Bimetallic Coordination Polymers: Synthesis and Applications in Biosensing and Biomedicine
Abstract
:1. Introduction
2. The Synthetic Strategies for Bimetallic CPs
2.1. One-Pot Methods
2.1.1. Self-Assembly Methods
2.1.2. Metal-Ligand Methods
2.2. Post-Synthesis Modifications
2.2.1. Ion-Exchange Methods
2.2.2. Seed Methods
3. Biosensing Applications of Bimetallic CPs
3.1. Detection of Metal Ions
3.1.1. Detection of Fe3+
3.1.2. Detection of Cu2+
3.1.3. Detection of Other Metal Ions
3.2. Detection of Small Molecules
3.2.1. Detection of Glucose
3.2.2. Detection of Dopamine (DA)
3.2.3. Detection of Hydrogen Sulfide (H2S)
3.2.4. Detection of Uric Acid (UA)
3.2.5. Detection of Methylglyoxal (MGO)
3.3. Detection of Biomacromolecules
3.3.1. Detection of Nucleic Acid
3.3.2. Detection of Alkaline Phosphatase (ALP)
3.3.3. Detection of Carcinoembryonic Antigen (CEA)
3.3.4. Detection of Extracellular Vesicles (EVs)
3.3.5. Detection of Immunoglobulin G (IgG)
3.4. Detection of Drug Molecules
3.4.1. Detection of Doxorubicin (DOX)
3.4.2. Detection of Enrofloxacin (ENR)
3.4.3. Detection of Levofloxacin (LEV)
3.4.4. Detection of Paracetamol
4. Biomedical Applications of Bimetallic CPs
4.1. Bimetallic CPs Based on Anticancer Drugs
4.2. Bimetallic CPs Based on Cancer Vaccine
4.3. Bimetallic CPs for Chemodynamic Therapy (CDT)
4.4. Bimetallic CPs for Radiotherapy
4.5. Bimetallic CPs for Immunotherapy
5. Conclusions and Outlook
Author Contributions
Funding
Conflicts of Interest
References
- Kitagawa, S.; Kitaura, R.; Noro, S. Functional Porous Coordination Polymers. Angew. Chem. Int. Ed. 2004, 43, 2334–2375. [Google Scholar] [CrossRef] [PubMed]
- Batten, S.R.; Champness, N.R.; Chen, X.-M.; Garcia-Martinez, J.; Kitagawa, S.; Öhrström, L.; O’Keeffe, M.; Suh, M.P.; Reedijk, J. Coordination Polymers, Metal-Organic Frameworks and the Need for Terminology Guidelines. CrystEngComm 2012, 14, 3001. [Google Scholar] [CrossRef]
- Furukawa, H.; Cordova, K.E.; O’Keeffe, M.; Yaghi, O.M. The Chemistry and Applications of Metal-Organic Frameworks. Science 2013, 341, 1230444. [Google Scholar] [CrossRef] [PubMed]
- Batten, S.R.; Champness, N.R.; Chen, X.-M.; Garcia-Martinez, J.; Kitagawa, S.; Öhrström, L.; O’Keeffe, M.; Paik Suh, M.; Reedijk, J. Terminology of Metal-Organic Frameworks and Coordination Polymers (IUPAC Recommendations 2013). Pure Appl. Chem. 2013, 85, 1715–1724. [Google Scholar] [CrossRef]
- Chen, C.-T.; Suslick, K.S. One-Dimensional Coordination Polymers: Applications to Material Science. Coord. Chem. Rev. 1993, 128, 293–322. [Google Scholar] [CrossRef]
- Batten, S.R.; Murray, K.S. Structure and Magnetism of Coordination Polymers Containing Dicyanamide and Tricyanomethanide. Coord. Chem. Rev. 2003, 246, 103–130. [Google Scholar] [CrossRef]
- Du, M.; Li, C.-P.; Liu, C.-S.; Fang, S.-M. Design and Construction of Coordination Polymers with Mixed-Ligand Synthetic Strategy. Coord. Chem. Rev. 2013, 257, 1282–1305. [Google Scholar] [CrossRef]
- Umemura, A.; Diring, S.; Furukawa, S.; Uehara, H.; Tsuruoka, T.; Kitagawa, S. Morphology Design of Porous Coordination Polymer Crystals by Coordination Modulation. J. Am. Chem. Soc. 2011, 133, 15506–15513. [Google Scholar] [CrossRef]
- Yaghi, O.M.; O’Keeffe, M.; Ockwig, N.W.; Chae, H.K.; Eddaoudi, M.; Kim, J. Reticular Synthesis and the Design of New Materials. Nature 2003, 423, 705–714. [Google Scholar] [CrossRef]
- Li, Y.; Yang, R.T. Gas Adsorption and Storage in Metal−Organic Framework MOF-177. Langmuir 2007, 23, 12937–12944. [Google Scholar] [CrossRef]
- Alezi, D.; Belmabkhout, Y.; Suyetin, M.; Bhatt, P.M.; Weseliński, Ł.J.; Solovyeva, V.; Adil, K.; Spanopoulos, I.; Trikalitis, P.N.; Emwas, A.-H.; et al. MOF Crystal Chemistry Paving the Way to Gas Storage Needs: Aluminum-Based Soc-MOF for CH4, O2, and CO2 Storage. J. Am. Chem. Soc. 2015, 137, 13308–13318. [Google Scholar] [CrossRef] [PubMed]
- Woellner, M.; Hausdorf, S.; Klein, N.; Mueller, P.; Smith, M.W.; Kaskel, S. Adsorption and Detection of Hazardous Trace Gases by Metal-Organic Frameworks. Adv. Mater. 2018, 30, 1704679. [Google Scholar] [CrossRef] [PubMed]
- Seo, J.S.; Whang, D.; Lee, H.; Jun, S.I.; Oh, J.; Jeon, Y.J.; Kim, K. A Homochiral Metal-Organic Porous Material for Enantioselective Separation and Catalysis. Nature 2000, 404, 982–986. [Google Scholar] [CrossRef] [PubMed]
- Alkordi, M.H.; Liu, Y.; Larsen, R.W.; Eubank, J.F.; Eddaoudi, M. Zeolite-like Metal−Organic Frameworks as Platforms for Applications: On Metalloporphyrin-Based Catalysts. J. Am. Chem. Soc. 2008, 130, 12639–12641. [Google Scholar] [CrossRef] [PubMed]
- Hwang, Y.K.; Hong, D.; Chang, J.; Jhung, S.H.; Seo, Y.; Kim, J.; Vimont, A.; Daturi, M.; Serre, C.; Férey, G. Amine Grafting on Coordinatively Unsaturated Metal Centers of MOFs: Consequences for Catalysis and Metal Encapsulation. Angew. Chem. Int. Ed. 2008, 47, 4144–4148. [Google Scholar] [CrossRef] [PubMed]
- Hao, Z.; Song, X.; Zhu, M.; Meng, X.; Zhao, S.; Su, S.; Yang, W.; Song, S.; Zhang, H. One-Dimensional Channel-Structured Eu-MOF for Sensing Small Organic Molecules and Cu2+ Ion. J. Mater. Chem. A 2013, 1, 11043. [Google Scholar] [CrossRef]
- Lu, K.; Aung, T.; Guo, N.; Weichselbaum, R.; Lin, W. Nanoscale Metal-Organic Frameworks for Therapeutic, Imaging, and Sensing Applications. Adv. Mater. 2018, 30, 1707634. [Google Scholar] [CrossRef]
- Horcajada, P.; Gref, R.; Baati, T.; Allan, P.K.; Maurin, G.; Couvreur, P.; Férey, G.; Morris, R.E.; Serre, C. Metal-Organic Frameworks in Biomedicine. Chem. Rev. 2012, 112, 1232–1268. [Google Scholar] [CrossRef]
- Guo, H.; Zhu, Y.; Qiu, S.; Lercher, J.A.; Zhang, H. Coordination Modulation Induced Synthesis of Nanoscale Eu1−xTbx-Metal-Organic Frameworks for Luminescent Thin Films. Adv. Mater. 2010, 22, 4190–4192. [Google Scholar] [CrossRef]
- Das, M.C.; Xiang, S.; Zhang, Z.; Chen, B. Functional Mixed Metal-Organic Frameworks with Metalloligands. Angew. Chem. Int. Ed. 2011, 50, 10510–10520. [Google Scholar] [CrossRef]
