A Ratiometric Biosensor Containing Manganese Dioxide Nanosheets and Nitrogen-Doped Quantum Dots for 2,4-Dichlorophenoxyacetic Acid Monitoring
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Preparation of MnO2 Nanosheets
2.3. Preparation of NCDs
2.4. Preparation of Standard Solution of 2,4-D
2.5. Measurements of 2,4-D
2.6. Sample Pretreatment
3. Results
3.1. Characterization of NCDs and MnO2 Nanosheets
3.2. Principle of the NCD-Based Ratiometric Fluorescence Sensing and Colorimetric Response
3.3. Optimization of Conditions for Ratiometric Fluorescent Determination of 2,4-D
3.4. Analytical Performance
3.5. UV—Vis Detection of 2,4-D
3.6. Fluorescence-Based Optical Sensing
3.7. Comparison of the Devised Strategies
3.8. Selectivity and Anti-Interference Capability
3.9. Determination of 2,4-D in Real Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Corrales Vargas, A.; Penaloza Castaneda, J.; Rietz Liljedahl, E.; Mora, A.M.; Menezes-Filho, J.A.; Smith, D.R.; Mergler, D.; Reich, B.; Giffin, A.; Hoppin, J.A.; et al. Exposure to common-use pesticides, manganese, lead, and thyroid function among pregnant women from the Infants’ Environmental Health (ISA) study, Costa Rica. Sci. Total Environ. 2022, 810, 151288. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, A.P.; Morais, E.R.; Oliveira, E.C.; Ghisi, N.C. Does exposure to environmental 2,4-dichlorophenoxyacetic acid concentrations increase mortality rate in animals? A meta-analytic review. Environ. Pollut. 2022, 303, 119179. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.; Zhao, Z.; Yan, G.; Zhang, X.; Yang, C.; Meng, H.; Chen, Z.; Liu, H.; Tan, W. A Smart DNAzyme–MnO2 Nanosystem for Efficient Gene Silencing. Angew. Chem. Int. Ed. 2015, 127, 4883–4887. [Google Scholar] [CrossRef]
- Farshbaf, M.; Davaran, S.; Rahimi, F.; Annabi, N.; Salehi, R.; Akbarzadeh, A. Carbon quantum dots: Recent progresses on synthesis, surface modification and applications. Artif. Cells Nanomed. Biotechnol. 2018, 46, 1331–1348. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Zhang, G.; Chin, L.K.; Liu, A.Q.; Liedberg, B. Highly Sensitive, Label-Free Detection of 2,4-Dichlorophenoxyacetic Acid Using an Optofluidic Chip. ACS Sens. 2017, 2, 955–960. [Google Scholar] [CrossRef] [PubMed]
- Heydari, R.; Feyzianpour, R. Determination of 2,4-Dichlorophenoxyacetic Acid in Water and Edible Seeds Samples Using Salt-Assisted Liquid-Liquid Extraction Coupled with High-Performance Liquid Chromatography. Food Anal. Methods 2020, 14, 561–567. [Google Scholar] [CrossRef]
- Hu, Y.; Lu, X.; Jiang, X.; Wu, P. Carbon dots and AuNCs co-doped electrospun membranes for ratiometric fluorescent determination of cyanide. J. Hazard. Mater. 2020, 384, 121368. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Zhou, Y.; Liu, C.; Zhang, R.; Zhang, L.; Du, S.; Liu, B.; Han, M.Y.; Zhang, Z. A single dual-emissive nanofluorophore test paper for highly sensitive colorimetry-based quantification of blood glucose. Biosens. Bioelectron. 2016, 86, 530–535. [Google Scholar] [CrossRef]
- Islam, F.; Wang, J.; Farooq, M.A.; Khan, M.S.S.; Xu, L.; Zhu, J.; Zhao, M.; Munos, S.; Li, Q.X.; Zhou, W. Potential impact of the herbicide 2,4-dichlorophenoxyacetic acid on human and ecosystems. Environ. Int. 2018, 111, 332–351. [Google Scholar] [CrossRef]
- Wang, Y.; Shi, H.; Sun, J.; Xu, J.; Yang, M.; Yu, J. Hollow-Channel Paper Analytical Devices Supported Biofuel Cell-Based Self-Powered Molecularly Imprinted Polymer Sensor for Pesticide Detection. Biosensors 2022, 12, 974. [Google Scholar] [CrossRef]
