Switching Separation Migration Order by Switching Electrokinetic Regime in Electrokinetic Microsystems
Abstract
:1. Introduction
2. Theory
3. Materials and Methods
3.1. Microfluidic Devices
3.2. Microparticle Samples and Suspending Media
3.3. Experimental Procedures and Equipment Information
4. Results and Discussion
4.1. Separation of the Binary Particle Mixture of Similar Charge and Different Diameters (5.9 and 11.7 µm)
4.2. Separation of the Two Tertiary Particle Mixtures of Particles of Different Diameters (4.1, 7.4 and 11.7 µm) and (2.4, 5.7 and 11.7 µm)
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rathore, A.S.; Horváth, C. Separation Parameters via Virtual Migration Distances in High-Performance Liquid Chromatography, Capillary Zone Electrophoresis and Electrokinetic Chromatography. J. Chromatogr. A 1996, 743, 231–246. [Google Scholar] [CrossRef] [PubMed]
- Chankvetadze, B.; Schulte, G.; Blaschke, G. Selected Applications of Capillaries with Dynamic or Permanent Anodal Electroosmotic Flow in Chiral Separations by Capillary Electrophoresis. J. Pharm. Biomed. Anal. 1997, 15, 1577–1584. [Google Scholar] [CrossRef] [PubMed]
- Krebs, F.; Zagst, H.; Stein, M.; Ratih, R.; Minkner, R.; Olabi, M.; Hartung, S.; Scheller, C.; Lapizco-Encinas, B.H.; Sänger-van de Griend, C.; et al. Strategies for Capillary Electrophoresis: Method Development and Validation for Pharmaceutical and Biological Applications—Updated and Completely Revised Edition. Electrophoresis 2023, 44, 1279–1341. [Google Scholar] [CrossRef] [PubMed]
- Fanali, S.; Chankvetadze, B. Some Thoughts about Enantioseparations in Capillary Electrophoresis. Electrophoresis 2019, 40, 2420–2437. [Google Scholar] [CrossRef] [PubMed]
- de Koster, N.; Clark, C.P.; Kohler, I. Past, Present, and Future Developments in Enantioselective Analysis Using Capillary Electromigration Techniques. Electrophoresis 2021, 42, 38–57. [Google Scholar] [CrossRef] [PubMed]
- Lindner, H.; Helliger, W.; Sarg, B.; Meraner, C. Effect of Buffer Composition on the Migration Order and Separation of Histone H1 Subtypes. Electrophoresis 1995, 16, 604–610. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Wang, S.; Zhou, R.; Shang, Y.; Du, K.; He, J.; Li, J.; Ma, L.; Chang, Y. A Novel Reverse Migration Micellar Electrokinetic Chromatography Method for In-Capillary Screening and Quantifying of Antioxidant Components in Sanyetangzhiqing Using 2,2′-Azinobis-(3-Ethylbenzthiazoline-6-Sulphonate) as Oxidation-Free Radical. Electrophoresis 2022, 43, 1148–1160. [Google Scholar] [CrossRef]
- Vaghef-Koodehi, A.; Ernst, O.D.; Lapizco-Encinas, B.H. Separation of Cells and Microparticles in Insulator-Based Electrokinetic Systems. Anal. Chem. 2023, 95, 1409–1418. [Google Scholar] [CrossRef]
- Liu, Y.; Jiang, A.; Kim, E.; Ro, C.; Adams, T.; Flanagan, L.A.; Taylor, T.J.; Hayes, M.A. Identification of Neural Stem and Progenitor Cell Subpopulations Using DC Insulator-Based Dielectrophoresis. Analyst 2019, 144, 4066–4072. [Google Scholar] [CrossRef]
- Jiang, A.Y.L.; Yale, A.R.; Aghaamoo, M.; Lee, D.H.; Lee, A.P.; Adams, T.N.G.; Flanagan, L.A. High-Throughput Continuous Dielectrophoretic Separation of Neural Stem Cells. Biomicrofluidics 2019, 13, 064111. [Google Scholar] [CrossRef]
