A Copper-Selective Sensor and Its Inhibition of Copper-Amyloid Beta Aggregation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Metal Chelator A1
2.3. Synthesis of Metal Chelator A2
2.4. Synthesis of Metal Chelator A3
2.5. Synthesis of Aβ Inhibitor Peptide LPFFD by Alstra Microwave Peptide Synthesizer
2.6. Synthesis of Bifunctional Molecules L1 and L2
2.7. Synthesis of Bifunctional Molecule L3
2.8. TFA Cleavage and Lyophilization
2.9. Purification of Bifunctional Molecule by Reverse-Phase High-Performance Liquid Chromatography
2.10. Fluorescence Assays
2.11. Microscopy
3. Results and Discussion
3.1. Development of Tri-Dentate and Tetra-Dentate Frameworks for Copper Detection
3.2. Development of Bifunctional Peptide-Framework Hybrid Molecules
3.3. Selectivity of Compounds L1, L2 and L3 towards Copper and Other Physiologically Relevant Metal Ions
3.4. Effect of L3 on Cu2+-Ab42 Aggregation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Uriu-Adams, J.Y.; Keen, C.L. Copper, oxidative stress, and human health. Mol. Asp. Med. 2005, 26, 268–298. [Google Scholar] [CrossRef] [PubMed]
- Graham, T.W. Trace element deficiencies in cattle. Vet. Clin. N. Am. Food Anim. Pract. 1991, 7, 153–215. [Google Scholar] [CrossRef] [PubMed]
- Crapo, J.D.; Oury, T.; Rabouille, C.; Slot, J.W.; Chang, L.-Y. Copper, zinc superoxide dismutase is primarily a cytosolic protein in human cells. Proc. Natl. Acad. Sci. USA 1992, 89, 10405–10409. [Google Scholar] [CrossRef] [PubMed]
- Cobine, P.A.; Pierrel, F.; Winge, D.R. Copper trafficking to the mitochondrion and assembly of copper metalloenzymes. Biochim. Biophys. Acta (BBA)-Mol. Cell Res. 2006, 1763, 759–772. [Google Scholar] [CrossRef] [PubMed]
- Boal, A.K.; Rosenzweig, A.C. Structural biology of copper trafficking. Chem. Rev. 2009, 109, 4760–4779. [Google Scholar] [CrossRef] [PubMed]
- Harris, E.D. Cellular copper transport and metabolism. Annu. Rev. Nutr. 2000, 20, 291–310. [Google Scholar] [CrossRef] [PubMed]
- Karmakar, J.; Pramanik, A.; Joseph, V.; Marks, V.; Grynszpan, F.; Levine, M. A dipodal bimane–ditriazole–diCu(ii) complex serves as an ultrasensitive water sensor. Chem. Commun. 2022, 58, 2690–2693. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; You, J.; You, Z.; Dong, F.; Du, S.; Zhang, L. Profuse color-evolution-based fluorescent test paper sensor for rapid and visual monitoring of endogenous Cu2+ in human urine. Biosens. Bioelectron. 2018, 99, 332–337. [Google Scholar] [CrossRef] [PubMed]
- Wegner, S.V.; Arslan, H.; Sunbul, M.; Yin, J.; He, C. Dynamic copper (I) imaging in mammalian cells with a genetically encoded fluorescent copper (I) sensor. J. Am. Chem. Soc. 2010, 132, 2567–2569. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Ghosh, K.S. Recent advances (2017–20) inthe detection of copper ion by using fluorescence sensors working through transfer of photo-induced electron (PET), excited-state intramolecular proton (ESIPT) and Förster resonance energy (FRET). Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 254, 119610. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Wang, Y.-M.; Han, J. Fluorescent chemosensors for copper(II) ion: Structure, mechanism and application. J. Photochem. Photobiol. C Photochem. Rev. 2017, 32, 78–103. [Google Scholar] [CrossRef]