- Jg, A.; Scb, C.; Jg, A.; Xing, M. Nanomaterial Labels in Lateral Flow Immunoassays for Point-of-Care-Testing-ScienceDirect. J. Mater. Sci. Technol. 2021, 60, 90–104. [Google Scholar]
- Jia, M.; Mi, W.; Guo, S.; Yang, Q.-Z.; Jin, Y.; Shao, N. Peptide-capped functionalized Ag/Au bimetal nanoclusters with enhanced red fluorescence for lysosome-targeted imaging of hypochlorite in living cells. Talanta 2020, 216, 120926. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; He, C.; Li, Z.; Huo, J.; Xue, Y.; Xu, X.; Qi, M.; Chen, L.; Hammock, B.D.; Zhang, J. Development of a Rapid Gold Nanoparticle Immunochromatographic Strip Based on the Nanobody for Detecting 2,4-DichloRophenoxyacetic Acid. Biosensors 2022, 12, 84. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Kang, Z.; Liu, Y.; Lee, S.-T. Carbon nanodots: Synthesis, properties and applications. J. Mater. Chem. 2012, 22, 24230. [Google Scholar] [CrossRef]
- Li, T.; Li, Z.; Huang, T.; Tian, L. Carbon quantum dot-based sensors for food safety. Sens. Actuators A Phys. 2021, 331, 113003. [Google Scholar] [CrossRef]
- Li, L.; Wang, J.; Xu, S.; Li, C.; Dong, B. Recent Progress in Fluorescent Probes For Metal Ion Detection. Front. Chem. 2022, 10, 875241. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.F.; Sun, Y.M.; Beier, R.C.; Lei, H.T.; Gee, S.; Hammock, B.D.; Wang, H.; Wang, Z.; Sun, X.; Shen, Y.D. Immunochemical techniques for multianalyte analysis of chemical residues in food and the environment: A review. TRAC Trends Anal. Chem. 2017, 88, 25–40. [Google Scholar] [CrossRef]
- Tan, Q.; Li, X.; Wang, L.; Zhao, J.; Yang, Q.; Sun, P.; Deng, Y.; Shen, G. One-step synthesis of highly fluorescent carbon dots as fluorescence sensors for the parallel detection of cadmium and mercury ions. Front. Chem. 2022, 10, 1005231. [Google Scholar] [CrossRef]
- Liu, Y.; Xiao, M.; Xu, N.; Yang, M.; Yi, C. Point-of-need quantitation of 2,4-dichlorophenoxyacetic acid using a ratiometric fluorescent nanoprobe and a smartphone-based sensing system. Sens. Actuators B Chem. 2022, 367, 132083. [Google Scholar] [CrossRef]
- Neto, J.C.D.; Dos Santos, V.B.; de Oliveira, S.C.B.; Suarez, W.T.; de Oliveira, J.L. In situ voltammetric analysis of 2, 4-dichlorophenoxyacetic acid in environmental water using a boron doped diamond electrode and an adapted unmanned air vehicle sampling platform. Anal. Methods 2022, 14, 1311–1319. [Google Scholar] [CrossRef]
- Peng, B.; Guo, Y.; Ma, Y.; Zhou, M.; Zhao, Y.; Wang, J.; Fang, Y. Smartphone-assisted multiple-mode assay of ascorbic acid using cobalt oxyhydroxide nanoflakes and carbon quantum dots. Microchem. J. 2022, 175, 107185. [Google Scholar] [CrossRef]
- Rajski, U.; Martínez-Bueno, M.; Ferrer, C.; Alba, A. LC-ESI-QOrbitrap MS/MS within pesticide residue analysis in fruits and vegetables. TRAC Trends Anal. Chem. 2019, 118, 587–596. [Google Scholar] [CrossRef]
- Sun, J.; Huang, J.; Warden, A.R.; Ding, X. Real-time detection of foodborne bacterial viability using a colorimetric bienzyme system in food and drinking water. Food Chem. 2020, 320, 126581. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Yang, L.; Chu, S.; Liu, B.; Zhang, Q.; Zou, L.; Yu, S.; Jiang, C. Semiquantitative Visual Detection of Lead Ions with a Smartphone via a Colorimetric Paper-Based Analytical Device. Anal. Chem. 2019, 91, 9292–9299. [Google Scholar] [CrossRef]