- Douglas, T.A.; Cemazar, J.; Balani, N.; Sweeney, D.C.; Schmelz, E.M.; Davalos, R.V. A Feasibility Study for Enrichment of Highly Aggressive Cancer Subpopulations by Their Biophysical Properties via Dielectrophoresis Enhanced with Synergistic Fluid Flow. Electrophoresis 2017, 38, 1507–1514. [Google Scholar] [CrossRef]
- Henslee, E.A.; Sano, M.B.; Rojas, A.D.; Schmelz, E.M.; Davalos, R.V. Selective Concentration of Human Cancer Cells Using Contactless Dielectrophoresis. Electrophoresis 2011, 32, 2523–2529. [Google Scholar] [CrossRef] [PubMed]
- Mahabadi, S.; Labeed, F.H.; Hughes, M.P. Dielectrophoretic Analysis of Treated Cancer Cells for Rapid Assessment of Treatment Efficacy. Electrophoresis 2018, 39, 1104–1110. [Google Scholar] [CrossRef] [PubMed]
- Khair, A.S. Nonlinear Electrophoresis of Colloidal Particles. Curr. Opin. Colloid Interface Sci. 2022, 59, 101587. [Google Scholar] [CrossRef]
- Perez-Gonzalez, V.H. Particle Trapping in Electrically Driven Insulator-Based Microfluidics: Dielectrophoresis and Induced-Charge Electrokinetics. Electrophoresis 2021, 42, 2445–2464. [Google Scholar] [CrossRef] [PubMed]
- Li, D. Chapter 9—Electrophoretic Motion of Particles in Microchannels. In Interface Science and Technology; Elsevier: Amsterdam, The Netherlands, 2004; Volume 2, pp. 542–616. [Google Scholar]
- Morrison, F.A. Electrophoresis of a Particle of Arbitrary Shape. J. Colloid Interface Sci. 1970, 34, 210–214. [Google Scholar] [CrossRef]
- Ernst, O.D.; Vaghef-Koodehi, A.; Dillis, C.; Lomeli-Martin, A.; Lapizco-Encinas, B.H. Dependence of Nonlinear Electrophoresis on Particle Size and Electrical Charge. Anal. Chem. 2023, 95, 6595–6602. [Google Scholar] [CrossRef] [PubMed]
- Bentor, J.; Dort, H.; Chitrao, R.A.; Zhang, Y.; Xuan, X. Nonlinear Electrophoresis of Dielectric Particles in Newtonian Fluids. Electrophoresis 2023, 44, 938–946. [Google Scholar] [CrossRef]
- Polaczyk, A.L.; Amburgey, J.E.; Alansari, A.; Poler, J.C.; Propato, M.; Hill, V.R. Calculation and Uncertainty of Zeta Potentials of Microorganisms in a 1:1 Electrolyte with a Conductivity Similar to Surface Water. Colloids Surfaces A Physicochem. Eng. Asp. 2020, 586, 124097. [Google Scholar] [CrossRef]
- Rouhi Youssefi, M.; Diez, F.J. Ultrafast Electrokinetics. Electrophoresis 2016, 37, 692–698. [Google Scholar] [CrossRef]
- Tottori, S.; Misiunas, K.; Keyser, U.F.; Bonthuis, D.J. Nonlinear Electrophoresis of Highly Charged Nonpolarizable Particles. Phys. Rev. Lett. 2019, 123, 14502. [Google Scholar] [CrossRef] [PubMed]
- Dukhin, S.S. Electrokinetic Phenomena of the Second Kind and Their Applications. Adv. Colloid Interface Sci. 1991, 35, 173–196. [Google Scholar] [CrossRef]
- Mishchuk, N.A.; Barinova, N.O. Theoretical and Experimental Study of Nonlinear Electrophoresis. Colloid J. 2011, 73, 88–96. [Google Scholar] [CrossRef]
- Lomeli-Martin, A.; Ernst, O.D.; Cardenas-Benitez, B.; Cobos, R.; Khair, A.S.; Lapizco-Encinas, B.H. Characterization of the Nonlinear Electrophoretic Behavior of Colloidal Particles in a Microfluidic Channel. Anal. Chem. 2023, 95, 6740–6747. [Google Scholar] [CrossRef] [PubMed]
- Schnitzer, O.; Zeyde, R.; Yavneh, I.; Yariv, E. Weakly Nonlinear Electrophoresis of a Highly Charged Colloidal Particle. Phys. Fluids 2013, 25, 052004. [Google Scholar] [CrossRef]
