Development of a DC-Biased AC-Stimulated Microfluidic Device for the Electrokinetic Separation of Bacterial and Yeast Cells
Abstract
:1. Introduction
2. Theory
3. Materials and Methods
3.1. Microdevices
3.2. Suspending Medium and Cell Samples
3.3. Equipment and Software
3.4. Numerical Methods
3.5. Experimental Procedure
4. Results and Discussion
4.1. Separation of Cells from Different Domains: E. coli and S. cerevisiae Cells
4.2. Separation of Cells from Same Domain and Different Species: B. subtilis and B. cereus Cells
4.3. Separation of Cells from Same Domain, Same Species and Different Strains: Two Distinct Strains of S. cerevisiae Cells
4.4. Insights from the Mathematical Model about the EK Mechanisms Driving Cell Separations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ding, J.; Woolley, C.; Hayes, M.A. Biofluid Pretreatment Using Gradient Insulator-Based Dielectrophoresis: Separating Cells from Biomarkers. Anal. Bioanal. Chem. 2017, 409, 6405–6414. [Google Scholar] [CrossRef] [PubMed]
- Buszewski, B.; Kłodzińska, E. Rapid Microbiological Diagnostics in Medicine Using Electromigration Techniques. TrAC Trends Anal. Chem. 2016, 78, 95–108. [Google Scholar] [CrossRef]
- Chan, B.K.; Abedon, S.T.; Loc-Carrillo, C. Phage Cocktails and the Future of Phage Therapy. Future Microbiol. 2013, 8, 769–783. [Google Scholar] [CrossRef]
- Islam, M.; Keck, D.; Gilmore, J.; Martinez-Duarte, R. Characterization of the Dielectrophoretic Response of Different Candida Strains Using 3D Carbon Microelectrodes. Micromachines 2020, 11, 255. [Google Scholar] [CrossRef] [PubMed]
- Narang, R.; Mohammadi, S.; Ashani, M.M.; Sadabadi, H.; Hejazi, H.; Zarifi, M.H.; Sanati-Nezhad, A. Sensitive, Real-Time and Non-Intrusive Detection of Concentration and Growth of Pathogenic Bacteria Using Microfluidic-Microwave Ring Resonator Biosensor. Sci. Rep. 2018, 8, 15807. [Google Scholar] [CrossRef] [PubMed]
- Rajapaksha, P.; Elbourne, A.; Gangadoo, S.; Brown, R.; Cozzolino, D.; Chapman, J. A Review of Methods for the Detection of Pathogenic Microorganisms. Analyst 2019, 144, 396–411. [Google Scholar] [CrossRef] [PubMed]
- Kostal, V.; Arriaga, E.A. Recent Advances in the Analysis of Biological Particles by Capillary Electrophoresis. Electrophoresis 2008, 29, 2578–2586. [Google Scholar] [CrossRef] [PubMed]
- Davalos, R.V.; McGraw, G.J.; Wallow, T.I.; Morales, A.M.; Krafcik, K.L.; Fintschenko, Y.; Cummings, E.B.; Simmons, B.A. Performance Impact of Dynamic Surface Coatings on Polymeric Insulator-Based Dielectrophoretic Particle Separators. Anal. Bioanal. Chem. 2008, 390, 847–855. [Google Scholar] [CrossRef]
- Buszewski, B.; Dziubakiewicz, E. Outline of the History. In Electromigration Techniques: Theory and Practice; Buszewski, B., Dziubakiewicz, E., Szumski, M., Eds.; Springer: Berlin, Heidelberg, 2013; pp. 1–3. ISBN 978-3-642-35043-6. [Google Scholar]
- Harrison, D.J.; Manz, A.; Fan, Z.; Ludi, H.; Widmer, H.M.; Seiler, K.; Fluri, K.; Effenhauser, C.S.; Jacobson, S.C.; Hergenroder, R.; et al. High-Speed Separations on a Microchip. Anal. Chem. 1994, 66, 122. [Google Scholar]