- Feng, X.; Feng, Y.-Q.; Liu, L.; Wang, L.-Y.; Song, H.-L.; Ng, S.-W. A Series of Zn-4f Heterometallic Coordination Polymers and a Zinc Complex Containing a Flexible Mixed Donor Dicarboxylate Ligand. Dalton Trans. 2013, 42, 7741. [Google Scholar] [CrossRef]
- Li, W.; Li, F.; Yang, H.; Wu, X.; Zhang, P.; Shan, Y.; Sun, L. A Bio-Inspired Coordination Polymer as Outstanding Water Oxidation Catalyst via Second Coordination Sphere Engineering. Nat. Commun. 2019, 10, 5074. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Meng, Y.-S.; Liu, Q.; Sato, O.; Shi, Q.; Oshio, H.; Liu, T. Switching the Magnetic Hysteresis of an [FeII-NC-WV]-Based Coordination Polymer by Photoinduced Reversible Spin Crossover. Nat. Chem. 2021, 13, 698–704. [Google Scholar] [CrossRef] [PubMed]
- Rao, K.P.; Higuchi, M.; Suryachandram, J.; Kitagawa, S. Temperature-Stable Compelled Composite Superhydrophobic Porous Coordination Polymers Achieved via an Unattainable de Novo Synthetic Method. J. Am. Chem. Soc. 2018, 140, 13786–13792. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Xu, Q. Bimetallic Metal-Organic Frameworks for Gas Storage and Separation. Cryst. Growth Des. 2017, 17, 1450–1455. [Google Scholar] [CrossRef]
- Kuwamura, N.; Konno, T. Heterometallic Coordination Polymers as Heterogeneous Electrocatalysts. Inorg. Chem. Front. 2021, 8, 2634–2649. [Google Scholar] [CrossRef]
- Halper, S.R.; Do, L.; Stork, J.R.; Cohen, S.M. Topological Control in Heterometallic Metal−Organic Frameworks by Anion Templating and Metalloligand Design. J. Am. Chem. Soc. 2006, 128, 15255–15268. [Google Scholar] [CrossRef]
- Carné-Sánchez, A.; Bonnet, C.S.; Imaz, I.; Lorenzo, J.; Tóth, É.; Maspoch, D. Relaxometry Studies of a Highly Stable Nanoscale Metal-Organic Framework Made of Cu(II), Gd(III), and the Macrocyclic DOTP. J. Am. Chem. Soc. 2013, 135, 17711–17714. [Google Scholar] [CrossRef]
- Stock, N.; Biswas, S. Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites. Chem. Rev. 2012, 112, 933–969. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Leus, K.; Bogaerts, T.; Hemelsoet, K.; Bruneel, E.; Van Speybroeck, V.; Van Der Voort, P. Bimetallic-Organic Framework as a Zero-Leaching Catalyst in the Aerobic Oxidation of Cyclohexene. ChemCatChem 2013, 5, 3657–3664. [Google Scholar] [CrossRef]
- Fei, H.; Cahill, J.F.; Prather, K.A.; Cohen, S.M. Tandem Postsynthetic Metal Ion and Ligand Exchange in Zeolitic Imidazolate Frameworks. Inorg. Chem. 2013, 52, 4011–4016. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.; Liu, W.; Qiu, M.; Zhang, Y.; Li, Z. Introduction of a Mediator for Enhancing Photocatalytic Performance via Post-Synthetic Metal Exchange in Metal-Organic Frameworks (MOFs). Chem. Commun. 2015, 51, 2056–2059. [Google Scholar] [CrossRef] [PubMed]
- Gotthardt, M.A.; Schoch, R.; Wolf, S.; Bauer, M.; Kleist, W. Synthesis and Characterization of Bimetallic Metal-Organic Framework Cu-Ru-BTC with HKUST-1 Structure. Dalton Trans. 2015, 44, 2052–2056. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Chen, Z.; Liu, X.; Wang, X. Bimetallic Metal-Organic Framework Derived Doped Carbon Nanostructures as High-Performance Electrocatalyst towards Oxygen Reactions. Nano Res. 2021, 14, 1533–1540. [Google Scholar] [CrossRef]
- Chen, L.; Wang, H.-F.; Li, C.; Xu, Q. Bimetallic Metal-Organic Frameworks and Their Derivatives. Chem. Sci. 2020, 11, 5369–5403. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.; Abbasi-Azad, M.; Habibi, B.; Rouhani, F.; Moghanni-Bavil-Olyaei, H.; Liu, K.; Morsali, A. Electrochemical Applications of Ferrocene-Based Coordination Polymers. ChemPlusChem 2020, 85, 2397–2418. [Google Scholar] [CrossRef]
- Liu, S.; Qiu, Y.; Liu, Y.; Zhang, W.; Dai, Z.; Srivastava, D.; Kumar, A.; Pan, Y.; Liu, J. Recent Advances in Bimetallic Metal-Organic Frameworks (BMOFs): Synthesis, Applications and Challenges. New J. Chem. 2022, 46, 13818–13837. [Google Scholar] [CrossRef]
- Welte, L.; Calzolari, A.; Di Felice, R.; Zamora, F.; Gómez-Herrero, J. Highly Conductive Self-Assembled Nanoribbons of Coordination Polymers. Nat. Nanotechnol. 2010, 5, 110–115. [Google Scholar] [CrossRef] [PubMed]
- Cook, T.R.; Zheng, Y.-R.; Stang, P.J. Metal-Organic Frameworks and Self-Assembled Supramolecular Coordination Complexes: Comparing and Contrasting the Design, Synthesis, and Functionality of Metal-Organic Materials. Chem. Rev. 2013, 113, 734–777. [Google Scholar] [CrossRef]
- Zeng, M.-H.; Wang, B.; Wang, X.-Y.; Zhang, W.-X.; Chen, X.-M.; Gao, S. Chiral Magnetic Metal-Organic Frameworks of Dimetal Subunits: Magnetism Tuning by Mixed-Metal Compositions of the Solid Solutions. Inorg. Chem. 2006, 45, 7069–7076. [Google Scholar] [CrossRef]
- Ma, Z.; Wu, D.; Han, X.; Wang, H.; Zhang, L.; Gao, Z.; Xu, F.; Jiang, K. Ultrasonic Assisted Synthesis of Zn-Ni Bi-Metal MOFs for Interconnected Ni-N-C Materials with Enhanced Electrochemical Reduction of CO2. J. CO2 Util. 2019, 32, 251–258. [Google Scholar] [CrossRef]
- Kang, X.; Fu, G.; Song, Z.; Huo, G.; Si, F.; Deng, X.; Fu, X.-Z.; Luo, J.-L. Microwave-Assisted Hydrothermal Synthesis of MOFs-Derived Bimetallic CuCo-N/C Electrocatalyst for Efficient Oxygen Reduction Reaction. J. Alloys Compd. 2019, 795, 462–470. [Google Scholar] [CrossRef]
- Guo, W.; Xia, W.; Cai, K.; Wu, Y.; Qiu, B.; Liang, Z.; Qu, C.; Zou, R. Kinetic-Controlled Formation of Bimetallic Metal-Organic Framework Hybrid Structures. Small 2017, 13, 1702049. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, A.; Dhak, P.; Dhak, D. The Solvothermal Synthesis of a 3D Rod-like Fe-Al Bimetallic Metal-Organic-Framework for Efficient Fluoride Adsorption and Photodegradation of Water-Soluble Carcinogenic Dyes. Environ. Sci. Adv. 2022, 1, 121–137. [Google Scholar] [CrossRef]
- Kaur, G.; Rai, R.K.; Tyagi, D.; Yao, X.; Li, P.-Z.; Yang, X.-C.; Zhao, Y.; Xu, Q.; Singh, S.K. Room-Temperature Synthesis of Bimetallic Co-Zn Based Zeolitic Imidazolate Frameworks in Water for Enhanced CO2 and H2 Uptakes. J. Mater. Chem. A 2016, 4, 14932–14938. [Google Scholar] [CrossRef]
