Multidrug-Resistant Klebsiella pneumoniae Causing Severe Infections in the Neuro-ICU
Abstract
:1. Introduction
2. Results
2.1. Patients and Bacterial Strains
2.2. Susceptibility to Antimicrobials
2.3. Beta-Lactamase Genes and Integrons
2.4. Virulence Genes
2.5. Sequence Types and Capsular Types
2.6. Phylogenetic Analysis
2.7. Whole-Genome Sequencing
3. Discussion
4. Materials and Methods
4.1. Bioethical Requirements and Patients
4.2. Bacterial Isolates and Growing
4.3. Antimicrobial Susceptibility
4.4. Detection of Antimicrobial Resistance Genes
4.5. Detection of Virulence Genes and Capsular Type Identification
4.6. Multilocus Sequence Typing
4.7. Phylogenetic Analysis
4.8. Whole-Genome Sequencing
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Effah, C.Y.; Sun, T.; Liu, S.; Wu, Y. Klebsiella pneumoniae: An increasing threat to public health. Ann. Clin. Microbiol. Antimicrob. 2020, 19, 1–9. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, Z.; Sun, L.; Wang, Z.; Sun, L.; Xu, J.; Zeng, L.; Sun, T. Clinical Observation and Prognostic Analysis of Patients With Klebsiella pneumoniae Bloodstream Infection. Front. Cell. Infect. Microbiol. 2020, 10, 577244. [Google Scholar] [CrossRef]
- Ershova, K.; Savin, I.; Kurdyumova, N.; Wong, D.; Danilov, G.; Shifrin, M.; Alexandrova, I.; Sokolova, E.; Fursova, N.; Zelman, V.; et al. Implementing an infection control and prevention program decreases the incidence of healthcare-associated infections and antibiotic resistance in a Russian neuro-ICU. Antimicrob. Resist. Infect. Control. 2018, 7, 94. [Google Scholar] [CrossRef]
- Lum, P.N.; Woo, P.C.Y.; Wong, S.S.; Yuen, K.-Y. Leukocytoclastic vasculitis complicating Klebsiella pneumoniae bacteremia. Diagn. Microbiol. Infect. Dis. 2000, 37, 275–277. [Google Scholar] [CrossRef]
- Lloret, P.; Redondo, P.; Molano, E. Klebsiella pneumoniae and leukocytoclastic vasculitis. Lancet 2002, 360, 1062. [Google Scholar] [CrossRef]
- Huang, H.Y.; Wu, Y.-H.; Kuo, C.F. Klebsiella pneumoniaesepsis with unusual cutaneous presentation of generalized pustulosis. Clin. Exp. Dermatol. 2013, 38, 626–629. [Google Scholar] [CrossRef]
- Wyres, K.L.; Wick, R.R.; Judd, L.M.; Froumine, R.; Tokolyi, A.; Gorrie, C.L.; Lam, M.M.C.; Duchêne, S.; Jenney, A.; Holt, K. Distinct evolutionary dynamics of horizontal gene transfer in drug resistant and virulent clones of Klebsiella pneumoniae. PLoS Genet. 2019, 15, e1008114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Domany, R.A.; Awadalla, O.A.; Shabana, S.A.; El-Dardir, M.A.; Emara, M. Analysis of the Correlation Between Antibiotic Resistance Patterns and Virulence Determinants in Pathogenic Klebsiella pneumoniae Isolates from Egypt. Microb. Drug Resist. 2021, 27, 727–739. [Google Scholar] [CrossRef]
- Lan, P.; Jiang, Y.; Zhou, J.; Yu, Y. A global perspective on the convergence of hypervirulence and carbapenem resistance in Klebsiella pneumoniae. J. Glob. Antimicrob. Resist. 2021, 25, 26–34. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.-L.; Ko, W.-C.; Cheng, K.-C.; Lee, C.-C.; Lai, C.-C.; Chuang, Y.-C. Comparison of prevalence of virulence factors for Klebsiella pneumoniae liver abscesses between isolates with capsular K1/K2 and non-K1/K2 serotypes. Diagn. Microbiol. Infect. Dis. 2008, 62, 1–6. [Google Scholar] [CrossRef]
