Highly Sensitive and Wide-Range Detection of Thiabendazole via Surface-Enhanced Raman Scattering Using Bimetallic Nanoparticle-Functionalized Nanopillars
Abstract
:1. Introduction
2. Material and Methods
2.1. Chemical Agents
2.2. Synthesis of SNPi, Gold Nanoparticles, and Bimetallic Au@Ag Nanoparticles
2.3. Optimization of BNP@SNPi SERS Substrate
2.4. SERS Analysis
2.5. TBZ Detection in Real Samples
3. Results and Discussion
3.1. Detection of TBZ in Various Environments Using BNP@SNPi
3.2. Characterization of BNP@SNPi Substrate
3.3. Optimization and Sensor Performance of BNP@SNPi SERS Substate
3.4. Detection of TBZ Using BNP@SNPi
3.5. TBZ Detection in Environmental and Biological Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fu, G.; Sun, D.-W.; Pu, H.; Wei, Q. Fabrication of Gold Nanorods for SERS Detection of Thiabendazole in Apple. Talanta 2019, 195, 841–849. [Google Scholar] [CrossRef]
- Alsammarraie, F.K.; Lin, M.; Mustapha, A.; Lin, H.; Chen, X.; Chen, Y.; Wang, H.; Huang, M. Rapid Determination of Thiabendazole in Juice by SERS Coupled with Novel Gold Nanosubstrates. Food Chem. 2018, 259, 219–225. [Google Scholar] [CrossRef]
- Gilbert-López, B.; García-Reyes, J.F.; Mezcua, M.; Molina-Díaz, A.; Fernández-Alba, A.R. Determination of Postharvest Fungicides in Fruit Juices by Solid-Phase Extraction Followed by Liquid Chromatography Electrospray Time-of-Flight Mass Spectrometry. J. Agric. Food Chem. 2007, 55, 10548–10556. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Yang, L.; Zhang, L. Simultaneous Electrochemical Detection of Benzimidazole Fungicides Carbendazim and Thiabendazole Using a Novel Nanohybrid Material-Modified Electrode. J. Agric. Food Chem. 2017, 65, 727–736. [Google Scholar] [CrossRef] [PubMed]
- Pan, H.; Ahmad, W.; Jiao, T.; Zhu, A.; Ouyang, Q.; Chen, Q. Label-Free Au NRs-Based SERS Coupled with Chemometrics for Rapid Quantitative Detection of Thiabendazole Residues in Citrus. Food Chem. 2022, 375, 131681. [Google Scholar] [CrossRef] [PubMed]
- Müller, C.; David, L.; Chiş, V.; Pînzaru, S.C. Detection of Thiabendazole Applied on Citrus Fruits and Bananas Using Surface Enhanced Raman Scattering. Food Chem. 2014, 145, 814–820. [Google Scholar] [CrossRef]
- Ly, T.K.; Ho, T.D.; Behra, P.; Nhu-Trang, T.T. Determination of 400 Pesticide Residues in Green Tea Leaves by UPLC-MS/MS and GC-MS/MS Combined with QuEChERS Extraction and Mixed-Mode SPE Clean-up Method. Food Chem. 2020, 326, 126928. [Google Scholar] [CrossRef]
- Lankas, G.R.; Wise, D.L. Developmental Toxicity of Orally Administered Thiabendazole in Sprague—Dawley Rats and New Zealand White Rabbits. Food Chem. Toxicol. 1993, 31, 199–207. [Google Scholar] [CrossRef]
- Ogata, A.; Ani, H.; Kubo, Y.; Hiraga, K. Teratogenicity of Thiabendazole in ICR Mice. Food Chem. Toxicol. 1984, 22, 509–520. [Google Scholar] [CrossRef]
- Tada, Y.; Fujitani, T.; Yano, N.; Yuzawa, K.; Nagasawa, A.; Yoneyama, M. Thiabendazole Induces Urinary Tract Toxicity in Male ICR Mice. Toxicology 2001, 162, 1–10. [Google Scholar] [CrossRef]
- Tada, Y.; Fujitani, T.; Yano, N.; Yuzawa, K.; Nagasawa, A.; Aoki, N.; Ogata, A.; Yoneyama, M. Chronic Toxicity of Thiabendazole (TBZ) in CD-1 Mice. Toxicology 2001, 169, 163–176. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, D.; Wang, L.; Long, N.; Zhang, M.; Zhang, L. An Electrochemical Method for High Sensitive Detection of Thiabendazole and Its Interaction with Human Serum Albumin. Food Anal. Methods 2015, 8, 507–514. [Google Scholar] [CrossRef]