- Zeng, H.-H.; Zhang, L.; Rong, L.-Q.; Liang, R.-P.; Qiu, J.-D. A Luminescent Lanthanide Coordination Polymer Based on Energy Transfer from Metal to Metal for Hydrogen Peroxide Detection. Biosens. Bioelectron. 2017, 89, 721–727. [Google Scholar] [CrossRef]
- Lian, Y.; Yang, W.; Zhang, C.; Sun, H.; Deng, Z.; Xu, W.; Song, L.; Ouyang, Z.; Wang, Z.; Guo, J.; et al. Unpaired 3d Electrons on Atomically Dispersed Cobalt Centres in Coordination Polymers Regulate Both Oxygen Reduction Reaction (ORR) Activity and Selectivity for Use in Zinc-Air Batteries. Angew. Chem. Int. Ed. 2020, 59, 286–294. [Google Scholar] [CrossRef]
- Yang, H.; He, X.-W.; Wang, F.; Kang, Y.; Zhang, J. Doping Copper into ZIF-67 for Enhancing Gas Uptake Capacity and Visible-Light-Driven Photocatalytic Degradation of Organic Dye. J. Mater. Chem. 2012, 22, 21849. [Google Scholar] [CrossRef]
- Dhara, B.; Kumar, V.; Gupta, K.; Jha, P.K.; Ballav, N. Giant Enhancement of Carrier Mobility in Bimetallic Coordination Polymers. ACS Omega 2017, 2, 4488–4493. [Google Scholar] [CrossRef]
- Gu, C.; Guo, C.; Li, Z.; Wang, M.; Zhou, N.; He, L.; Zhang, Z.; Du, M. Bimetallic ZrHf-Based Metal-Organic Framework Embedded with Carbon Dots: Ultra-Sensitive Platform for Early Diagnosis of HER2 and HER2-Overexpressed Living Cancer Cells. Biosens. Bioelectron. 2019, 134, 8–15. [Google Scholar] [CrossRef]
- Nouar, F.; Breeze, M.I.; Campo, B.C.; Vimont, A.; Clet, G.; Daturi, M.; Devic, T.; Walton, R.I.; Serre, C. Tuning the Properties of the UiO-66 Metal Organic Framework by Ce Substitution. Chem. Commun. 2015, 51, 14458–14461. [Google Scholar] [CrossRef]
- Zhou, Z.; Mei, L.; Ma, C.; Xu, F.; Xiao, J.; Xia, Q.; Li, Z. A Novel Bimetallic MIL-101(Cr, Mg) with High CO2 Adsorption Capacity and CO2/N2 Selectivity. Chem. Eng. Sci. 2016, 147, 109–117. [Google Scholar] [CrossRef]
- Cui, Y.-F.; Zhang, Y.; Xie, K.-F.; Dong, W.-K. A Newly Synthesized Heterobimetallic NiII-GdIII Salamo-BDC-Based Coordination Polymer: Structural Characterization, DFT Calculation, Fluorescent and Antibacterial Properties. Crystals 2019, 9, 596. [Google Scholar] [CrossRef]
- Qin, J.; Liang, G.; Feng, Y.; Feng, B.; Wang, G.; Wu, N.; Zhao, Y.; Wei, J. Synthesis of Gadolinium/Iron-Bimetal-Phenolic Coordination Polymer Nanoparticles for Theranostic Applications. Nanoscale 2020, 12, 6096–6103. [Google Scholar] [CrossRef] [PubMed]
- Cheng, M.; Chen, W.; Fang, L.-M.; Lou, M.-Z.; Jin, H.; Zhang, B.; Zang, L.-L. Synthesis, Crystal Structure, and Anti-Gastric Cancer Activity of a Heterometallic Coordination Polymer Based on Flexible 6,6-Dithiodinicotinic Acid. J. Struct. Chem. 2020, 61, 987–993. [Google Scholar] [CrossRef]
- Lu, Z.; Jiang, Y.; Wang, P.; Xiong, W.; Qi, B.; Zhang, Y.; Xiang, D.; Zhai, K. Bimetallic Organic Framework-Based Aptamer Sensors: A New Platform for Fluorescence Detection of Chloramphenicol. Anal. Bioanal. Chem. 2020, 412, 5273–5281. [Google Scholar] [CrossRef] [PubMed]
- El-Sheikh, S.M.; Osman, D.I.; Ali, O.I.; Shousha, W.G.; Shoeib, M.A.; Shawky, S.M.; Sheta, S.M. A Novel Ag/Zn Bimetallic MOF as a Superior Sensitive Biosensing Platform for HCV-RNA Electrochemical Detection. Appl. Surf. Sci. 2021, 562, 150202. [Google Scholar] [CrossRef]
- Wu, T.; Huang, S.; Yang, H.; Ye, N.; Tong, L.; Chen, G.; Zhou, Q.; Ouyang, G. Bimetal Biomimetic Engineering Utilizing Metal-Organic Frameworks for Superoxide Dismutase Mimic. ACS Mater. Lett. 2022, 4, 751–757. [Google Scholar] [CrossRef]
- Rajak, R.; Saraf, M.; Mohammad, A.; Mobin, S.M. Design and Construction of a Ferrocene Based Inclined Polycatenated Co-MOF for Supercapacitor and Dye Adsorption Applications. J. Mater. Chem. A 2017, 5, 17998–18011. [Google Scholar] [CrossRef]
- Horikoshi, R.; Mochida, T.; Moriyama, H. Synthesis and Characterization of Redox-Active Coordination Polymers Generated from Ferrocene-Containing Bridging Ligands. Inorg. Chem. 2002, 41, 3017–3024. [Google Scholar] [CrossRef]
- Ospina-Castro, M.L.; Reiber, A.; Jorge, G.; Ávila, E.E.; Briceño, A. Novel 3-D Interpenetrated Metal-Organometallic Networks Based on Self-Assembled Zn(II)/Cu(II) from 1,1′-Ferrocenedicarboxylic Acid and 4,4′-Bipyridine. CrystEngComm 2017, 19, 758–761. [Google Scholar] [CrossRef]
- Van Wyk, A.; Smith, T.; Park, J.; Deria, P. Charge-Transfer within Zr-Based Metal-Organic Framework: The Role of Polar Node. J. Am. Chem. Soc. 2018, 140, 2756–2760. [Google Scholar] [CrossRef]
- Asakura, D.; Li, C.H.; Mizuno, Y.; Okubo, M.; Zhou, H.; Talham, D.R. Bimetallic Cyanide-Bridged Coordination Polymers as Lithium Ion Cathode Materials: Core@Shell Nanoparticles with Enhanced Cyclability. J. Am. Chem. Soc. 2013, 135, 2793–2799. [Google Scholar] [CrossRef]
- Konieczny, P.; Michalski, Ł.; Podgajny, R.; Chorazy, S.; Pełka, R.; Czernia, D.; Buda, S.; Mlynarski, J.; Sieklucka, B.; Wasiutyński, T. Self-Enhancement of Rotating Magnetocaloric Effect in Anisotropic Two-Dimensional (2D) Cyanido-Bridged MnII-NbIV Molecular Ferrimagnet. Inorg. Chem. 2017, 56, 2777–2783. [Google Scholar] [CrossRef]
- Hou, Y.-L.; Sun, R.W.-Y.; Zhou, X.-P.; Wang, J.-H.; Li, D. A Copper(I)/Copper(II)-Salen Coordination Polymer as a Bimetallic Catalyst for Three-Component Strecker Reactions and Degradation of Organic Dyes. Chem. Commun. 2014, 50, 2295–2297. [Google Scholar] [CrossRef]
- Sahadevan, S.A.; Abhervé, A.; Monni, N.; Sáenz De Pipaón, C.; Galán-Mascarós, J.R.; Waerenborgh, J.C.; Vieira, B.J.C.; Auban-Senzier, P.; Pillet, S.; Bendeif, E.-E.; et al. Conducting Anilate-Based Mixed-Valence Fe(II)Fe(III) Coordination Polymer: Small-Polaron Hopping Model for Oxalate-Type Fe(II)Fe(III) 2D Networks. J. Am. Chem. Soc. 2018, 140, 12611–12621. [Google Scholar] [CrossRef]