- Pandey, R.; Kumar, A.; Xu, Q.; Pandey, D.S. Zinc(ii), copper(ii) and cadmium(ii) complexes as fluorescent chemosensors for cations. Dalton Trans. 2020, 49, 542–568. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.; Chu, X.; Ling, X.; Ma, G.; Yao, Y.; Meng, Y.; Liu, W. Biocompatible glutathione-capped gold nanoclusters for dual fluorescent sensing and imaging of copper (II) and temperature in human cells and bacterial cells. Microchim. Acta 2016, 183, 2185–2195. [Google Scholar] [CrossRef]
- Li, X.; Qing, Z.; Li, Y.; Zou, Z.; Yang, S.; Yang, R. Natural Peptide Probe Screened for High-Performance Fluorescent Sensing of Copper Ion: Especially Sensitivity, Rapidity, and Environment-Friendliness. ACS Omega 2019, 4, 793–800. [Google Scholar] [CrossRef]
- Pickart, L.; Margolina, A. Regenerative and Protective Actions of the GHK-Cu Peptide in the Light of the New Gene Data. Int. J. Mol. Sci. 2018, 19, 1987. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, X.; Zhong, M.; Zhao, P.; Guo, C.; Li, Y.; Xu, H.; Wang, T.; Gao, H. A Novel Cu(II)-Binding Peptide Identified by Phage Display Inhibits Cu(2+)-Mediated Aβ Aggregation. Int. J. Mol. Sci. 2021, 22, 6842. [Google Scholar] [CrossRef] [PubMed]
- Scheiber, I.F.; Mercer, J.F.; Dringen, R. Metabolism and functions of copper in brain. Prog. Neurobiol. 2014, 116, 33–57. [Google Scholar] [CrossRef] [PubMed]
- Singh, I.; Sagare, A.P.; Coma, M.; Perlmutter, D.; Gelein, R.; Bell, R.D.; Deane, R.J.; Zhong, E.; Parisi, M.; Ciszewski, J. Low levels of copper disrupt brain amyloid-β homeostasis by altering its production and clearance. Proc. Natl. Acad. Sci. USA 2013, 110, 14771–14776. [Google Scholar] [CrossRef] [PubMed]
- Thinakaran, G.; Koo, E.H. Amyloid precursor protein trafficking, processing, and function. J. Biol. Chem. 2008, 283, 29615–29619. [Google Scholar] [CrossRef] [PubMed]
- Selkoe, D.J.; Wolfe, M.S. Presenilin: Running with scissors in the membrane. Cell 2007, 131, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Lovell, M.A.; Robertson, J.D.; Teesdale, W.J.; Campbell, J.L.; Markesbery, W.R. Copper, iron and zinc in Alzheimer’s disease senile plaques. J. Neurol. Sci. 1998, 158, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhao, B. Oxidative stress and the pathogenesis of Alzheimer’s disease. Oxidative Med. Cell. Longev. 2013, 2013, 316523. [Google Scholar] [CrossRef] [PubMed]
- Faller, P.; Hureau, C. Bioinorganic chemistry of copper and zinc ions coordinated to amyloid-β peptide. Dalton Trans. 2009, 21, 1080–1094. [Google Scholar] [CrossRef] [PubMed]
- Nair, N.G.; Perry, G.; Smith, M.A.; Reddy, V.P. NMR studies of zinc, copper, and iron binding to histidine, the principal metal ion complexing site of amyloid-beta peptide. J. Alzheimers Dis. 2010, 20, 57–66. [Google Scholar] [CrossRef]
