. Free Radic. Biol. Med. 2023, 196, 133–144. [Google Scholar] [CrossRef] [PubMed]
Black Silicon Fabrication | Si Wafer Parameters | Black Silicon Morphology, Tip Density | Metal, Thickness, Layer Type | Metal Deposition Method | Enhancement Factor | λex, nm | Detected Object, Detection Limit | Reference |
---|---|---|---|---|---|---|---|---|
Maskless ICP–RIE SF6/O2: 0–150/0–50 sccm, −110 °C, 3–40 min | (100) 6″ | Sharp-tip; Height: 200 nm–6 μm, Spacing: 100 nm–2 μm, 1–30 tips/μm2 | Au, 100–600 nm, bridged gold | e-beam evaporation, 1 Å s−1 | N/A | 532 | R6G; Chlorella vulgaris 10 fM (R6G) | [79] |
Maskless ICP–RIE: SF6/O2 35/45 sccm, 1 Pa, 150 W, 15 min; SF6/O2 65/44 sccm, 4.7 Pa, 100 W, 1–25 min | (100) p-type | Pyramidal shaped spikes; pillars | Au 200 nm layer, with a molecularly imprinted polymer layer for target molecules | Magnetron sputtering | N/A | 785 | Tetracycline | [80] |
Maskless ICP–RIE: SF6/O2 35/45 sccm, 1 Pa, 150 W, 15 min; | (100) 3″ | Randomly-arranged spikes; Height 600 ± 150 nm 60 tips/μm2 | (i) no; (ii) Ag; (iii) Au; 20–200 nm, metal flakes | e-beam evaporation, 1 nm s−1 | (i) 103 (ii), (iii) N/A | 532 | para-aminothiophenol (i) 10−6 M (ii), (iii) N/A | [81] |
Maskless ICP–RIE: SF6/O2 15/37.5 sccm, 250 mTorr, 150–170 W, 10–20 min | single crystal | Grass-structured: Height: 2–7 μm | Ag 40–150 nm Separate NPs | e-beam evaporation, 1 Å s−1 | N/A | 785 | R6G 10−3 M | [118] |
Cryogenic ICP-RIE: SF6/O2 30.5/27.5 sccm, 10 mTorr, 1000 W; SF6/O2 40/18 sccm, 20 mTorr, 1000 W | (100) 4″ | Pyramid-like | Ag 35–150 nm, Intermediate 4-nm-thick Ti film; Form NPs to continuous layer | e-beam evaporation, 0.35 nm s−1 | 6.8 × 109 | 532 | R6G | [17] |
Maskless ICP-RIE SF6/O2 65/44 sccm, 35 mTorr, 100 W RIE power, 20 °C electrode, 10 Torr He cooling; 20 min | (100) p-type (boron-doped), 10–20 Ω × cm, 4″ | Needle-like (grass-like); Height: 3.5 μm, Cylinder diameter: 40–240 nm | Au 30–300 nm, 300 nm mainly non-continuous layer, 30 nm, continuous for >30 nm, gold nanorods added | Magnetron sputtered | N/A | 514, 633 | R6G 10−6 M | [69] |
Advanced Silicon Etching, SF6/O2 | N/A, 4″ | Grass-like | Au 400 nm, Nanoislands; Ti and Ti/Pt adhesion layers underneath Au | e-beam deposition (static and sweep modes) | 7.6 × 107 | 785 | R6G 2.4 pg | [119] |
ICP-RIE SF6/O2 of 35/45 sccm, 150 W RIE, 1.0 Pa, 15 min | (100) p-type, 3″ | Pyramidal pillars: Height/width = 2.3; Height = 279 nm, Tip diameter 16–20 nm | Ag <100 nm, isolated islands; 1–10 nm chromium adhesion layer | Thermal evaporation; 0.1 nm s−1, rotating stage | N/A | 532, 633 | Thiophenol SAM | [120] |
Maskless RIE | N/A | Pillars: Width: 50–80 nm, Height: 600–1600 nm, Density: 3.3, 6.2. 8.9, 14.2, 14.8 and 18.0 pillars/μm2 | Ag capping of pillars, backplane deposition, 100–200 nm | e-beam evaporation | 1011 | 785 | Thiophenol | [68] |