- Lalonde, M.; Bury, W.; Karagiaridi, O.; Brown, Z.; Hupp, J.T.; Farha, O.K. Transmetalation: Routes to Metal Exchange within Metal-Organic Frameworks. J. Mater. Chem. A 2013, 1, 5453. [Google Scholar] [CrossRef]
- Irving, H.; Williams, R. 637. The Stability of Transition-Metal Complexes. J. Chem. Soc. Resumed 1953, 3192–3210. [Google Scholar] [CrossRef]
- Prasad, T.K.; Hong, D.H.; Suh, M.P. High Gas Sorption and Metal-Ion Exchange of Microporous Metal-Organic Frameworks with Incorporated Imide Groups. Chem.—Eur. J. 2010, 16, 14043–14050. [Google Scholar] [CrossRef] [PubMed]
- Brozek, C.K.; Cozzolino, A.F.; Teat, S.J.; Chen, Y.-S.; Dincă, M. Quantification of Site-Specific Cation Exchange in Metal-Organic Frameworks Using Multi-Wavelength Anomalous X-Ray Dispersion. Chem. Mater. 2013, 25, 2998–3002. [Google Scholar] [CrossRef]
- Zhou, J.-J.; Ji, W.; Xu, L.; Yang, Y.; Wang, W.; Ding, H.; Xu, X.; Wang, W.; Zhang, P.; Hua, Z.; et al. Controllable Transformation of CoNi-MOF-74 on Ni Foam into Hierarchical-Porous Co(OH)2/Ni(OH)2 Micro-Rods with Ultra-High Specific Surface Area for Energy Storage. Chem. Eng. J. 2022, 428, 132123. [Google Scholar] [CrossRef]
- Kim, M.; Cahill, J.F.; Fei, H.; Prather, K.A.; Cohen, S.M. Postsynthetic Ligand and Cation Exchange in Robust Metal-Organic Frameworks. J. Am. Chem. Soc. 2012, 134, 18082–18088. [Google Scholar] [CrossRef] [PubMed]
- Furukawa, S.; Hirai, K.; Nakagawa, K.; Takashima, Y.; Matsuda, R.; Tsuruoka, T.; Kondo, M.; Haruki, R.; Tanaka, D.; Sakamoto, H.; et al. Heterogeneously Hybridized Porous Coordination Polymer Crystals: Fabrication of Heterometallic Core-Shell Single Crystals with an In-Plane Rotational Epitaxial Relationship. Angew. Chem. 2009, 121, 1798–1802. [Google Scholar] [CrossRef]
- Zhou, N.; Su, F.; Guo, C.; He, L.; Jia, Z.; Wang, M.; Jia, Q.; Zhang, Z.; Lu, S. Two-Dimensional Oriented Growth of Zn-MOF-on-Zr-MOF Architecture: A Highly Sensitive and Selective Platform for Detecting Cancer Markers. Biosens. Bioelectron. 2019, 123, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Simms, C.; Mullaliu, A.; De De Azambuja, F.; Aquilanti, G.; Parac-Vogt, T.N. Green, Safe, and Reliable Synthesis of Bimetallic MOF-808 Nanozymes with Enhanced Aqueous Stability and Reactivity for Biological Applications. Small 2023, 2307236. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhang, Z.; Li, C.; Wu, H.; Wang, J.; Lu, Y. MOF Derived Iron Oxide-Based Smart Plasmonic Ag/Au Hollow and Porous Nanoshells “Ultra-Microelectrodes” for Ultra-Sensitive Detection of Arsenic. J. Mater. Chem. A 2018, 6, 16164–16169. [Google Scholar] [CrossRef]
- Stephanie, R.; Kim, M.W.; Kim, S.H.; Kim, J.-K.; Park, C.Y.; Park, T.J. Recent Advances of Bimetallic Nanomaterials and Its Nanocomposites for Biosensing Applications. TrAC Trends Anal. Chem. 2021, 135, 116159. [Google Scholar] [CrossRef]
- Priyadarshini, E.; Pradhan, N. Gold Nanoparticles as Efficient Sensors in Colorimetric Detection of Toxic Metal Ions: A Review. Sens. Actuators B Chem. 2017, 238, 888–902. [Google Scholar] [CrossRef]
- Carter, K.P.; Young, A.M.; Palmer, A.E. Fluorescent Sensors for Measuring Metal Ions in Living Systems. Chem. Rev. 2014, 114, 4564–4601. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, Y.; Liang, M.; Xu, L.; Qi, S.; Chen, H.; Chen, X. Solid-Phase Synthesis of Highly Fluorescent Nitrogen-Doped Carbon Dots for Sensitive and Selective Probing Ferric Ions in Living Cells. Anal. Chem. 2014, 86, 9846–9852. [Google Scholar] [CrossRef]
- Wu, X.; Niu, Q.; Li, T. A Novel Urea-Based “Turn-on” Fluorescent Sensor for Detection of Fe3+/F− Ions with High Selectivity and Sensitivity. Sens. Actuators B Chem. 2016, 222, 714–720. [Google Scholar] [CrossRef]
- Song, X.; Wang, Y.; Yan, J.; Chen, X.; Meng, Y.; Tan, Z. Enhancing the Fe3+ Sensing Sensitivity by Energy Transfer and Phase Transformation in a Bimetallic Lanthanide Metal-Organic Framework. ChemistrySelect 2018, 3, 9564–9570. [Google Scholar] [CrossRef]
- Geng, R.; Li, P.; Tang, H.; Liu, L.; Huang, H.; Feng, W.; Zhang, Z. Bimetallic Cd/Zr-UiO-66 Material as a Turn-on/off Probe for As5+/Fe3+ in Organic Media. Chemosphere 2022, 291, 132827. [Google Scholar] [CrossRef]
- Geng, R.; Tang, H.; Ma, Q.; Liu, L.; Feng, W.; Zhang, Z. Bimetallic Ag/Zn-ZIF-8: An Efficient and Sensitive Probe for Fe3+ and Cu2+ Detection. Colloids Surf. Physicochem. Eng. Asp. 2022, 632, 127755. [Google Scholar] [CrossRef]
- Ding, N.; Zhou, D.; Pan, G.; Xu, W.; Chen, X.; Li, D.; Zhang, X.; Zhu, J.; Ji, Y.; Song, H. Europium-Doped Lead-Free Cs3Bi2Br9 Perovskite Quantum Dots and Ultrasensitive Cu2+ Detection. ACS Sustain. Chem. Eng. 2019, 7, 8397–8404. [Google Scholar] [CrossRef]
- Wu, Z.; Huang, X. A Mechanoresponsive Fluorescent Mg-Zn Bimetallic MOF with Luminescent Sensing Properties. ChemistrySelect 2018, 3, 4884–4888. [Google Scholar] [CrossRef]
- Peng, X.-X.; Bao, G.-M.; Zhong, Y.-F.; He, J.-X.; Zeng, L.; Yuan, H.-Q. Highly Selective Detection of Cu2+ in Aqueous Media Based on Tb3+-Functionalized Metal-Organic Framework. Spectrochim. Acta. Part A Mol. Biomol. Spectrosc. 2020, 240, 118621. [Google Scholar] [CrossRef]
- Hu, H.; Jin, Q.; Kavan, P. A Study of Heavy Metal Pollution in China: Current Status, Pollution-Control Policies and Countermeasures. Sustainability 2014, 6, 5820–5838. [Google Scholar] [CrossRef]
- Zhang, J.-T.; Jin, Z.-Y.; Li, W.-C.; Dong, W.; Lu, A.-H. Graphene Modified Carbon Nanosheets for Electrochemical Detection of Pb(II) in Water. J. Mater. Chem. A 2013, 1, 13139. [Google Scholar] [CrossRef]
- Dong, C.; Wu, G.; Wang, Z.; Ren, W.; Zhang, Y.; Shen, Z.; Li, T.; Wu, A. Selective Colorimetric Detection of Cr(III) and Cr(VI) Using Gallic Acid Capped Gold Nanoparticles. Dalton Trans. 2016, 45, 8347–8354. [Google Scholar] [CrossRef]
- Yan, Z.; Yuen, M.-F.; Hu, L.; Sun, P.; Lee, C.-S. Advances for the Colorimetric Detection of Hg2+ in Aqueous Solution. RSC Adv 2014, 4, 48373–48388. [Google Scholar] [CrossRef]