- Wuethrich, A.; Quirino, J.P. A Decade of Microchip Electrophoresis for Clinical Diagnostics—A Review of 2008–2017. Anal. Chim. Acta 2019, 1045, 42–66. [Google Scholar] [CrossRef]
- Desai, M.J.; Armstrong, D.W. Separation, Identification, and Characterization of Microorganisms by Capillary Electrophoresis. Microbiol. Mol. Biol. Rev. 2003, 67, 38–51. [Google Scholar] [CrossRef]
- Girod, M.; Armstrong, D.W. Monitoring the Migration Behavior of Living Microorganisms in Capillary Electrophoresis Using Laser-Induced Fluorescence Detection with a Charge-Coupled Device Imaging System. Electrophoresis 2002, 23, 2048–2056. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, M.A.; Armstrong, D.W. Separation and Analysis of Colloidal/Nano-Particles Including Microorganisms by Capillary Electrophoresis: A Fundamental Review. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2004, 800, 7–25. [Google Scholar] [CrossRef] [PubMed]
- Horká, M.; Šalplachta, J.; Karásek, P.; Ružicka, F.; Roth, M. Online Concentration of Bacteria from Tens of Microliter Sample Volumes in Roughened Fused Silica Capillary with Subsequent Analysis by Capillary Electrophoresis and Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. ACS Infect. Dis. 2020, 6, 355–365. [Google Scholar] [CrossRef]
- Horká, M.; Šalplachta, J.; Karásek, P.; Růžička, F.; Štveráková, D.; Pantůček, R.; Roth, M. Rapid Isolation, Propagation, and Online Analysis of a Small Number of Therapeutic Staphylococcal Bacteriophages from a Complex Matrix. ACS Infect. Dis. 2020, 6, 2745–2755. [Google Scholar] [CrossRef] [PubMed]
- Horká, M.; Karásek, P.; Růžička, F.; Dvořáčková, M.; Sittová, M.; Roth, M. Separation of Methicillin-Resistant from Methicillin-Susceptible Staphylococcus Aureus by Electrophoretic Methods in Fused Silica Capillaries Etched with Supercritical Water. Anal. Chem. 2014, 86, 9701–9708. [Google Scholar] [CrossRef] [PubMed]
- Buszewski, B.; Maślak, E.; Złoch, M.; Railean-Plugaru, V.; Kłodzińska, E.; Pomastowski, P. A New Approach to Identifying Pathogens, with Particular Regard to Viruses, Based on Capillary Electrophoresis and Other Analytical Techniques. TrAC Trends Anal. Chem. 2021, 139, 116250. [Google Scholar] [CrossRef]
- Pomastowski, P.; Railean-Plugaru, V.; Buszewski, B. Microbial Analysis of Escherichia Coli Atcc, Lactobacteria and Saccharomyces Cerevisiae Using Capillary Electrophoresis Approach. In Methods in Molecular Biology; Humana Press Inc.: Totowa, NJ, USA, 2016; Volume 1483, pp. 393–406. [Google Scholar]
- Rogowska, A.; Pomastowski, P.; Złoch, M.; Railean-Plugaru, V.; Król, A.; Rafińska, K.; Szultka-Młyńska, M.; Buszewski, B. The Influence of Different PH on the Electrophoretic Behaviour of Saccharomyces Cerevisiae Modified by Calcium Ions. Sci. Rep. 2018, 8, 7261. [Google Scholar] [CrossRef] [PubMed]
- Hjertén, S.; Elenbring, K.; Kilár, F.; Liao, J.-L.; Chen, A.J.C.; Siebert, C.J.; Zhu, M.-D. Carrier-Free Zone Electrophoresis, Displacement Electrophoresis and Isoelectric Focusing in a High-Performance Electrophoresis Apparatus. J. Chromatogr. A 1987, 403, 47–61. [Google Scholar] [CrossRef]