- Albero, B.; Sánchez-Brunete, C.; Tadeo, J.L. Determination of Thiabendazole in Orange Juice and Rind by Liquid Chromatography with Fluorescence Detection and Confirmation by Gas Chromatography/Mass Spectrometry After Extraction by Matrix Solid-Phase Dispersion. J. AOAC Int. 2004, 87, 664–670. [Google Scholar] [CrossRef]
- Ferreira, J.A.; Ferreira, J.M.S.; Talamini, V.; de F. Facco, J.; Rizzetti, T.M.; Prestes, O.D.; Adaime, M.B.; Zanella, R.; Bottoli, C.B.G. Determination of Pesticides in Coconut (Cocos nucifera Linn.) Water and Pulp Using Modified QuEChERS and LC–MS/MS. Food Chem. 2016, 213, 616–624. [Google Scholar] [CrossRef] [PubMed]
- Uclés, A.; Herrera López, S.; Dolores Hernando, M.; Rosal, R.; Ferrer, C.; Fernández-Alba, A.R. Application of Zirconium Dioxide Nanoparticle Sorbent for the Clean-up Step in Post-Harvest Pesticide Residue Analysis. Talanta 2015, 144, 51–61. [Google Scholar] [CrossRef] [PubMed]
- Cheng, F.; Liao, X.; Huang, Z.; Xu, L.; Zhou, Y.; Zhang, X. Highly Sensitive Detection of Thiabendazole Residues in Food Samples Based on Multiwall Carbon Nanotubes Decorated Two-Dimensional Layered Molybdenum Disulfide. Food Anal. Methods 2020, 13, 811–822. [Google Scholar] [CrossRef]
- Kurtz, S.; Philbrick, C.R.; Chadwick, C.T.; Hallen, H.; Willitsford, A. Resonance Enhanced Raman Scatter in Liquid Benzene at Vapor-Phase Absorption Peaks. Opt. Express 2013, 21, 26150–26161. [Google Scholar] [CrossRef]
- Willitsford, A.H.; Chadwick, C.T.; Kurtz, S.; Philbrick, C.R.; Hallen, H. Resonance-Enhanced Raman Scattering of Ring-Involved Vibrational Modes in the 1B2u Absorption Band of Benzene, Including the Kekule Vibrational Modes Ν9 and Ν10. J. Phys. Chem. A 2016, 120, 503–506. [Google Scholar] [CrossRef]
- Moldovan, R.; Milenko, K.; Vereshchagina, E.; Iacob, B.C.; Schneider, K.; Farcău, C.; Bodoki, E. EC-SERS Detection of Thiabendazole in Apple Juice Using Activated Screen-Printed Electrodes. Food Chem. 2023, 405, 134713. [Google Scholar] [CrossRef] [PubMed]
- Park, H.; Park, J.; Kim, W.; Kim, W.; Park, J. Ultra-Sensitive SERS Detection of Perfluorooctanoic Acid Based on Self-Assembled p-Phenylenediamine Nanoparticle Complex. J. Hazard. Mater. 2023, 453, 131384. [Google Scholar] [CrossRef]
- John Turkevich, B.; Cooper Stevenson, P.; Hillier, J. A Study of the Nucleation and Growth Processes in the Synthesis of Colloidal Gold. Compt. Rend. URSS 1941, 47, 132. [Google Scholar] [CrossRef]
- Yuan, P.; Ma, R.; Gao, N.; Garai, M.; Xu, Q.H. Plasmon Coupling-Enhanced Two-Photon Photoluminescence of Au@Ag Core–Shell Nanoparticles and Applications in the Nuclease Assay. Nanoscale 2015, 7, 10233–10239. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, E.; Kharisov, B.; Vázquez, A.; Méndez, E.A.; Severiano-Carrillo, I.; Trejo-Durán, M. Tuning the Nonlinear Optical Properties of Au@Ag Bimetallic Nanoparticles. J. Mol. Liq. 2020, 298, 112057. [Google Scholar] [CrossRef]
- Watts, M.T.; Raisys, V.A.; Bauer, L.A. Determination of Thiabendazole and 5-Hydroxythiabendazole in Human Serum by Fluorescence-Detected High-Performance Liquid Chromatography. J. Chromatogr. B Biomed. Sci. Appl. 1982, 230, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chen, R.; Liu, F.; Miao, P.; Lin, L.; Ye, J. In Vivo Surface-Enhanced Transmission Raman Spectroscopy under Maximum Permissible Exposure: Toward Photosafe Detection of Deep-Seated Tumors. Small Methods 2023, 7, 2201334. [Google Scholar] [CrossRef] [PubMed]