- Royzen, M.; Durandin, A.; Young, V.G.; Geacintov, N.E.; Canary, J.W. A Sensitive Probe for the Detection of Zn(II) by Time-Resolved Fluorescence. J. Am. Chem. Soc. 2006, 128, 3854–3855. [Google Scholar] [CrossRef]
- Chen, X.; Zhao, J.-X.; Wang, J.-W.; Liu, Y.; Wang, L.-C.; Weerasooriya, R.; Wu, Y.-C. Doping ZIF-67 with Transition Metals Results in Bimetallic Centers for Electrochemical Detection of Hg(II). Electrochim. Acta 2021, 387, 138539. [Google Scholar] [CrossRef]
- Yin, H.; He, H.; Li, T.; Hu, M.; Huang, W.; Wang, Z.; Yang, X.; Yao, W.; Xiao, F.; Wu, Y.; et al. Ultra-Sensitive Detection of Multiplexed Heavy Metal Ions by MOF-Derived Carbon Film Encapsulating BiCu Alloy Nanoparticles in Potable Electrochemical Sensing System. Anal. Chim. Acta 2023, 1239, 340730. [Google Scholar] [CrossRef]
- Ma, W.; Li, X.; Bai, Y.; Liu, H. Applications of Metal-Organic Frameworks as Advanced Sorbents in Biomacromolecules Sample Preparation. TrAC Trends Anal. Chem. 2018, 109, 154–162. [Google Scholar] [CrossRef]
- Lu, L. Recent Advances in Synthesis of Three-Dimensional Porous Graphene and Its Applications in Construction of Electrochemical (Bio)Sensors for Small Biomolecules Detection. Biosens. Bioelectron. 2018, 110, 180–192. [Google Scholar] [CrossRef] [PubMed]
- Cong, Y.; Wang, X.; Yao, C.; Kang, Y.; Zhang, P.; Li, L. Controlling the Interaction between Fluorescent Gold Nanoclusters and Biointerfaces for Rapid Discrimination of Fungal Pathogens. ACS Appl. Mater. Interfaces 2022, 14, 4532–4541. [Google Scholar] [CrossRef] [PubMed]
- Chan, J.; Dodani, S.C.; Chang, C.J. Reaction-Based Small-Molecule Fluorescent Probes for Chemoselective Bioimaging. Nat. Chem. 2012, 4, 973–984. [Google Scholar] [CrossRef]
- Wang, Y.; Jin, M.; Chen, G.; Cui, X.; Zhang, Y.; Li, M.; Liao, Y.; Zhang, X.; Qin, G.; Yan, F.; et al. Bio-Barcode Detection Technology and Its Research Applications: A Review. J. Adv. Res. 2019, 20, 23–32. [Google Scholar] [CrossRef]
- Cong, Y.; Wang, X.; Zhu, S.; Liu, L.; Li, L. Spiropyran-Functionalized Gold Nanoclusters with Photochromic Ability for Light-Controlled Fluorescence Bioimaging. ACS Appl. Bio Mater. 2021, 4, 2790–2797. [Google Scholar] [CrossRef]
- Hossain, P.; Kawar, B.; El Nahas, M. Obesity and Diabetes in the Developing World—A Growing Challenge. N. Engl. J. Med. 2007, 356, 213–215. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Lv, S.; Wang, Y.; Zhang, L.; Cui, X. Nanoporous Gold Induced Vertically Standing 2D NiCo Bimetal-Organic Framework Nanosheets for Non-Enzymatic Glucose Biosensing. Sens. Actuators B Chem. 2019, 281, 652–658. [Google Scholar] [CrossRef]
- Zha, X.; Yang, W.; Shi, L.; Zeng, Q.; Xu, J.; Yang, Y. 2D Bimetallic Organic Framework Nanosheets for High-Performance Wearable Power Source and Real-Time Monitoring of Glucose. Dalton Trans. 2023, 52, 2631–2640. [Google Scholar] [CrossRef]
- Xuan, X.; Qian, M.; Pan, L.; Lu, T.; Han, L.; Yu, H.; Wan, L.; Niu, Y.; Gong, S. A Longitudinally Expanded Ni-Based Metal-Organic Framework with Enhanced Double Nickel Cation Catalysis Reaction Channels for a Non-Enzymatic Sweat Glucose Biosensor. J. Mater. Chem. B 2020, 8, 9094–9109. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.-Q.; Liao, P.-Q.; Zhou, D.-D.; He, C.-T.; Wu, J.-X.; Zhang, W.-X.; Zhang, J.-P.; Chen, X.-M. Modular and Stepwise Synthesis of a Hybrid Metal-Organic Framework for Efficient Electrocatalytic Oxygen Evolution. J. Am. Chem. Soc. 2017, 139, 1778–1781. [Google Scholar] [CrossRef]
- Wang, B.; Luo, Y.; Gao, L.; Liu, B.; Duan, G. High-Performance Field-Effect Transistor Glucose Biosensors Based on Bimetallic Ni/Cu Metal-Organic Frameworks. Biosens. Bioelectron. 2021, 171, 112736. [Google Scholar] [CrossRef]
- Mu, Z.; Wu, S.; Guo, J.; Zhao, M.; Wang, Y. Dual Mechanism Enhanced Peroxidase-like Activity of Iron-Nickel Bimetal-Organic Framework Nanozyme and Its Application for Biosensing. ACS Sustain. Chem. Eng. 2022, 10, 2984–2993. [Google Scholar] [CrossRef]
- Kim, Y.-R.; Bong, S.; Kang, Y.-J.; Yang, Y.; Mahajan, R.K.; Kim, J.S.; Kim, H. Electrochemical Detection of Dopamine in the Presence of Ascorbic Acid Using Graphene Modified Electrodes. Biosens. Bioelectron. 2010, 25, 2366–2369. [Google Scholar] [CrossRef]
- Duan, C.; Zheng, J. Bimetallic MOF-Based Enzyme-Free Sensor for Highly Sensitive and Selective Detection of Dopamine. J. Electrochem. Soc. 2019, 166, B942–B947. [Google Scholar] [CrossRef]
- Ma, J.; Bai, W.; Liu, X.; Zheng, J. Electrochemical Dopamine Sensor Based on Bi-Metallic Co/Zn Porphyrin Metal-Organic Framework. Microchim. Acta 2022, 189, 20. [Google Scholar] [CrossRef]
- Zhou, Y.; Tian, M.; Li, R.; Zhang, Y.; Zhang, G.; Zhang, C.; Shuang, S. Ultrasensitive Electrochemical Platform for Dopamine Detection Based on CoNi-MOF@ERGO Composite. ACS Biomater. Sci. Eng. 2023, 9, 5599–5609. [Google Scholar] [CrossRef]
- Hartle, M.D.; Pluth, M.D. A Practical Guide to Working with H2S at the Interface of Chemistry and Biology. Chem. Soc. Rev. 2016, 45, 6108–6117. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Qin, J.; Huang, C.; Han, Y.; Xu, W.; Hou, H. Mono/Bimetallic Water-Stable Lanthanide Coordination Polymers as Luminescent Probes for Detecting Cations, Anions and Organic Solvent Molecules. Dalton Trans. 2016, 45, 12710–12716. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Natarajan, V.; Wang, W.-N. The Role of Fe3+ Ions in Fluorescence Detection of H2S by a Bimetallic Metal-Organic Framework. J. Solid State Chem. 2020, 288, 121434. [Google Scholar] [CrossRef]
- Kumaragurubaran, N.; Arul, P.; Huang, S.-T.; Nandhini, C.; Mani, V.; Huang, C.-H. Tailoring of Bimetallic Organic Framework-Polymeric Film Composites: Real-Time Fouling-Free Electrocatalytic Application of Hydrogen Sulfide Releasing from Organic Donors and Live Cells. Appl. Surf. Sci. 2023, 613, 156141. [Google Scholar] [CrossRef]