- Wang, Y.; Wan, Y.; Cao, M.; Wang, A.; Mahai, G.; He, Z.; Xu, S.; Xia, W. Urinary 2,4-dichlorophenoxyacetic acid in Chinese pregnant women at three trimesters: Variability, exposure characteristics, and association with oxidative stress biomarkers. Chemosphere 2022, 304, 135266. [Google Scholar] [CrossRef]
- Wang, Y.; Zeinhom, M.M.A.; Yang, M.; Sun, R.; Wang, S.; Smith, J.N.; Timchalk, C.; Li, L.; Lin, Y.; Du, D. A 3D-Printed, Portable, Optical-Sensing Platform for Smartphones Capable of Detecting the Herbicide 2,4-Dichlorophenoxyacetic Acid. Anal. Chem. 2017, 89, 9339–9346. [Google Scholar] [CrossRef]
- Xu, X.; Cen, Y.; Xu, G.; Wei, F.; Shi, M.; Hu, Q. A ratiometric fluorescence probe based on carbon dots for discriminative and highly sensitive detection of acetylcholinesterase and butyrylcholinesterase in human whole blood. Biosens. Bioelectron. 2019, 131, 232–236. [Google Scholar] [CrossRef]
- Yan, X.; Kong, D.; Jin, R.; Zhao, X.; Li, H.; Liu, F.; Lin, Y.; Lu, G. Fluorometric and colorimetric analysis of carbamate pesticide via enzyme-triggered decomposition of Gold nanoclusters-anchored MnO2 nanocomposite. Sens. Actuators B Chem. 2019, 290, 640–647. [Google Scholar] [CrossRef]
- Yan, X.; Li, H.; Han, X.; Su, X. A ratiometric fluorescent quantum dots based biosensor for organophosphorus pesticides detection by inner-filter effect. Biosens. Bioelectron. 2015, 74, 277–283. [Google Scholar] [CrossRef]
- Yao, T.; Liu, A.; Liu, Y.; Wei, M.; Wei, W.; Liu, S. Ratiometric fluorescence sensor for organophosphorus pesticide detection based on opposite responses of two fluorescence reagents to MnO2 nanosheets. Biosens. Bioelectron. 2019, 145, 111705. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, J.; Wang, X.; Shen, D.; Chen, L. Quantum Dots Based Mesoporous Structured Imprinting Microspheres for the Sensitive Fluorescent Detection of Phycocyanin. ACS Appl. Mater. Interfaces 2015, 7, 9118–9127. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Yi, X.; Li, Z.; Zhang, L.; Yu, B.; Zhang, J.; Wang, X.; Jia, X. Recent advance in biosensing applications based on two-dimensional transition metal oxide nanomaterials. Talanta 2020, 219, 121308. [Google Scholar] [CrossRef] [PubMed]
- Disha; Kumari, P.; Patel, M.K.; Kumar, P.; Nayak, M.K. Carbon Dots Conjugated Antibody as an Effective FRET-Based Biosensor for Progesterone Hormone Screening. Biosensors 2022, 12, 993. [Google Scholar]
- Zhou, Z.; Liu, T.; Zhu, S.; Song, F.; Zhang, W.; Yang, W.; Xu, W. Synthesis and characterization of sensitive molecularly imprinting electrochemical sensor based on chitosan modified aminoated hierarchical porous silica-supported gold for detection of 2, 4-dichlorophenoxyacetic acid. Microchem. J. 2022, 181, 107593. [Google Scholar] [CrossRef]
- Ye, X.; Yang, W.; Zhang, L.; Wang, Z. Paper-based multicolor sensor for on-site quantitative detection of 2,4-dichlorophenoxyacetic acid based on alkaline phosphatase-mediated gold nanobipyramids growth and colorimeter-assisted method for quantifying color. Talanta 2022, 245, 123489. [Google Scholar] [CrossRef]
- Arduini, F.; Cinti, S.; Caratelli, V.; Amendola, L.; Palleschi, G.; Moscone, D. Origami multiple paper-based electrochemical biosensors for pesticide detection. Biosens. Bioelectron. 2019, 126, 346–354. [Google Scholar] [CrossRef]
- Goswami, B.; Mahanta, D. Fe3O4-Polyaniline Nanocomposite for Non-enzymatic Electrochemical Detection of 2,4-Dichlorophenoxyacetic Acid. ACS Omega 2021, 6, 17239–17246. [Google Scholar] [CrossRef]
- Loomatix Ltd., Color Grab. 2021. Available online: http://www.loomatix.com (accessed on 29 May 2022).