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.-J.; Zheng, G.-H.; Qian, L.-Y.; Qsman, R.A.; Li, G.-G.; Zhang, G.-J. Longitudinal Analysis of Risk Factors for Clinical Outcomes of Enterobacteriaceae Meningitis/Encephalitis in Post-Neurosurgical Patients: A Comparative Cohort Study During 2014–2019. Infect. Drug Resist. 2020, 13, 2161–2170. [Google Scholar] [CrossRef]
- Yang, W.; Wu, X.; Li, Z.; Yuan, Q.; Wu, G.; Yu, J.; Wu, X.; Du, Z.; Hu, J.; Zhou, L. Trends of Intra-Cranial Bacterial Infection in Patients Requiring Emergency Neurosurgery. Surg. Infect. 2020, 21, 677–683. [Google Scholar] [CrossRef] [PubMed]
- Jin, K.W.; Kim, E.; Kim, H.; Bae, S.H. Klebsiella Endophthalmitis as Retinal Vasculitis with Prostatic Abscess. Optom. Vis. Sci. 2015, 92, e158–e160. [Google Scholar] [CrossRef]
- Castan, P.; Maigne, G.; Boutemy, J.; Silva, N.M.; De Boysson, H.; Aouba, A.; Audemard-Verger, A. Vascularite à IgA satellite d’une pneumopathie abcédée à Klebsiella pneumoniae IgA vasculitis secondary to Klebsiella pneumoniae infection. Rev. Mal. Respir. 2020, 37, 417–421. [Google Scholar] [CrossRef]
- Izdebski, R.; Baraniak, A.; Żabicka, D.; Machulska, M.; Urbanowicz, P.; Fiett, J.; Literacka, E.; Bojarska, K.; Kozińska, A.; Zieniuk, B.; et al. Enterobacteriaceae producing OXA-48-like carbapenemases in Poland, 2013–January 2017. J. Antimicrob. Chemother. 2017, 73, 620–625. [Google Scholar] [CrossRef]
- Muggeo, A.; Guillard, T.; Klein, F.; Reffuveille, F.; François, C.; Babosan, A.; Bajolet, O.; Bertrand, X.; de Champs, C. Spread of Klebsiella pneumoniae ST395 non-susceptible to carbapenems and resistant to fluoroquinolones in North-Eastern France. J. Glob. Antimicrob. Resist. 2018, 13, 98–103. [Google Scholar] [CrossRef] [PubMed]
- Maida, C.M.; Bonura, C.; Geraci, D.M.; Graziano, G.; Carattoli, A.; Rizzo, A.; Torregrossa, M.V.; Vecchio, D.; Giuffrè, M. Outbreak of ST395 KPC-Producing Klebsiella pneumoniae in a Neonatal Intensive Care Unit in Palermo, Italy. Infect. Control. Hosp. Epidemiol. 2018, 39, 496–498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuptsov, N.; Kornienko, M.; Gorodnichev, R.; Danilov, D.; Malakhova, M.; Parfenova, T.; Makarenko, G.; Shitikov, E.; Ilina, E. Efficacy of commercial bacteriophage products against ESKAPE pathogens. Bull. Russ. St. Med. Univer. 2020, 3, 18–24. [Google Scholar] [CrossRef]
- Fursova, N.K.; Astashkin, E.I.; Gabrielyan, N.I.; Novikova, T.S.; Fedyukina, G.N.; Kubanova, M.K.; Esenova, N.M.; Sharapchenko, S.O.; Volozhantsev, N.V. Emergence of Five Genetic Lines ST395NDM-1, ST13OXA-48, ST3346OXA-48, ST39CTX-M-14, and Novel ST3551OXA-48 of Multidrug-Resistant Clinical Klebsiella pneumoniae in Russia. Microb. Drug Resist. 2020, 26, 924–933. [Google Scholar] [CrossRef]
- Shankar, C.; Jacob, J.J.; Vasudevan, K.; Biswas, R.; Manesh, A.; Sethuvel, D.P.M.; Varughese, S.; Biswas, I.; Veeraraghavan, B. Emergence of Multidrug Resistant Hypervirulent ST23 Klebsiella pneumoniae: Multidrug Resistant Plasmid Acquisition Drives Evolution. Front. Cell. Infect. Microbiol. 2020, 10, 575289. [Google Scholar] [CrossRef] [PubMed]
- Baron, S.A.; Pascale, L.-M.; Million, M.; Briantais, A.; Durand, J.-M.; Hadjadj, L.; Rolain, J.-M. Whole genome sequencing to decipher the virulence phenotype of hypervirulent Klebsiella pneumoniae responsible for liver abscess, Marseille, France. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 1073–1077. [Google Scholar] [CrossRef]