- Jorgenson, J.W.; Lukacs, K.D.A. Zone Electrophoresis in Open-Tubular Glass Capillaries. Anal. Chem. 1981, 53, 1298–1302. [Google Scholar] [CrossRef]
- Armstrong, D.W.; Schulte, G.; Schneiderheinze, J.M.; Westenberg, D.J. Separating Microbes in the Manner of Molecules. 1. Capillary Electrokinetic Approaches. Anal. Chem. 1999, 71, 5465–5469. [Google Scholar] [CrossRef]
- Horká, M.; Štveráková, D.; Šalplachta, J.; Šlais, K.; Šiborová, M.; Růžička, F.; Pantůček, R. Electrophoretic Techniques for Purification, Separation and Detection of Kayvirus with Subsequent Control by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry and Microbiological Methods. J. Chromatogr. A 2018, 1570, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Horká, M.; Šlais, K.; Šalplachta, J.; Růžička, F. Preparative Isoelectric Focusing of Microorganisms in Cellulose-Based Separation Medium and Subsequent Analysis by CIEF and MALDI-TOF MS. Anal. Chim. Acta 2017, 990, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Lim, O.; Suntornsuk, W.; Suntornsuk, L. Capillary Zone Electrophoresis for Enumeration of Lactobacillus Delbrueckii Subsp. Bulgaricus and Streptococcus Thermophilus in Yogurt. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2009, 877, 710–718. [Google Scholar] [CrossRef] [PubMed]
- Buszewski, B.; Król, A.; Pomastowski, P.; Railean-Plugaru, V.; Szultka-Młyńska, M. Electrophoretic Determination of Lactococcus Lactis Modified by Zinc Ions. Chromatographia 2019, 82, 347–355. [Google Scholar] [CrossRef]
- Dziubakiewicz, E.; Buszewski, B. Capillary Electrophoresis of Microbial Aggregates. Electrophoresis 2014, 35, 1160–1164. [Google Scholar] [CrossRef] [PubMed]
- Buszewski, B.; Rogowska, A.; Pomastowski, P.; Złoch, M.; Railean-Plugaru, V. Identification of Microorganisms by Modern Analytical Techniques. J. AOAC Int. 2017, 100, 1607–1622. [Google Scholar] [CrossRef]
- Klepárník, K. Recent Advances in Combination of Capillary Electrophoresis with Mass Spectrometry: Methodology and Theory. Electrophoresis 2015, 36, 159–178. [Google Scholar] [CrossRef]
- Dolnik, V.; Liu, S. Applications of Capillary Electrophoresis on Microchip. J. Sep. Sci. 2005, 28, 1994–2009. [Google Scholar] [CrossRef]
- Dziubakiewicz, E.; Buszewski, B. Principles of Electromigration Techniques. In Electromigration Techniques; Springer: Berlin/Heidelberg, Germany, 2013; pp. 5–26. [Google Scholar]
- Perez-Gonzalez, V.H. Particle Trapping in Electrically Driven Insulator-Based Microfluidics: Dielectrophoresis and Induced-Charge Electrokinetics. Electrophoresis 2021, 42, 2445–2464. [Google Scholar] [CrossRef]
- Cardenas-Benitez, B.; Jind, B.; Gallo-Villanueva, R.C.; Martinez-Chapa, S.O.; Lapizco-Encinas, B.H.; Perez-Gonzalez, V.H. Direct Current Electrokinetic Particle Trapping in Insulator-Based Microfluidics: Theory and Experiments. Anal. Chem. 2020, 92, 12871–12879. [Google Scholar] [CrossRef] [PubMed]
- Nili, H.; Green, N.G. Higher-Order Dielectrophoresis of Nonspherical Particles. Phys. Rev. E 2014, 89, 063302. [Google Scholar] [CrossRef] [PubMed]
- Bentor, J.; Xuan, X. Nonlinear Electrophoresis of Nonspherical Particles in a Rectangular Microchannel. Electrophoresis 2023, 45, 712–719. [Google Scholar] [CrossRef] [PubMed]