- Usman Ali, S.M.; Alvi, N.H.; Ibupoto, Z.; Nur, O.; Willander, M.; Danielsson, B. Selective Potentiometric Determination of Uric Acid with Uricase Immobilized on ZnO Nanowires. Sens. Actuators B Chem. 2011, 152, 241–247. [Google Scholar] [CrossRef]
- Han, J.; Zhang, Y.; Lv, X.; Fan, D.; Dong, S. A Facile, Low-Cost Bimetallic Iron-Nickel MOF Nanozyme-Propelled Ratiometric Fluorescent Sensor for Highly Sensitive and Selective Uric Acid Detection and Its Smartphone Application. Nanoscale 2024, 16, 1394–1405. [Google Scholar] [CrossRef] [PubMed]
- Degenhardt, T.P.; Thorpe, S.R.; Baynes, J.W. Chemical Modification of Proteins by Methylglyoxal. Cell. Mol. Biol. 1998, 44, 1139–1145. [Google Scholar]
- Allaman, I.; Bélanger, M.; Magistretti, P.J. Methylglyoxal, the Dark Side of Glycolysis. Front. Neurosci. 2015, 9, 23. [Google Scholar] [CrossRef]
- Zheng, X.; Fan, R.; Lu, H.; Wang, B.; Wu, J.; Wang, P.; Yang, Y. A Dual-Emitting Tb(III)&Yb(III)-Functionalized Coordination Polymer: A “Turn-on” Sensor for N-Methylformamide in Urine and a “Turn-off” Sensor for Methylglyoxal in Serum. Dalton Trans. 2019, 48, 14408–14417. [Google Scholar] [CrossRef]
- Shahzaib, A.; Shaily; Kamran, L.A.; Nishat, N. The Biomolecule-MOF Nexus: Recent Advancements in Biometal-Organic Frameworks (Bio-MOFs) and Their Multifaceted Applications. Mater. Today Chem. 2023, 34, 101781. [Google Scholar] [CrossRef]
- Kunz, M.; Wolf, B.; Schulze, H.; Atlan, D.; Walles, T.; Walles, H.; Dandekar, T. Non-Coding RNAs in Lung Cancer: Contribution of Bioinformatics Analysis to the Development of Non-Invasive Diagnostic Tools. Genes 2016, 8, 8. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Huang, W.; Wang, M.; Xi, S.; Meng, J.; Zhao, K.; Jin, J.; Xu, W.; Wang, Z.; Liu, X.; et al. Low-Crystalline Bimetallic Metal-Organic Framework Electrocatalysts with Rich Active Sites for Oxygen Evolution. ACS Energy Lett. 2019, 4, 285–292. [Google Scholar] [CrossRef]
- Hu, M.; Zhu, L.; Li, Z.; Guo, C.; Wang, M.; Wang, C.; Du, M. CoNi Bimetallic Metal-Organic Framework as an Efficient Biosensing Platform for miRNA 126 Detection. Appl. Surf. Sci. 2021, 542, 148586. [Google Scholar] [CrossRef]
- Dou, B.; Zhou, H.; Han, X.; Wang, P. Wedged DNA Walker Coupled with a Bimetallic Metal-Organic Framework Electrocatalyst for Rapid and Sensitive Monitoring of DNA Methylation. Anal. Chem. 2023, 95, 994–1001. [Google Scholar] [CrossRef] [PubMed]
- Fernley, H.N. 18 Mammalian Alkaline Phosphatases. In The Enzymes; Elsevier: Amsterdam, The Netherlands, 1971; Volume 4, pp. 417–447. ISBN 978-0-12-122704-3. [Google Scholar]
- Julien, S.G.; Dubé, N.; Hardy, S.; Tremblay, M.L. Inside the Human Cancer Tyrosine Phosphatome. Nat. Rev. Cancer 2011, 11, 35–49. [Google Scholar] [CrossRef]
- Wang, F.; Hu, X.; Hu, J.; Peng, Q.; Zheng, B.; Du, J.; Xiao, D. Fluorescence Assay for Alkaline Phosphatase Activity Based on Energy Transfer from Terbium to Europium in Lanthanide Coordination Polymer Nanoparticles. J. Mater. Chem. B 2018, 6, 6008–6015. [Google Scholar] [CrossRef]
- Hasanzadeh, M.; Shadjou, N. Advanced Nanomaterials for Use in Electrochemical and Optical Immunoassays of Carcinoembryonic Antigen. A Review. Microchim. Acta 2017, 184, 389–414. [Google Scholar] [CrossRef]
- Wu, Q.; Li, N.; Wang, Y.; Xu, Y.; Wu, J.; Jia, G.; Ji, F.; Fang, X.; Chen, F.; Cui, X. Ultrasensitive and Selective Determination of Carcinoembryonic Antigen Using Multifunctional Ultrathin Amino-Functionalized Ti3C2-MXene Nanosheets. Anal. Chem. 2020, 92, 3354–3360. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, Q.; Kang, Q.; Zou, G.; Shen, D. A High Sensitive Single Luminophore Ratiometric Electrochemiluminescence Immunosensor in Combined with Anodic Stripping Voltammetry. Electrochimica Acta 2020, 336, 135725. [Google Scholar] [CrossRef]
- Hong, W.; Lee, S.; Cho, Y. Dual-Responsive Immunosensor That Combines Colorimetric Recognition and Electrochemical Response for Ultrasensitive Detection of Cancer Biomarkers. Biosens. Bioelectron. 2016, 86, 920–926. [Google Scholar] [CrossRef]
- Ahn, S.; Yu, H.; Kang, S.H. Enhanced Detection Sensitivity of Carcinoembryonic Antigen on a Plasmonic Nanoimmunosensor by Transmission Grating-Based Total Internal Reflection Scattering Microscopy. Biosens. Bioelectron. 2017, 96, 159–166. [Google Scholar] [CrossRef]
- Mao, Y.; Wang, N.; Yu, F.; Yu, S.; Liu, L.; Tian, Y.; Wang, J.; Wang, Y.; He, L.; Wu, Y. Simultaneous Detection of Carcinoembryonic Antigen and Neuron-Specific Enolase in Human Serum Based on Time-Resolved Chemiluminescence Immunoassay. The Analyst 2019, 144, 4813–4819. [Google Scholar] [CrossRef]
- Song, Y.; Chen, K.; Li, S.; He, L.; Wang, M.; Zhou, N.; Du, M. Impedimetric Aptasensor Based on Zirconium-Cobalt Metal-Organic Framework for Detection of Carcinoembryonic Antigen. Microchim. Acta 2022, 189, 338. [Google Scholar] [CrossRef]
- Iraci, N.; Leonardi, T.; Gessler, F.; Vega, B.; Pluchino, S. Focus on Extracellular Vesicles: Physiological Role and Signalling Properties of Extracellular Membrane Vesicles. Int. J. Mol. Sci. 2016, 17, 171. [Google Scholar] [CrossRef]
- Yáñez-Mó, M.; Siljander, P.R.-M.; Andreu, Z.; Bedina Zavec, A.; Borràs, F.E.; Buzas, E.I.; Buzas, K.; Casal, E.; Cappello, F.; Carvalho, J.; et al. Biological Properties of Extracellular Vesicles and Their Physiological Functions. J. Extracell. Vesicles 2015, 4, 27066. [Google Scholar] [CrossRef]
- Jiang, Q.; Xiao, Y.; Hong, A.N.; Gao, Z.; Shen, Y.; Fan, Q.; Feng, P.; Zhong, W. Bimetallic Metal-Organic Framework Fe/Co-MIL-88(NH2) Exhibiting High Peroxidase-like Activity and Its Application in Detection of Extracellular Vesicles. ACS Appl. Mater. Interfaces 2022, 14, 41800–41808. [Google Scholar] [CrossRef]
- Axin Liang, A.; Huipeng Hou, B.; Shanshan Tang, C.; Liquan Sun, D.; Aiqin Luo, E. An Advanced Molecularly Imprinted Electrochemical Sensor for the Highly Sensitive and Selective Detection and Determination of Human IgG. Bioelectrochemistry 2021, 137, 107671. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Song, Z.; Han, R.; Li, Y.; Luo, X. Low Fouling Electrochemical Biosensors Based on Designed Y-Shaped Peptides with Antifouling and Recognizing Branches for the Detection of IgG in Human Serum. Biosens. Bioelectron. 2021, 178, 113016. [Google Scholar] [CrossRef] [PubMed]