- Hewitt, N.; Rauk, A. Mechanism of Hydrogen Peroxide Production by Copper-Bound Amyloid Beta Peptide: A Theoretical Study. J. Phys. Chem. B 2009, 113, 1202–1209. [Google Scholar] [CrossRef] [PubMed]
- Rajasekhar, K.; Madhu, C.; Govindaraju, T. Natural Tripeptide-Based Inhibitor of Multifaceted Amyloid β Toxicity. ACS Chem. Neurosci. 2016, 7, 1300–1310. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.-J.; Sharma, A.K.; Zhang, Y.; Gross, M.L.; Mirica, L.M. A Multifunctional Chemical Agent as an Attenuator of Amyloid Burden and Neuroinflammation in Alzheimer’s Disease. ACS Chem. Neurosci. 2020, 11, 1471–1481. [Google Scholar] [CrossRef]
- Jokar, S.; Erfani, M.; Bavi, O.; Khazaei, S.; Sharifzadeh, M.; Hajiramezanali, M.; Beiki, D.; Shamloo, A. Design of peptide-based inhibitor agent against amyloid-β aggregation: Molecular docking, synthesis and in vitro evaluation. Bioorg. Chem. 2020, 102, 104050. [Google Scholar] [CrossRef] [PubMed]
- Lührs, T.; Ritter, C.; Adrian, M.; Riek-Loher, D.; Bohrmann, B.; Döbeli, H.; Schubert, D.; Riek, R. 3D structure of Alzheimer’s amyloid-β(1–42) fibrils. Proc. Natl. Acad. Sci. USA 2005, 102, 17342–17347. [Google Scholar] [CrossRef] [PubMed]
- Jokar, S.; Khazaei, S.; Gameshgoli, X.E.; Khafaji, M.; Yarani, B.; Sharifzadeh, M.; Beiki, D.; Bavi, O. Amyloid β-Targeted Inhibitory Peptides for Alzheimer’s Disease: Current State and Future Perspectives. In Alzheimer’s Disease: Drug Discovery; Huang, X., Ed.; Exon Publications: Brisbane, AU, USA, 2020. [Google Scholar] [CrossRef]
- Wood, S.J.; Wetzel, R.; Martin, J.D.; Hurle, M.R. Prolines and Aamyloidogenicity in Fragments of the Alzheimer’s Peptide.beta./A4. Biochemistry 1995, 34, 724–730. [Google Scholar] [CrossRef]
- Soto, C.; Sigurdsson, E.M.; Morelli, L.; Asok Kumar, R.; Castaño, E.M.; Frangione, B. β-sheet breaker peptides inhibit fibrillogenesis in a rat brain model of amyloidosis: Implications for Alzheimer’s therapy. Nat. Med. 1998, 4, 822–826. [Google Scholar] [CrossRef] [PubMed]
- Casella, L.; Gullotti, M.; Radaelli, R.; Di Gennaro, P. A tyrosinase model system. Phenol ortho-hydroxylation by a binuclear three-coordinate copper(I) complex and dioxygen. J. Chem. Soc. Chem. Commun. 1991, 4, 1611–1612. [Google Scholar] [CrossRef]
- Jain, S.; Bhar, K.; Bandyopadhayaya, S.; Singh, V.K.; Mandal, C.C.; Tapryal, S.; Sharma, A.K. Development, evaluation and effect of anionic co-ligand on the biological activity of benzothiazole derived copper(II) complexes. J. Inorg. Biochem. 2020, 210, 111174. [Google Scholar] [CrossRef] [PubMed]
- Nag, A.; Mafi, A.; Das, S.; Yu, M.B.; Alvarez-Villalonga, B.; Kim, S.-K.; Su, Y.; Goddard, W.A.; Heath, J.R. Stereochemical engineering yields a multifunctional peptide macrocycle inhibitor of Akt2 by fine-tuning macrocycle-cell membrane interactions. Commun. Chem. 2023, 6, 95. [Google Scholar] [CrossRef] [PubMed]