Two-step ICP-RIE: (1) C4F8 masking, (2) SF6/O2 etching 10:9 sccm, 18–30 min, 30 mTorr, 20 °C | (100) n-type (p-doped), 1–30 Ω × cm, 2″ | Pillars: Height: 639 nm–2.2 μm Thickness: 110–830 nm 0.56–4.33 tips/μm2 | Au <25 nm Mosaic pseudo-layer | Magnetron sputtering | N/A | 532, 785 | 4-MBA SAM | [116] |
Maskless ICP-RIE SF6/O2 10/9 sccm, RF 15 W, 30 mTorr, 200 W ICP, 10 min | (100) p-type, 1−20 Ω · cm 2″ | Lace-like, sharp-edged structures: Height: 1 μm, Base width: 100–200 nm, Apex 10–100 nm | Au Pseudo-layer, Approx. 11 nm for side walls, 34–110 nm for apex caps | Magnetron sputtering | 1.1 × 106 4MBA | 785 | 4-MBA, DOX; 10−9 M (DOX) | [121] |
Cryogenic ICP-RIE SF6/O2 30.5/27.5 sccm, 20 mTorr, 4 W platen power, –110 °C | n-type (p-doped), 0.5 mm thick, 100 mm | Cone (pyramidal)-like: Height 495 ± 19, Base diam. 221 ± 24 nm, Apex curvature radius: 26 ± 4 nm | gold 25–50 nm Continuous rough layer | Magnetron sputtering | 108 | 785 | 4-MBA, living cells C6 rat glioma | [18] |
Au pre-coating: - Au coating (e-beam) 5–10 nm, - thermal dewetting. ICP-RIE: etching: SF6/O2, passivation: C4F8 | (100) 0.2–0.5 Ω·cm, 4″ | Truncated cones: Height: 100–500 nm | Prior metallization–Au etched. Ag capping: 5–10 nm Ag backplane (BARNA) | e-beam evaporation, 0.5 Å s−1 | 105–106 | 633 | R6G, nitrate, riboflavin, thiamine, ss-DNA | [67] |
Self-masking ICP-RIE SF6/O2 | (100) p-type 4″ | Cones (pyramidal) | Intermediate Ti layer 10 nm; Gold layers 100–200 nm; SiO2 layer 40 nm; Au NPs 10–60 nm | Magnetron sputtering (Au); ICP CVD (SiO2); E-beam evaporation (Au NPs) | N/A | 633 | R6G, 10−6 M | [122] |
PS LBL (diam. 500 nm) RIE: CF4/Ar: 5/1; 3.33 Pa, RF 60–75 W, 3–40 min | (100) 1 × 1 cm2 | Au crowned Si pillars | Au 40 nm | Direct current plasma metallization | N/A | 533, 633, 785 | R6G; MG 10 fM (R6G) Filtered blood plasma (kDa proteins) | [123] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Padrez, Y.; Golubewa, L. Black Silicon Surface-Enhanced Raman Spectroscopy Biosensors: Current Advances and Prospects. Biosensors 2024, 14, 453. https://doi.org/10.3390/bios14100453
Padrez Y, Golubewa L. Black Silicon Surface-Enhanced Raman Spectroscopy Biosensors: Current Advances and Prospects. Biosensors. 2024; 14(10):453. https://doi.org/10.3390/bios14100453
Chicago/Turabian StylePadrez, Yaraslau, and Lena Golubewa. 2024. "Black Silicon Surface-Enhanced Raman Spectroscopy Biosensors: Current Advances and Prospects" Biosensors 14, no. 10: 453. https://doi.org/10.3390/bios14100453
APA StylePadrez, Y., & Golubewa, L. (2024). Black Silicon Surface-Enhanced Raman Spectroscopy Biosensors: Current Advances and Prospects. Biosensors, 14(10), 453. https://doi.org/10.3390/bios14100453