- Schnitzer, O.; Yariv, E. Nonlinear Electrophoresis at Arbitrary Field Strengths: Small-Dukhin-Number Analysis. Phys. Fluids 2014, 26, 122002. [Google Scholar] [CrossRef]
- Saucedo-Espinosa, M.A.; Lapizco-Encinas, B.H. Refinement of Current Monitoring Methodology for Electroosmotic Flow Assessment under Low Ionic Strength Conditions. Biomicrofluidics 2016, 10, 033104. [Google Scholar] [CrossRef]
- Gallo-Villanueva, R.C.; Sano, M.B.; Lapizco-Encinas, B.H.; Davalos, R.V. Joule Heating Effects on Particle Immobilization in Insulator-Based Dielectrophoretic Devices. Electrophoresis 2014, 35, 352–361. [Google Scholar] [CrossRef]
Particle ID | Color | Diam. (μm) | (mV) | × 10−8 (m2V−1s−1) | Estimation (V/cm) * | × 10−18 (m4V−3s−1) |
---|---|---|---|---|---|---|
1 | Red | 5.9 ± 0.3 | −25.5 ± 4.2 | −2.0 ± 0.3 | 150 | −8.6 ± 7.1 |
2 | Blue | 11.7 ± 0.2 | −23.9 ± 1.1 | −1.9 ± 0.1 | 100 | −23.2 ± 16.7 |
3 | Green | 4.1 ± 0.3 | −19.1 ± 3.2 | −1.5 ± 0.1 | 350 | −2.1 ± 1.8 |
4 | Red | 7.4 ± 0.3 | −31.8 ± 1.8 | −2.5 ± 0.1 | 100 | −7.3 ± 5.3 |
5 | Red | 2.4 ± 0.1 | −19.1 ± 2.2 | −1.5 ± 0.1 | 400 | −3.2 ± 1.5 |
6 | Green | 5.7 ± 0.2 | −34.1 ± 3.7 | −2.7 ± 0.2 | 150 | −16.1 ± 1.2 |
Separation Description | Step | Run Time (s) | Applied Voltage (V) | |||
---|---|---|---|---|---|---|
A | B | C | D | |||
Binary linear EK regime (Figure 2b) | Loading | 20 | 2500 | 100 | 0 | 1000 |
Gating | 1 | 1500 | 2500 | 1500 | 0 | |
Injection & Separation | 550 | 200 | 800 | 200 | 0 | |
Binary nonlinear EK regime (Figure 2d) | Loading | 20 | 2500 | 100 | 0 | 1000 |
Gating | 1 | 1500 | 2500 | 1500 | 0 | |
Injection & Separation | 500 | 200 | 1500 | 200 | 0 | |
Tertiary linear EK regime (Figure 3c) | Loading | 30 | 1500 | 100 | 0 | 1000 |
Gating | 6 | 1500 | 1500 | 1500 | 0 | |
Injection & Separation | 500 | 200 | 400 | 200 | 0 | |
Tertiary nonlinear EK regime (Figure 3f) | Loading | 20 | 2500 | 100 | 0 | 1000 |
Gating | 1 | 1500 | 2500 | 1500 | 0 | |
Injection & Separation | 500 | 200 | 1500 | 200 | 0 | |
Tertiary linear EK regime (Figure 4c) | Loading | 10 | 1500 | 100 | 0 | 1000 |
Gating | 1 | 1500 | 2500 | 1500 | 0 | |
Injection & Separation | 350 | 200 | 800 | 200 | 0 | |
Tertiary nonlinear EK regime (Figure 4f) | Loading | 10 | 2500 | 100 | 0 | 1000 |
Gating | 1 | 1500 | 2500 | 1500 | 0 | |
Injection & Separation | 350 | 200 | 1500 | 200 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vaghef-Koodehi, A.; Lapizco-Encinas, B.H. Switching Separation Migration Order by Switching Electrokinetic Regime in Electrokinetic Microsystems. Biosensors 2024, 14, 119. https://doi.org/10.3390/bios14030119
Vaghef-Koodehi A, Lapizco-Encinas BH. Switching Separation Migration Order by Switching Electrokinetic Regime in Electrokinetic Microsystems. Biosensors. 2024; 14(3):119. https://doi.org/10.3390/bios14030119
Chicago/Turabian StyleVaghef-Koodehi, Alaleh, and Blanca H. Lapizco-Encinas. 2024. "Switching Separation Migration Order by Switching Electrokinetic Regime in Electrokinetic Microsystems" Biosensors 14, no. 3: 119. https://doi.org/10.3390/bios14030119
APA StyleVaghef-Koodehi, A., & Lapizco-Encinas, B. H. (2024). Switching Separation Migration Order by Switching Electrokinetic Regime in Electrokinetic Microsystems. Biosensors, 14(3), 119. https://doi.org/10.3390/bios14030119