- Borges, A.; Nguyen, C.; Letendre, M.; Onasenko, I.; Kandler, R.; Nguyen, N.K.; Chen, J.; Allakhverdova, T.; Atkinson, E.; DiChiara, B.; et al. Facile de Novo Sequencing of Tetrazine-Cyclized Peptides through UV-Induced Ring-Opening and Cleavage from the Solid Phase. ChemBioChem 2023, 24, e202200590. [Google Scholar] [CrossRef] [PubMed]
- Sticker, M.; Elsässer, R.; Neumann, M.; Wolff, H. How to Get Better Fluorescence Images with Your Widefield Microscope: A Methodology Review. Microsc. Today 2020, 28, 36–43. [Google Scholar] [CrossRef]
- Xiao, Y.; Ma, B.; McElheny, D.; Parthasarathy, S.; Long, F.; Hoshi, M.; Nussinov, R.; Ishii, Y. Aβ(1–42) fibril structure illuminates self-recognition and replication of amyloid in Alzheimer’s disease. Nat. Struct. Mol. Biol. 2015, 22, 499–505. [Google Scholar] [CrossRef] [PubMed]
- Nouhi, A.; Hajjoul, H.; Redon, R.; Gagné, J.-P.; Mounier, S. Interactions between natural organic ligands and trace metals studied by fluorescence lifetime and fluorescence quenching. In EGU General Assembly Conference Abstracts; EGU: Munich, Germany, 2017; p. 1922. [Google Scholar]
- De Costa, M.D.P.; Jayasinghe, W.A.P.A. Detailed studies on complexation behaviour and mechanism of fluorescence quenching of naphthalene linked hydroxamic acid with transition metal ions by UV-visible and fluorescence spectra. J. Photochem. Photobiol. A Chem. 2004, 162, 591–598. [Google Scholar] [CrossRef]
- Jayabharathi, J.; Thanikachalam, V.; Jayamoorthy, K.; Sathishkumar, R. Selective quenching of benzimidazole derivatives by Cu(2)+ metal ion. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2012, 97, 384–387. [Google Scholar] [CrossRef] [PubMed]
- Ghose, A.K.; Crippen, G.M. Atomic physicochemical parameters for three-dimensional-structure-directed quantitative structure-activity relationships. 2. Modeling dispersive and hydrophobic interactions. J. Chem. Inf. Comput. Sci. 1987, 27, 21–35. [Google Scholar] [CrossRef] [PubMed]
- Bae, W.; Yoon, T.Y.; Jeong, C. Direct evaluation of self-quenching behavior of fluorophores at high concentrations using an evanescent field. PLoS ONE 2021, 16, e0247326. [Google Scholar] [CrossRef] [PubMed]
- Jablonski, J. Self-depolarization and decay of photoluminescence of solutions. Acta Phys. Pol. 1955, 14, 295–307. [Google Scholar]
- Evans, T.R. Singlet quenching mechanisms. J. Am. Chem. Soc. 1971, 93, 2081–2082. [Google Scholar] [CrossRef]
- Chen, R.F.; Knutson, J.R. Mechanism of fluorescence concentration quenching of carboxyfluorescein in liposomes: Energy transfer to nonfluorescent dimers. Anal. Biochem. 1988, 172, 61–77. [Google Scholar] [CrossRef]
- Chouhan, G.; James, K. CuAAC Macrocyclization: High Intramolecular Selectivity through the Use of Copper–Tris(triazole) Ligand Complexes. Org. Lett. 2011, 13, 2754–2757. [Google Scholar] [CrossRef] [PubMed]
- Goswami, S.; Chakraborty, S.; Paul, S.; Halder, S.; Panja, S.; Mukhopadhyay, S.K. A new pyrene based highly sensitive fluorescence probe for copper(ii) and fluoride with living cell application. Org. Biomol. Chem. 2014, 12, 3037–3044. [Google Scholar] [CrossRef] [PubMed]