- Rycenga, M.; Cobley, C.M.; Zeng, J.; Li, W.; Moran, C.H.; Zhang, Q.; Qin, D.; Xia, Y. Controlling the Synthesis and Assembly of Silver Nanostructures for Plasmonic Applications. Chem. Rev. 2011, 111, 3669–3712. [Google Scholar] [CrossRef] [PubMed]
- Fan, M.; Lai, F.-J.; Chou, H.-L.; Lu, W.-T.; Hwang, B.-J.; Brolo, A.G. Surface-Enhanced Raman Scattering (SERS) from Au:Ag Bimetallic Nanoparticles: The Effect of the Molecular Probe. Chem. Sci. 2013, 4, 509–515. [Google Scholar] [CrossRef]
- Bang, D.; Chang, Y.W.; Park, J.; Lee, T.; Park, J.; Yeo, J.S.; Kim, E.K.; Yoo, K.H.; Huh, Y.M.; Haam, S. One-Step Electrochemical Fabrication of Vertically Self-Organized Silver Nanograss. J. Mater. Chem. A Mater. 2013, 1, 4851–4857. [Google Scholar] [CrossRef]
- Park, H.; Park, J.; Lee, G.; Kim, W.; Park, J. Detection of Chlorpyrifos Using Bio-Inspired Silver Nanograss. Materials 2022, 15, 3454. [Google Scholar] [CrossRef]
- Macias, G.; Alba, M.; Marsal, L.F.; Mihi, A. Surface Roughness Boosts the SERS Performance of Imprinted Plasmonic Architectures. J. Mater. Chem. C Mater. 2016, 4, 3970–3975. [Google Scholar] [CrossRef]
- Laor, U.; Schatz, G.C. The Role of Surface Roughness in Surface Enhanced Raman Spectroscopy (SERS): The Importance of Multiple Plasmon Resonances. Chem. Phys. Lett. 1981, 82, 566–570. [Google Scholar] [CrossRef]
- Park, H.; Kim, W.; Kim, M.; Lee, G.; Lee, W.; Park, J. Eco-Friendly and Enhanced Colorimetric Detection of Aluminum Ions Using Pectin-Rich Apple Extract-Based Gold Nanoparticles. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021, 245, 118880. [Google Scholar] [CrossRef]
- Anandalakshmi, K.; Venugobal, J.; Ramasamy, V. Characterization of Silver Nanoparticles by Green Synthesis Method Using Pedalium Murex Leaf Extract and Their Antibacterial Activity. Appl. Nanosci. 2016, 6, 399–408. [Google Scholar] [CrossRef]
- Pande, S.; Chowdhury, J.; Pal, T. Understanding the Enhancement Mechanisms in the Surface-Enhanced Raman Spectra of the 1,10-Phenanthroline Molecule Adsorbed on a Au@Ag Bimetallic Nanocolloid. J. Phys. Chem. C 2011, 115, 10497–10509. [Google Scholar] [CrossRef]
- Wang, K.; Sun, D.W.; Pu, H.; Wei, Q. Shell Thickness-Dependent Au@Ag Nanoparticles Aggregates for High-Performance SERS Applications. Talanta 2019, 195, 506–515. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Jin, M.; Ma, Q.; Yan, Z.; Liu, Z.; Wang, X.; Akinoglu, E.M.; van den Berg, A.; Zhou, G.; Shui, L. Ag Nano-Assemblies on Si Surface via CTAB-Assisted Galvanic Reaction for Sensitive and Reliable Surface-Enhanced Raman Scattering Detection. Sens. Actuators B Chem. 2020, 304, 127224. [Google Scholar] [CrossRef]
- Zhang, B.Y.; Yin, P.; Hu, Y.; Szydzik, C.; Khan, M.W.; Xu, K.; Thurgood, P.; Mahmood, N.; Dekiwadia, C.; Afrin, S.; et al. Highly Accurate and Label-Free Discrimination of Single Cancer Cell Using a Plasmonic Oxide-Based Nanoprobe. Biosens. Bioelectron. 2022, 198, 113814. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, M.J.S.; Rubira, R.J.G.; Furini, L.N.; Batagin-Neto, A.; Constantino, C.J.L. Detection of Thiabendazole Fungicide/Parasiticide by SERS: Quantitative Analysis and Adsorption Mechanism. Appl. Surf. Sci. 2020, 517, 145786. [Google Scholar] [CrossRef]
- Meundaeng, N.; Rujiwatra, A.; Prior, T.J. Crystal Structure of (1,3-Thiazole-2-Carboxylato-κ N)(1,3-Thiazole-2-Carboxylic Acid-κ N)Silver(I). Acta Crystallogr. E Crystallogr. Commun. 2019, 75, 185–188. [Google Scholar] [CrossRef]