- Ravipati, M.; Sreekumar, A.; Badhulika, S. Bimetallic Nickel/Cobalt Metal-Organic Framework-Based Electrochemical Sensor for Trace Level Detection of IgG in Simulated Human Blood Serum. Microchem. J. 2023, 195, 109510. [Google Scholar] [CrossRef]
- Adumitrăchioaie, A.; Tertiș, M.; Cernat, A.; Săndulescu, R.; Cristea, C. Electrochemical Methods Based on Molecularly Imprinted Polymers for Drug Detection. A Review. Int. J. Electrochem. Sci. 2018, 13, 2556–2576. [Google Scholar] [CrossRef]
- Wu, H.; Zhao, J.; Wan, J. A Review of Veterinary Drug Residue Detection: Recent Advancements, Challenges, and Future Directions. Sustainability 2023, 15, 10413. [Google Scholar] [CrossRef]
- Ahmed, S.; Ning, J.; Cheng, G.; Ahmad, I.; Li, J.; Mingyue, L.; Qu, W.; Iqbal, M.; Shabbir, M.A.B.; Yuan, Z. Receptor-Based Screening Assays for the Detection of Antibiotics Residues—A Review. Talanta 2017, 166, 176–186. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, M.E.R.; Wigler, N.; Inbar, M.; Rosso, R.; Grischke, E.; Santoro, A.; Catane, R.; Kieback, D.G.; Tomczak, P.; Ackland, S.P.; et al. Reduced Cardiotoxicity and Comparable Efficacy in a Phase IIItrial of Pegylated Liposomal Doxorubicin HCl(CAELYXTM/Doxil®) versus Conventional Doxorubicin Forfirst-Line Treatment of Metastatic Breast Cancer. Ann. Oncol. 2004, 15, 440–449. [Google Scholar] [CrossRef] [PubMed]
- Weiss, G.J.; Waypa, J.; Blaydorn, L.; Coats, J.; McGahey, K.; Sangal, A.; Niu, J.; Lynch, C.A.; Farley, J.H.; Khemka, V. A Phase Ib Study of Pembrolizumab plus Chemotherapy in Patients with Advanced Cancer (PembroPlus). Br. J. Cancer 2017, 117, 33–40. [Google Scholar] [CrossRef]
- Rezvani Jalal, N.; Madrakian, T.; Afkhami, A.; Ahmadi, M. Ni/Co Bimetallic Metal-Organic Frameworks on Nitrogen-Doped Graphene Oxide Nanoribbons for Electrochemical Sensing of Doxorubicin. ACS Appl. Nano Mater. 2022, 5, 11045–11058. [Google Scholar] [CrossRef]
- Li, X.; Xiao, C.; Ruan, X.; Hu, Y.; Zhang, C.; Cheng, J.; Chen, Y. Enrofloxacin Degradation in a Heterogeneous Electro-Fenton System Using a Tri-Metal-Carbon Nanofibers Composite Cathode. Chem. Eng. J. 2022, 427, 130927. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, Q.; Zhang, M.; You, F.; Hao, N.; Ding, C.; Wang, K. Simultaneous Detection of Enrofloxacin and Ciprofloxacin in Milk Using a Bias Potentials Controlling-Based Photoelectrochemical Aptasensor. J. Hazard. Mater. 2021, 416, 125988. [Google Scholar] [CrossRef]
- Wei, P.; Wang, S.; Wang, W.; Niu, Z.; Rodas-Gonzalez, A.; Li, K.; Li, L.; Yang, Q. CoNi Bimetallic Metal-Organic Framework and Gold Nanoparticles-Based Aptamer Electrochemical Sensor for Enrofloxacin Detection. Appl. Surf. Sci. 2022, 604, 154369. [Google Scholar] [CrossRef]
- Croom, K.F.; Goa, K.L. Levofloxacin: A Review of Its Use in the Treatment of Bacterial Infections in the United States. Drugs 2003, 63, 2769–2802. [Google Scholar] [CrossRef]
- Speltini, A.; Sturini, M.; Maraschi, F.; Profumo, A.; Albini, A. Analytical Methods for the Determination of Fluoroquinolones in Solid Environmental Matrices. TrAC Trends Anal. Chem. 2011, 30, 1337–1350. [Google Scholar] [CrossRef]
- Deng, Y.; Li, S.; Ma, X.; Wu, Y.; Pang, C.; Wang, M.; Li, J.; Zhi, X. Electrochemical Chiral Sensor for Levofloxacin Detection Base on Cu/Fe-BTC Amplification. Microchim. Acta 2023, 190, 435. [Google Scholar] [CrossRef] [PubMed]
- Kushwaha, C.S.; Shukla, S.K. Electrochemical Sensing of Paracetamol Using Iron Oxide Encapsulated in Chitosan-Grafted-Polyaniline. ACS Appl. Polym. Mater. 2020, 2, 2252–2259. [Google Scholar] [CrossRef]
- Nada, A.A.; Orimolade, B.O.; El-Maghrabi, H.H.; Koiki, B.A.; Rivallin, M.; Bekheet, M.F.; Viter, R.; Damberga, D.; Lesage, G.; Iatsunskyi, I.; et al. Photoelectrocatalysis of Paracetamol on Pd-ZnO/ N-Doped Carbon Nanofibers Electrode. Appl. Mater. Today 2021, 24, 101129. [Google Scholar] [CrossRef]
- Shalauddin, M.; Akhter, S.; Basirun, W.J.; Lee, V.S.; Marlinda, A.R.; Ahmed, S.R.; Rajabzadeh, A.R.; Srinivasan, S. Bimetallic Metal Organic Framework Anchored Multi-Layer Black Phosphorous Nanosheets with Enhanced Electrochemical Activity for Paracetamol Detection. Electrochim. Acta 2023, 454, 142423. [Google Scholar] [CrossRef]
- Dibden, A.; Offman, J.; Duffy, S.W.; Gabe, R. Worldwide Review and Meta-Analysis of Cohort Studies Measuring the Effect of Mammography Screening Programmes on Incidence-Based Breast Cancer Mortality. Cancers 2020, 12, 976. [Google Scholar] [CrossRef]
- Das, P.K.; Islam, F.; Lam, A.K. The Roles of Cancer Stem Cells and Therapy Resistance in Colorectal Carcinoma. Cells 2020, 9, 1392. [Google Scholar] [CrossRef]
- Ulldemolins, A.; Seras-Franzoso, J.; Andrade, F.; Rafael, D.; Abasolo, I.; Gener, P.; Schwartz Jr, S. Perspectives of Nano-Carrier Drug Delivery Systems to Overcome Cancer Drug Resistance in the Clinics. Cancer Drug Resist. 2021, 4, 44–68. [Google Scholar] [CrossRef]
- Bäumer, N.; Tiemann, J.; Scheller, A.; Meyer, T.; Wittmann, L.; Suburu, M.E.G.; Greune, L.; Peipp, M.; Kellmann, N.; Gumnior, A.; et al. Targeted siRNA Nanocarrier: A Platform Technology for Cancer Treatment. Oncogene 2022, 41, 2210–2224. [Google Scholar] [CrossRef]
- Della Rocca, J.; Liu, D.; Lin, W. Nanoscale Metal-Organic Frameworks for Biomedical Imaging and Drug Delivery. Acc. Chem. Res. 2011, 44, 957–968. [Google Scholar] [CrossRef]
- Wu, M.; Yang, Y. Metal-Organic Framework (MOF)-Based Drug/Cargo Delivery and Cancer Therapy. Adv. Mater. 2017, 29, 1606134. [Google Scholar] [CrossRef]
- Mu, J.; He, L.; Huang, P.; Chen, X. Engineering of Nanoscale Coordination Polymers with Biomolecules for Advanced Applications. Coord. Chem. Rev. 2019, 399, 213039. [Google Scholar] [CrossRef]