- Jan, A.; Hartley, D.M.; Lashuel, H.A. Preparation and characterization of toxic Aβ aggregates for structural and functional studies in Alzheimer’s disease research. Nat. Protoc. 2010, 5, 1186–1209. [Google Scholar] [CrossRef] [PubMed]
- Ryan, D.K.; Weber, J.H. Copper(II) complexing capacities of natural waters by fluorescence quenching. Environ. Sci. Technol. 1982, 16, 866–872. [Google Scholar] [CrossRef]
- De, S.; Wirthensohn, D.C.; Flagmeier, P.; Hughes, C.; Aprile, F.A.; Ruggeri, F.S.; Whiten, D.R.; Emin, D.; Xia, Z.; Varela, J.A.; et al. Different soluble aggregates of Aβ42 can give rise to cellular toxicity through different mechanisms. Nat. Commun. 2019, 10, 1541. [Google Scholar] [CrossRef]
- Pedersen, J.T.; Ostergaard, J.; Rozlosnik, N.; Gammelgaard, B.; Heegaard, N.H. Cu(II) mediates kinetically distinct, non-amyloidogenic aggregation of amyloid-beta peptides. J. Biol. Chem. 2011, 286, 26952–26963. [Google Scholar] [CrossRef] [PubMed]
- Kadlag, S.S.; Ghosh, M.; Singh, P.K.; Swain, K.K. Thioflavin-T-Enhanced Fluorescence in Cerium Adenosine Triphosphate Coordination Polymer Nanoparticles for Selective and Sensitive Copper(II) Detection in E-Waste and Biological Samples. ACS Appl. Nano Mater. 2024, 7, 1425–1436. [Google Scholar] [CrossRef]
- Cao, Y.; Liu, X.; Zhang, J.; Liu, Z.; Fu, Y.; Zhang, D.; Zheng, M.; Zhang, H.; Xu, M.-H. Design of a Coumarin-Based Fluorescent Probe for Efficient In Vivo Imaging of Amyloid0-β Plaques. ACS Chem. Neurosci. 2023, 14, 829–838. [Google Scholar] [CrossRef] [PubMed]
- Habashi, M.; Vutla, S.; Tripathi, K.; Senapati, S.; Chauhan, P.S.; Haviv-Chesner, A.; Richman, M.; Mohand, S.-A.; Dumulon-Perreault, V.; Mulamreddy, R.; et al. Early diagnosis and treatment of Alzheimer’s disease by targeting toxic soluble Aβ oligomers. Proc. Natl. Acad. Sci. USA 2022, 119, e2210766119. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, N.K.; Poduska, B.; Franks, M.; Bera, M.; MacCormack, I.; Lin, G.; Petroff, A.P.; Das, S.; Nag, A. A Copper-Selective Sensor and Its Inhibition of Copper-Amyloid Beta Aggregation. Biosensors 2024, 14, 247. https://doi.org/10.3390/bios14050247
Nguyen NK, Poduska B, Franks M, Bera M, MacCormack I, Lin G, Petroff AP, Das S, Nag A. A Copper-Selective Sensor and Its Inhibition of Copper-Amyloid Beta Aggregation. Biosensors. 2024; 14(5):247. https://doi.org/10.3390/bios14050247
Chicago/Turabian StyleNguyen, Ngoc Kim, Bella Poduska, Mia Franks, Manoranjan Bera, Ian MacCormack, Guoxing Lin, Alexander P. Petroff, Samir Das, and Arundhati Nag. 2024. "A Copper-Selective Sensor and Its Inhibition of Copper-Amyloid Beta Aggregation" Biosensors 14, no. 5: 247. https://doi.org/10.3390/bios14050247
APA StyleNguyen, N. K., Poduska, B., Franks, M., Bera, M., MacCormack, I., Lin, G., Petroff, A. P., Das, S., & Nag, A. (2024). A Copper-Selective Sensor and Its Inhibition of Copper-Amyloid Beta Aggregation. Biosensors, 14(5), 247. https://doi.org/10.3390/bios14050247