- Green, N.G.; Jones, T.B. Numerical Determination of the Effective Moments of Non-Spherical Particles. J. Phys. D. Appl. Phys. 2006, 40, 78. [Google Scholar] [CrossRef]
- Xuan, X. Recent Advances in Direct Current Electrokinetic Manipulation of Particles for Microfluidic Applications. Electrophoresis 2019, 40, 2484–2513. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Hayes, M.A. Differential Biophysical Behaviors of Closely Related Strains of Salmonella. Front. Microbiol. 2020, 11, 524478. [Google Scholar] [CrossRef] [PubMed]
- Crowther, C.V.; Hilton, S.H.; Kemp, L.K.; Hayes, M.A. Isolation and Identification of Listeria Monocytogenes Utilizing DC Insulator-Based Dielectrophoresis. Anal. Chim. Acta 2019, 1068, 41–51. [Google Scholar] [CrossRef] [PubMed]
- Hilton, S.H.; Crowther, C.V.; McLaren, A.; Smithers, J.P.; Hayes, M.A. Biophysical Differentiation of Susceptibility and Chemical Differences in: Staphylococcus Aureus. Analyst 2020, 145, 2904–2914. [Google Scholar] [CrossRef]
- Braff, W.A.; Willner, D.; Hugenholtz, P.; Rabaey, K.; Buie, C.R. Dielectrophoresis-Based Discrimination of Bacteria at the Strain Level Based on Their Surface Properties. PLoS ONE 2013, 8, e76751. [Google Scholar] [CrossRef]
- Vaghef-Koodehi, A.; Ernst, O.D.; Lapizco-Encinas, B.H. Separation of Cells and Microparticles in Insulator-Based Electrokinetic Systems. Anal. Chem. 2023, 95, 1409–1418. [Google Scholar] [CrossRef]
- Zellner, P.; Shake, T.; Hosseini, Y.; Nakidde, D.; Riquelme, M.V.; Sahari, A.; Pruden, A.; Behkam, B.; Agah, M. 3D Insulator-Based Dielectrophoresis Using DC-Biased, AC Electric Fields for Selective Bacterial Trapping. Electrophoresis 2015, 36, 277–283. [Google Scholar] [CrossRef] [PubMed]
- Nakidde, D.; Zellner, P.; Alemi, M.M.; Shake, T.; Hosseini, Y.; Riquelme, M.V.; Pruden, A.; Agah, M. Three Dimensional Passivated-Electrode Insulator-Based Dielectrophoresis. Biomicrofluidics 2015, 9, 14125. [Google Scholar] [CrossRef] [PubMed]
- Church, C.; Zhu, J.J.; Wang, G.Y.; Tzeng, T.R.J.; Xuan, X.C. Electrokinetic Focusing and Filtration of Cells in a Serpentine Microchannel. Biomicrofluidics 2009, 3, 44109–44110. [Google Scholar] [CrossRef]
- Malekanfard, A.; Beladi-Behbahani, S.; Tzeng, T.-R.; Zhao, H.; Xuan, X. AC Insulator-Based Dielectrophoretic Focusing of Particles and Cells in an “Infinite” Microchannel. Anal. Chem. 2021, 93, 5947–5953. [Google Scholar] [CrossRef]
- Nihaar, N.; Ahamed, N.N.N.N.; Mendiola-Escobedo, C.A.; Ernst, O.D.; Perez-Gonzalez, V.H.; Lapizco-Encinas, B.H. Fine-Tuning the Characteristic of the Applied Potential To Improve AC-IEK Separations of Microparticles. Anal. Chem. 2023, 95, 9914–9923. [Google Scholar] [CrossRef]
- Ahamed NN, N.; Mendiola-Escobedo, C.A.; Perez-Gonzalez, V.H.; Lapizco-Encinas, B.H. Manipulating the Insulating Post Arrangement in DC-Biased AC-IEK Devices to Improve Microparticle Separations. Analyst 2024, 149, 2469–2479. [Google Scholar] [CrossRef]
- Nasir Ahamed, N.N.; Mendiola-Escobedo, C.A.; Perez-Gonzalez, V.H.; Lapizco-Encinas, B.H. Assessing the Discriminatory Capabilities of IEK Devices under DC and DC-Biased AC Stimulation Potentials. Micromachines 2023, 14, 2239. [Google Scholar] [CrossRef] [PubMed]