Interfering Substances | Tolerance Limit |
---|---|
K+, Na+, Ca2+, Co2+, Ba2+, Zn2+, Al3+ Mg2+, and Cd2+ | >1000 |
Cl−, SO42−, and PO43− | >1000 |
Fe3+, Pb2+, and Hg2+ | 600 |
Fipronil and dithianon | 500 |
Fenvalerate Methomyl, paraoxon, and pirimicarb | 120 350 |
Isoprocarb and parathion-methyl | 200 |
1-Naphthylacetic acid | 60 |
Propoxur | 220 |
Sample | Spiked Concentration (μg/mL) | Concentration Estimated by HPLC (μg/mL) | Detected a (μg/mL) | Recovery (%) | t-Value b |
---|---|---|---|---|---|
2,4-D (50 μg/mL c) | 0 | 50.8 | 49.2 | / | 0.72 |
Cucumber | 0 | 0.54 | 0.52 ± 0.02 | / | 0.54 |
0.05 | / | 0.57 ± 0.02 | 80 | / | |
1 | / | 1.46 ± 0.04 | 94 | / | |
4 | / | 4.58 ± 0.02 | 101 | / | |
Cauliflower | 0 | / | / | / | / |
0.05 | 0.06 | 0.04 ± 0.01 | 80 | 1.46 | |
1 | / | 0.98 ± 0.02 | 98 | / | |
4 | / | 4.27 ± 0.04 | 107 | / | |
Bean sprouts | 0 | / | / | / | / |
0.05 | 0.07 | 0.05 ± 0.02 | 89 | 2.32 | |
1 | / | 1.09 ± 0.03 | 109 | / | |
4 | / | 3.86 ± 0.01 | 97 | / | |
Celery | 0 | / | / | / | / |
0.05 | 0.06 | 0.04 ± 0.02 | 79 | 1.61 | |
1 | / | 0.88 ± 0.03 | 87 | / | |
4 | / | 3.98 ± 0.06 | 100 | / | |
Cabbage | 0 | / | / | / | / |
0.05 | 0.06 | 0.05 ± 0.01 | 98 | 1.12 | |
1 | / | 1.14 ± 0.04 | 112 | / | |
4 | / | 3.95 ± 0.04 | 98 | / | |
Spinach | 0 | / | / | / | / |
0.05 | 0.05 | 0.04 ± 0.01 | 84 | 0.96 | |
1 | / | 0.92 ± 0.02 | 93 | / | |
4 | / | 4.10 ± 0.04 | 103 | / |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Y.; Sun, J.; Liu, M.; Wu, J.; Zhao, Z.; Ma, T.; Fang, Y. A Ratiometric Biosensor Containing Manganese Dioxide Nanosheets and Nitrogen-Doped Quantum Dots for 2,4-Dichlorophenoxyacetic Acid Monitoring. Biosensors 2024, 14, 63. https://doi.org/10.3390/bios14020063
Guo Y, Sun J, Liu M, Wu J, Zhao Z, Ma T, Fang Y. A Ratiometric Biosensor Containing Manganese Dioxide Nanosheets and Nitrogen-Doped Quantum Dots for 2,4-Dichlorophenoxyacetic Acid Monitoring. Biosensors. 2024; 14(2):63. https://doi.org/10.3390/bios14020063
Chicago/Turabian StyleGuo, Yang, Jingran Sun, Mingzhu Liu, Jin Wu, Zunquan Zhao, Ting Ma, and Yanjun Fang. 2024. "A Ratiometric Biosensor Containing Manganese Dioxide Nanosheets and Nitrogen-Doped Quantum Dots for 2,4-Dichlorophenoxyacetic Acid Monitoring" Biosensors 14, no. 2: 63. https://doi.org/10.3390/bios14020063
APA StyleGuo, Y., Sun, J., Liu, M., Wu, J., Zhao, Z., Ma, T., & Fang, Y. (2024). A Ratiometric Biosensor Containing Manganese Dioxide Nanosheets and Nitrogen-Doped Quantum Dots for 2,4-Dichlorophenoxyacetic Acid Monitoring. Biosensors, 14(2), 63. https://doi.org/10.3390/bios14020063