- Su, S.; Li, C.; Zhao, Y.; Yu, L.; Wang, Y.; Wang, Y.; Bao, M.; Fu, Y.; Zhang, J.; Zhang, X. Outbreak of KPC-2–Producing Klebsiella pneumoniae ST76 Isolates in an Intensive Care Unit and Neurosurgery Unit. Microb. Drug Resist. 2020, 26, 1009–1018. [Google Scholar] [CrossRef]
- Liao, C.-H.; Huang, Y.T.; Chang, C.Y.; Hsu, H.S.; Hsueh, P.-R. Capsular serotypes and multilocus sequence types of bacteremic Klebsiella pneumoniae isolates associated with different types of infections. Eur. J. Clin. Microbiol. Infect. Dis. 2013, 33, 365–369. [Google Scholar] [CrossRef] [PubMed]
- Lev, A.I.; Astashkin, E.I.; Kislichkina, A.A.; Solovieva, E.V.; Kombarova, T.I.; Korobova, O.V.; Ershova, O.N.; Alexandrova, I.A.; Malikov, V.E.; Bogun, A.G.; et al. Comparative analysis of Klebsiella pneumoniae strains isolated in 2012–2016 that differ by antibiotic resistance genes and virulence genes profiles. Pathog. Glob. Health 2018, 112, 142–151. [Google Scholar] [CrossRef] [PubMed]
- Piccirilli, A.; Perilli, M.; Piccirilli, V.; Segatore, B.; Amicosante, G.; Maccacaro, L.; Bazaj, A.; Naso, L.; Cascio, G.L.; Cornaglia, G. Molecular characterization of carbapenem-resistant Klebsiella pneumoniae ST14 and ST512 causing bloodstream infections in ICU and surgery wards of a tertiary university hospital of Verona (northern Italy): Co-production of KPC-3, OXA-48, and CTX-M-15 β-lactamases. Diagn. Microbiol. Infect. Dis. 2020, 96, 114968. [Google Scholar] [CrossRef]
- Galani, I.; Karaiskos, I.; Angelidis, E.; Papoutsaki, V.; Galani, L.; Souli, M.; Antoniadou, A.; Giamarellou, H. Emergence of ceftazidime-avibactam resistance through distinct genomic adaptations in KPC-2-producing Klebsiella pneumoniae of sequence type 39 during treatment. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 219–224. [Google Scholar] [CrossRef]
- Surleac, M.; Barbu, I.C.; Paraschiv, S.; Popa, L.I.; Gheorghe, I.; Marutescu, L.; Popa, M.; Sarbu, I.; Talapan, D.; Nita, M.; et al. Whole genome sequencing snapshot of multi-drug resistant Klebsiella pneumoniae strains from hospitals and receiving wastewater treatment plants in Southern Romania. PLoS ONE 2020, 15, e0228079. [Google Scholar] [CrossRef] [Green Version]
- Shen, P.; Berglund, B.; Chen, Y.; Zhou, Y.; Xiao, T.; Xiao, Y.; Zhou, K. Hypervirulence Markers Among Non-ST11 Strains of Carbapenem- and Multidrug-Resistant Klebsiella pneumoniae Isolated From Patients With Bloodstream Infections. Front. Microbiol. 2020, 11, 1199. [Google Scholar] [CrossRef]
- Xie, S.; Fu, S.; Li, M.; Guo, Z.; Zhu, X.; Ren, J.; Hu, F. Microbiological Characteristics of Carbapenem-Resistant Enterobacteriaceae Clinical Isolates Collected from County Hospitals. Infect. Drug Resist. 2020, 13, 1163–1169. [Google Scholar] [CrossRef] [Green Version]
- Lin, Z.-W.; Zheng, J.-X.; Bai, B.; Xu, G.-J.; Lin, F.-J.; Chen, Z.; Sun, X.; Qu, D.; Yu, Z.-J.; Deng, Q.-W. Characteristics of Hypervirulent Klebsiella pneumoniae: Does Low Expression of rmpA Contribute to the Absence of Hypervirulence? Front. Microbiol. 2020, 11, 436. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, T.; Chen, L.; Du, H. Virulence Factors in Hypervirulent Klebsiella pneumoniae. Front. Microbiol. 2021, 12, 642484. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Zhou, J.-W.; Qiu, C.-N.; Wang, M.-M.; Wang, X.-J.; Ruan, Z.; Fan, J.-Z.; Qiong, C.; Jia-Wei, Z.; Chun-Ning, Q.; et al. Antimicrobial susceptibility and microbiological and epidemiological characteristics of hypermucoviscous Klebsiella pneumoniae strains in a tertiary hospital in Hangzhou, China. J. Glob. Antimicrob. Resist. 2018, 15, 61–64. [Google Scholar] [CrossRef]