- Schnitzer, O.; Yariv, E. Nonlinear Electrophoresis at Arbitrary Field Strengths: Small-Dukhin-Number Analysis. Phys. Fluids 2014, 26, 122002. [Google Scholar] [CrossRef]
- Schnitzer, O.; Zeyde, R.; Yavneh, I.; Yariv, E. Weakly Nonlinear Electrophoresis of a Highly Charged Colloidal Particle. Phys. Fluids 2013, 25, 052004. [Google Scholar] [CrossRef]
- Cobos, R.; Khair, A.S. Nonlinear Electrophoretic Velocity of a Spherical Colloidal Particle. J. Fluid Mech. 2023, 968, A14. [Google Scholar] [CrossRef]
- Whitesides, G.M.; Ostuni, E.; Takayama, S.; Jiang, X.Y.; Ingber, D.E. Soft Lithography in Biology and Biochemistry. Annu. Rev. Biomed. Eng. 2002, 3, 335–373. [Google Scholar] [CrossRef]
- Effenhauser, C.S.; Manz, A.; Widmer, H.M. Glass Chips for High-Speed Capillary Electrophoresis Separations with Submicrometer Plate Heights. Anal. Chem. 1993, 65, 2637–2642. [Google Scholar] [CrossRef]
- Hua, T.; Zhang, X.; Tang, B.; Chang, C.; Liu, G.; Feng, L.; Yu, Y.; Zhang, D.; Hou, J. Tween-20 Transiently Changes the Surface Morphology of PK-15 Cells and Improves PCV2 Infection. BMC Vet. Res. 2018, 14, 138. [Google Scholar] [CrossRef]
- Seo, D.J.; Fujita, H.; Sakoda, A. Structural Changes of Lignocelluloses by a Nonionic Surfactant, Tween 20, and Their Effects on Cellulase Adsorption and Saccharification. Bioresour. Technol. 2011, 102, 9605–9612. [Google Scholar] [CrossRef]
- Saucedo-Espinosa, M.A.; Lapizco-Encinas, B.H. Refinement of Current Monitoring Methodology for Electroosmotic Flow Assessment under Low Ionic Strength Conditions. Biomicrofluidics 2016, 10, 033104. [Google Scholar] [CrossRef]
- Bentor, J.; Dort, H.; Chitrao, R.A.; Zhang, Y.; Xuan, X. Nonlinear Electrophoresis of Dielectric Particles in Newtonian Fluids. Electrophoresis 2023, 44, 938–946. [Google Scholar] [CrossRef]
- Breadmore, M.C. Electrokinetic and Hydrodynamic Injection: Making the Right Choice for Capillary Electrophoresis. Bioanalysis 2009, 1, 889–894. [Google Scholar] [CrossRef]
- Lalonde, A.; Romero-Creel, M.F.; Lapizco-Encinas, B.H. Assessment of Cell Viability after Manipulation with Insulator-Based Dielectrophoresis. Electrophoresis 2015, 36, 1479–1484. [Google Scholar] [CrossRef]
- Vaghef-Koodehi, A.; Lapizco-Encinas, B.H. Switching Separation Migration Order by Switching Electrokinetic Regime in Electrokinetic Microsystems. Biosens. 2024, 14, 119. [Google Scholar] [CrossRef] [PubMed]
- Hill, N.; Lapizco-Encinas, B.H. On the Use of Correction Factors for the Mathematical Modeling of Insulator Based Dielectrophoretic Devices. Electrophoresis 2019, 40, 2541–2552. [Google Scholar] [CrossRef] [PubMed]
- Gong, M.; Wehmeyer, K.R.; Stalcup, A.M.; Limbach, P.A.; Heineman, W.R. Study of Injection Bias in a Simple Hydrodynamic Injection in Microchip CE. Electrophoresis 2007, 28, 1564–1571. [Google Scholar] [CrossRef] [PubMed]
- Gallo-Villanueva, R.C.; Sano, M.B.; Lapizco-Encinas, B.H.; Davalos, R.V. Joule Heating Effects on Particle Immobilization in Insulator-Based Dielectrophoretic Devices. Electrophoresis 2014, 35, 352–361. [Google Scholar] [CrossRef] [PubMed]