- Browning, R.J.; Reardon, P.J.T.; Parhizkar, M.; Pedley, R.B.; Edirisinghe, M.; Knowles, J.C.; Stride, E. Drug Delivery Strategies for Platinum-Based Chemotherapy. ACS Nano 2017, 11, 8560–8578. [Google Scholar] [CrossRef]
- Baehr, C.M.; Zhang, L.; Wu, Y.; Domokos, A.; Xiao, W.; Wang, L.; Lam, K.S. Transformable Amyloid-Beta Mimetic Peptide Amphiphiles for Lysosomal Disruption in Non-Small Cell Lung Cancer. Biomaterials 2021, 277, 121078. [Google Scholar] [CrossRef]
- Ma, Y.; Su, Z.; Zhou, L.; He, L.; Hou, Z.; Zou, J.; Cai, Y.; Chang, D.; Xie, J.; Zhu, C.; et al. Biodegradable Metal-Organic-Framework-Gated Organosilica for Tumor-Microenvironment-Unlocked Glutathione-Depletion-Enhanced Synergistic Therapy. Adv. Mater. 2022, 34, 2107560. [Google Scholar] [CrossRef] [PubMed]
- Waldman, A.D.; Fritz, J.M.; Lenardo, M.J. A Guide to Cancer Immunotherapy: From T Cell Basic Science to Clinical Practice. Nat. Rev. Immunol. 2020, 20, 651–668. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Mooney, D.J. Biomaterial-Assisted Targeted Modulation of Immune Cells in Cancer Treatment. Nat. Mater. 2018, 17, 761–772. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.; Wang, H.; Wang, Z.; Cai, H.; Lu, Z.; Li, Y.; Du, M.; Huang, G.; Wang, C.; Chen, X.; et al. A STING-Activating Nanovaccine for Cancer Immunotherapy. Nat. Nanotechnol. 2017, 12, 648–654. [Google Scholar] [CrossRef]
- Liu, F.; Tan, L.; Dai, Z.; Wang, Y.; Huang, L.; Zhang, Y.; Cheng, Q.; Li, X.; Liu, M.-D.; Wang, L.; et al. Manganese-Based Microcrystals Equipped with Ythdf1-Targeted Biomimetic Nanovaccines for Reinforced Dendritic Cell Spatiotemporal Orchestration. Nano Today 2024, 54, 102112. [Google Scholar] [CrossRef]
- Tang, Z.; Liu, Y.; He, M.; Bu, W. Chemodynamic Therapy: Tumour Microenvironment-Mediated Fenton and Fenton-like Reactions. Angew. Chem. 2019, 131, 958–968. [Google Scholar] [CrossRef]
- Ma, P.; Xiao, H.; Yu, C.; Liu, J.; Cheng, Z.; Song, H.; Zhang, X.; Li, C.; Wang, J.; Gu, Z.; et al. Enhanced Cisplatin Chemotherapy by Iron Oxide Nanocarrier-Mediated Generation of Highly Toxic Reactive Oxygen Species. Nano Lett. 2017, 17, 928–937. [Google Scholar] [CrossRef]
- Huo, M.; Wang, L.; Chen, Y.; Shi, J. Tumor-Selective Catalytic Nanomedicine by Nanocatalyst Delivery. Nat. Commun. 2017, 8, 357. [Google Scholar] [CrossRef] [PubMed]
- Fang, C.; Deng, Z.; Cao, G.; Chu, Q.; Wu, Y.; Li, X.; Peng, X.; Han, G. Co-Ferrocene MOF/Glucose Oxidase as Cascade Nanozyme for Effective Tumor Therapy. Adv. Funct. Mater. 2020, 30, 1910085. [Google Scholar] [CrossRef]
- Wang, Z.; Niu, J.; Zhao, C.; Wang, X.; Ren, J.; Qu, X. A Bimetallic Metal-Organic Framework Encapsulated with DNAzyme for Intracellular Drug Synthesis and Self-Sufficient Gene Therapy. Angew. Chem. Int. Ed. 2021, 60, 12431–12437. [Google Scholar] [CrossRef] [PubMed]
- Chandra, R.A.; Keane, F.K.; Voncken, F.E.M.; Thomas, C.R. Contemporary Radiotherapy: Present and Future. The Lancet 2021, 398, 171–184. [Google Scholar] [CrossRef]
- De Ruysscher, D.; Niedermann, G.; Burnet, N.G.; Siva, S.; Lee, A.W.M.; Hegi-Johnson, F. Radiotherapy Toxicity. Nat. Rev. Dis. Primer 2019, 5, 13. [Google Scholar] [CrossRef]
- Price, J.M.; Prabhakaran, A.; West, C.M.L. Predicting Tumour Radiosensitivity to Deliver Precision Radiotherapy. Nat. Rev. Clin. Oncol. 2023, 20, 83–98. [Google Scholar] [CrossRef]
- Rosa, S.; Connolly, C.; Schettino, G.; Butterworth, K.T.; Prise, K.M. Biological Mechanisms of Gold Nanoparticle Radiosensitization. Cancer Nanotechnol. 2017, 8, 2. [Google Scholar] [CrossRef]
- Liang, Y.; Peng, C.; Su, N.; Li, Q.; Chen, S.; Wu, D.; Wu, B.; Gao, Y.; Xu, Z.; Dan, Q.; et al. Tumor Microenvironments Self-Activated Cascade Catalytic Nanoscale Metal Organic Frameworks as Ferroptosis Inducer for Radiosensitization. Chem. Eng. J. 2022, 437, 135309. [Google Scholar] [CrossRef]
- Xiong, Z.; Yang, M.; Liu, P.; Tang, Z.; Yang, Y.; Zhan, M.; Chen, T.; Li, X.; Lu, L. Designing Bimetallic Metal-Organic Framework-Based Heterojunction Radiosensitizer for Enhanced Radiodynamic Therapy and Immunotherapy. Adv. Funct. Mater. 2023, 2312919. [Google Scholar] [CrossRef]
- Fukumura, D.; Kloepper, J.; Amoozgar, Z.; Duda, D.G.; Jain, R.K. Enhancing Cancer Immunotherapy Using Antiangiogenics: Opportunities and Challenges. Nat. Rev. Clin. Oncol. 2018, 15, 325–340. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, M.; Dellorusso, P.V.; Olson, O.C.; Passegué, E. Dysregulated Haematopoietic Stem Cell Behaviour in Myeloid Leukaemogenesis. Nat. Rev. Cancer 2020, 20, 365–382. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Zhang, L.; Wang, Y.; Han, M.; Wang, Z.; Wang, N.; Shao, B.; Li, R.; Cao, K.; Song, M.; et al. A Bimetallic Metal-Organic-Framework-Based Biomimetic Nanoplatform Enhances Anti-Leukemia Immunity via Synchronizing DNA Demethylation and RNA Hypermethylation. Adv. Mater. 2023, 35, 2210895. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Ma, J.; Ahmad, F.; Xiao, Y.; Guan, J.; Shu, T.; Zhang, X. Bimetallic Coordination Polymers: Synthesis and Applications in Biosensing and Biomedicine. Biosensors 2024, 14, 117. https://doi.org/10.3390/bios14030117
Sun Y, Ma J, Ahmad F, Xiao Y, Guan J, Shu T, Zhang X. Bimetallic Coordination Polymers: Synthesis and Applications in Biosensing and Biomedicine. Biosensors. 2024; 14(3):117. https://doi.org/10.3390/bios14030117
Chicago/Turabian StyleSun, Yanping, Jianxin Ma, Faisal Ahmad, Yelan Xiao, Jingyang Guan, Tong Shu, and Xueji Zhang. 2024. "Bimetallic Coordination Polymers: Synthesis and Applications in Biosensing and Biomedicine" Biosensors 14, no. 3: 117. https://doi.org/10.3390/bios14030117
APA StyleSun, Y., Ma, J., Ahmad, F., Xiao, Y., Guan, J., Shu, T., & Zhang, X. (2024). Bimetallic Coordination Polymers: Synthesis and Applications in Biosensing and Biomedicine. Biosensors, 14(3), 117. https://doi.org/10.3390/bios14030117