- Nava, R.G.; Oliveira-Silva, M.; Nakamura-Silva, R.; Pitondo-Silva, A.; Vespero, E.C. New sequence type in multidrug-resistant Klebsiella pneumoniae harboring the blaNDM-1-encoding gene in Brazil. Int. J. Infect. Dis. 2019, 79, 101–103. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.-C.; Fang, C.-T.; Lee, C.-Z.; Shun, C.-T.; Wang, J.-T. Genomic Heterogeneity in Klebsiella pneumoniae Strains Is Associated with Primary Pyogenic Liver Abscess and Metastatic Infection. J. Infect. Dis. 2005, 192, 117–128. [Google Scholar] [CrossRef] [Green Version]
- Kovács, K.; Nyul, A.; Mestyán, G.; Melegh, S.; Fenyvesi, H.; Jakab, G.; Szabó, H.; Jánvári, L.; Damjanova, I.; Tóth, Á. Emergence and interhospital spread of OXA-48-producing Klebsiella pneumoniae ST395 clone in Western Hungary. Infect. Dis. 2016, 49, 231–233. [Google Scholar] [CrossRef]
- Alekseeva, E.A.; Brusnigina, N.F.; Solntsev, A.L.; Gordinskaya, A.N. The molecular typing of clinical isolates Klebsiella pneumoniae producing beta-lactamases of extended specter of action. Klin. Lab. Diagn. 2017, 62, 699–704. [Google Scholar]
- Wu, W.; Feng, Y.; Tang, G.; Qiao, F.; McNally, A.; Zong, Z. NDM Metallo-β-Lactamases and Their Bacterial Producers in Health Care Settings. Clin. Microbiol. Rev. 2019, 32, e00115-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arena, F.; Di Pilato, V.; Vannetti, F.; Fabbri, L.; Antonelli, A.; Coppi, M.; Pupillo, R.; Macchi, C.; Rossolini, G.M. Population structure of KPC carbapenemase-producing Klebsiella pneumoniae in a long-term acute-care rehabilitation facility: Identification of a new lineage of clonal group 101, associated with local hyperendemicity. Microb. Genom. 2020, 6, e000308. [Google Scholar] [CrossRef] [PubMed]
- Peirano, G.; Chen, L.; Kreiswirth, B.N.; Pitout, J.D.D. Emerging Antimicrobial-Resistant High-Risk Klebsiella pneumoniae Clones ST307 and ST147. Antimicrob. Agents Chemother. 2020, 64, e01148-20. [Google Scholar] [CrossRef] [PubMed]
- Skachkova, T.; Shipulina, O.; Shipulin, G.; Shelenkov, A.; Yanushevich, Y.; Mikhaylova, Y.; Zamyatin, M.; Gusarov, V.; Petrova, N.; Lashenkova, N.; et al. Characterization of genetic diversity of the Klebsiella pneumoniae strains in a Moscow tertiary care center using next-generation sequencing. Clin. Microbiol. Antimicrob. Chemother. 2019, 21. [Google Scholar] [CrossRef]
- Lee, C.-R.; Lee, J.H.; Park, K.S.; Kim, Y.B.; Jeong, B.C.; Lee, S.H. Global Dissemination of Carbapenemase-Producing Klebsiella pneumoniae: Epidemiology, Genetic Context, Treatment Options, and Detection Methods. Front. Microbiol. 2016, 7, 895. [Google Scholar] [CrossRef] [Green Version]
- Azim, N.S.A.; Nofal, M.Y.; Alharbi, M.A.; Al-Zaban, M.I.; Somily, A. Molecular-diversity, Prevalence and Antibiotic Susceptibility of Pathogenic Klebsiella pneumoniae under Saudi Condition. Pak. J. Biol. Sci. 2019, 22, 174–179. [Google Scholar] [CrossRef] [Green Version]
- Ishii, A.; Shigemura, K.; Kitagawa, K.; Harada, M.; Kan, Y.; Hayashi, F.; Osawa, K.; Kuntaman, K.; Shirakawa, T.; Fujisawa, M. Cross-Resistance and the Mechanisms of Cephalosporin-Resistant Bacteria in Urinary Tract Infections Isolated in Indonesia. Curr. Microbiol. 2021, 78, 1771–1777. [Google Scholar] [CrossRef] [PubMed]