- Sun, Q.; He, J.; Yang, H.; Li, S.; Zhao, L.; Li, H. Analysis of Binding Properties and Interaction of Thiabendazole and Its Metabolite with Human Serum Albumin via Multiple Spectroscopic Methods. Food Chem. 2017, 233, 190–196. [Google Scholar] [CrossRef]
- Luo, H.; Wang, X.; Huang, Y.; Lai, K.; Rasco, B.A.; Fan, Y. Rapid and Sensitive Surface-Enhanced Raman Spectroscopy (SERS) Method Combined with Gold Nanoparticles for Determination of Paraquat in Apple Juice. J. Sci. Food Agric. 2018, 98, 3892–3898. [Google Scholar] [CrossRef] [PubMed]
- Hassan, M.M.; Xu, Y.; He, P.; Zareef, M.; Li, H.; Chen, Q. Simultaneous Determination of Benzimidazole Fungicides in Food Using Signal Optimized Label-Free HAu/Ag NS-SERS Sensor. Food Chem. 2022, 397, 133755. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Yu, X.; Hu, J.; Zhuang, X.; Wang, J.; Qiu, H.; Ren, H.; Zhang, S.; Zhang, Y.; Hu, Y. Constructing a Highly Sensitivity SERS Sensor Based on a Magnetic Metal-Organic Framework (MOF) to Detect the Trace of Thiabendazole in Fruit Juice. ACS Sustain. Chem. Eng. 2022, 10, 8400–8410. [Google Scholar] [CrossRef]
- Ansah, I.B.; Lee, S.H.; Mun, C.W.; Yang, J.Y.; Park, J.; Nam, S.Y.; Lee, S.; Kim, D.H.; Park, S.G. Nanoscale Crack Generation of Au/Ag Nanopillars by in Situ Galvanic Replacement for Sensitive, Label-Free, and Rapid SERS Detection of Toxic Substances. Sens. Actuators B Chem. 2023, 379, 133172. [Google Scholar] [CrossRef]
- Qu, Q.; Zeng, C.; Peng, X.; Qi, W.; Wang, M. Sensitive SERS Detection of Pesticide Residues in Beverages Based on an Extraction Integrated Plasmonic Platform. Sens. Actuators B Chem. 2023, 376, 133042. [Google Scholar] [CrossRef]
- Li, H.; Luo, X.; Haruna, S.A.; Zhou, W.; Chen, Q. Rapid Detection of Thiabendazole in Food Using SERS Coupled with Flower-like AgNPs and PSL-Based Variable Selection Algorithms. J. Food Compos. Anal. 2023, 115, 105016. [Google Scholar] [CrossRef]
- He, Z.H.; Zhu, W.W.; Jiang, Y.L.; Zhao, S.S.; Yan, J.; Tan, X.C. Green Synthesis of Paper-Based SERS Substrate for the Quantitative Detection of Thiabendazole by Wipe Sampling. Microchem. J. 2024, 197, 109729. [Google Scholar] [CrossRef]
- Dai, X.; Xue, D.; Liu, X.; Gu, C.; Jiang, T. An Adhesive SERS Substrate Based on a Stretched Silver Nanowire-Tape for the in Situ Multicomponent Analysis of Pesticide Residues. Anal. Methods 2023, 15, 1261–1273. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, H.; Kim, G.; Kim, W.; Park, E.; Park, J.; Park, J. Highly Sensitive and Wide-Range Detection of Thiabendazole via Surface-Enhanced Raman Scattering Using Bimetallic Nanoparticle-Functionalized Nanopillars. Biosensors 2024, 14, 133. https://doi.org/10.3390/bios14030133
Park H, Kim G, Kim W, Park E, Park J, Park J. Highly Sensitive and Wide-Range Detection of Thiabendazole via Surface-Enhanced Raman Scattering Using Bimetallic Nanoparticle-Functionalized Nanopillars. Biosensors. 2024; 14(3):133. https://doi.org/10.3390/bios14030133
Chicago/Turabian StylePark, Hyunjun, Gayoung Kim, Woochang Kim, Eugene Park, Joohyung Park, and Jinsung Park. 2024. "Highly Sensitive and Wide-Range Detection of Thiabendazole via Surface-Enhanced Raman Scattering Using Bimetallic Nanoparticle-Functionalized Nanopillars" Biosensors 14, no. 3: 133. https://doi.org/10.3390/bios14030133
APA StylePark, H., Kim, G., Kim, W., Park, E., Park, J., & Park, J. (2024). Highly Sensitive and Wide-Range Detection of Thiabendazole via Surface-Enhanced Raman Scattering Using Bimetallic Nanoparticle-Functionalized Nanopillars. Biosensors, 14(3), 133. https://doi.org/10.3390/bios14030133