- Neter, J.; Wasserman, W.; Kutner, M.H. Applied Linear Regression Models; Richard D Irwin, Inc.: Homewood, Illinois, USA, 2004. [Google Scholar]
Cell ID | Dimensions (μm) | (mV) | × 10−8 (m2V−1s−1) | × 10−18 (m4V−3s−1) |
---|---|---|---|---|
E. coli (ATCC 11775) | 3.2 ± 0.3 long 1.1 ± 0.2 wide | −25.3 ± 2.1 1 | −1.97 ± 0.1 1 | −2.1 ± 0.1 1,2 |
B. subtilis (ATCC 6051) | 7.7 ± 1.1 long 1.8 ± 0.3 wide | −30.0 ± 5.8 1 | −2.34 ± 0.4 1 | −17.2 ± 1.9 1,2 |
B. cereus (ATCC 14579) | 4.8 ± 0.5 long 1.5 ± 0.2 wide | −46.1 ± 3.1 1 | −3.50 ± 0.2 1 | −3.9 ± 0.1 1,2 |
S. cerevisiae (ATCC 9080) | 5.8 ± 0.5 diameter | −33.1 ± 4.8 1 | −2.58 ± 0.4 1 | −24.1 ± 4.1 1,2 |
S. cerevisiae (ATCC 9763) | 7.0 ± 0.7 diameter | −29.1 ± 3.7 1 | −2.26 ± 0.3 1 | −9.0 ± 0.1 1,2 |
Step | Run Time (s) | Applied Voltage (V) in Each Reservoir | |||
---|---|---|---|---|---|
A | B | C | D | ||
Loading (DC) | 10 | 500 | 300 | 0 | 500 |
Gating (DC) | 5 | 1000 | 1000 | 1000 | 0 |
Injection (DC) | 5 | 200 | 500 | 200 | 0 |
Separation (AC + DC bias) | 700 | 200 | ) @ 0.4 Hz | 200 | 0 |
Separation ID and Description | Cell IDs | Rs | Predicted tR,p (s) | Experimental tR,e (s) | Deviation of tR,p vs. tR,e (%) |
---|---|---|---|---|---|
1 Separation of cells from different domains | E. coli (ATCC 11775) | 3.58 | 252.1 ± 4.1 1 | 297.0 ± 5.0 | 15.1 ± 1.3 1 |
S. cerevisiae (ATCC 9080) | 401.8 ± 4.6 1 | 489.3 ± 15.9 | 17.8 ± 0.9 1 | ||
2 Separation of cells from same domain and different species | B. subtilis (ATCC 6051) | 4.19 | 343.9 ± 7.6 1 | 330.3 ± 9.5 | −4.1 ± 0.3 1 |
B. cereus (ATCC 14579) | 674.4 ± 14.9 1 | 634.0 ± 32.7 | −6.4 ± 2.3 1 | ||
3 Separation of cells from same domain, same species and different strains | S. cerevisiae (ATCC 9763) | 1.54 | 301.6 ± 6.5 1 | 342.7 ± 10.5 | 12.0 ± 1.8 1 |
S. cerevisiae (ATCC 9080) | 401.8 ± 4.6 1 | 456.0 ± 7.3 | 11.9 ± 1.0 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nasir Ahamed, N.N.; Mendiola-Escobedo, C.A.; Perez-Gonzalez, V.H.; Lapizco-Encinas, B.H. Development of a DC-Biased AC-Stimulated Microfluidic Device for the Electrokinetic Separation of Bacterial and Yeast Cells. Biosensors 2024, 14, 237. https://doi.org/10.3390/bios14050237
Nasir Ahamed NN, Mendiola-Escobedo CA, Perez-Gonzalez VH, Lapizco-Encinas BH. Development of a DC-Biased AC-Stimulated Microfluidic Device for the Electrokinetic Separation of Bacterial and Yeast Cells. Biosensors. 2024; 14(5):237. https://doi.org/10.3390/bios14050237
Chicago/Turabian StyleNasir Ahamed, Nuzhet Nihaar, Carlos A. Mendiola-Escobedo, Victor H. Perez-Gonzalez, and Blanca H. Lapizco-Encinas. 2024. "Development of a DC-Biased AC-Stimulated Microfluidic Device for the Electrokinetic Separation of Bacterial and Yeast Cells" Biosensors 14, no. 5: 237. https://doi.org/10.3390/bios14050237
APA StyleNasir Ahamed, N. N., Mendiola-Escobedo, C. A., Perez-Gonzalez, V. H., & Lapizco-Encinas, B. H. (2024). Development of a DC-Biased AC-Stimulated Microfluidic Device for the Electrokinetic Separation of Bacterial and Yeast Cells. Biosensors, 14(5), 237. https://doi.org/10.3390/bios14050237