- Roch, M.; Sierra, R.; Sands, K.; Martins, W.M.; Schrenzel, J.; Walsh, T.R.; Gales, A.C.; Andrey, D.O. Vertical and horizontal dissemination of an IncC plasmid harbouring rmtB 16S rRNA methylase gene, conferring resistance to plazomicin, among invasive ST258 and ST16 KPC-producing Klebsiella pneumoniae. J. Glob. Antimicrob. Resist. 2021, 24, 183–189. [Google Scholar] [CrossRef]
- Hernández, M.; López-Urrutia, L.; Abad, D.; Serna, M.D.F.; Ocampo-Sosa, A.; Eiros, J. First Report of an Extensively Drug-Resistant ST23 Klebsiella pneumoniae of Capsular Serotype K1 Co-Producing CTX-M-15, OXA-48 and ArmA in Spain. Antibiotics 2021, 10, 157. [Google Scholar] [CrossRef] [PubMed]
- Liao, W.; De Wang, L.; Li, D.; Du, F.-L.; Long, D.; Liu, Y.; Ng, O.; Zhang, W. High Prevalence of 16s rRNA Methylase Genes Among Carbapenem-Resistant Hypervirulent Klebsiella pneumoniae Isolates in a Chinese Tertiary Hospital. Microb. Drug Resist. 2021, 27, 44–52. [Google Scholar] [CrossRef]
- Nakamura-Silva, R.; Oliveira-Silva, M.; Furlan, J.P.R.; Stehling, E.G.; Miranda, C.E.S.; Pitondo-Silva, A. Characterization of multidrug-resistant and virulent Klebsiella pneumoniae strains belonging to the high-risk clonal group 258 (CG258) isolated from inpatients in northeastern Brazil. Arch. Microbiol. 2021, 203, 4351–4359. [Google Scholar] [CrossRef]
- Lam, M.M.C.; Wick, R.R.; Wyres, K.L.; Gorrie, C.L.; Judd, L.M.; Jenney, A.W.J.; Brisse, S.; Holt, K.E. Genetic diversity, mobilisation and spread of the yersiniabactin-encoding mobile element ICEKp in Klebsiella pneumoniae populations. Microb. Genom. 2018, 4, e000196. [Google Scholar] [CrossRef]
- Rodríguez-Navarro, J.; Miró, E.; Brown-Jaque, M.; Hurtado, J.C.; Moreno, A.; Muniesa, M.; González-López, J.J.; Vila, J.; Espinal, P.; Navarro, F. Comparison of Commensal and Clinical Isolates for Diversity of Plasmids in Escherichia coli and Klebsiella pneumoniae. Antimicrob. Agents Chemother. 2020, 64, e02064-19. [Google Scholar] [CrossRef]
- Shifrin, M.; Kurdumova, N.; Danilov, G.; Ershova, O.; Savin, I.; Alexandrova, I.; Sokolova, E.; Tabasaranskiy, T. Electronic patient records system as a monitoring tool. Stud. Heal. Technol. Inform. 2015, 210, 236–238. [Google Scholar]
- Eckert, C.; Gautier, V.; Arlet, G. DNA sequence analysis of the genetic environment of various blaCTX-M genes. J. Antimicrob. Chemother. 2005, 57, 14–23. [Google Scholar] [CrossRef]
- Edelstein, M.; Pimkin, M.; Palagin, I.; Stratchounski, L. Prevalence and Molecular Epidemiology of CTX-MExtended-Spectrum β-Lactamase-Producing Escherichia coli and Klebsiella pneumoniae in RussianHospitals. Antimicrob. Agents Chemother. 2003, 47, 3724–3732. [Google Scholar] [CrossRef] [Green Version]
- Priamchuk, S.D.; Fursova, N.K.; Abaev, I.; Kovalev, I.N.; Shishkova, A.N.; Pecherskikh, I.E.; Korobova, O.V.; Astashkin, I.E.; Pachkunov, D.M.; Kruglov, A.N.; et al. Genetic determinants of antibacterial resistance among nosocomial Escherichia coli, Klebsiella spp., and Enterobacter spp. isolates collected in Russia within 2003–2007. Antibiot. Khimioter. 2010, 55, 3–10. [Google Scholar] [PubMed]
- Poirel, L.; Bonnin, R.A.; Nordmann, P. Genetic Features of the Widespread Plasmid Coding for the Carbapenemase OXA-48. Antimicrob. Agents Chemother. 2011, 56, 559–562. [Google Scholar] [CrossRef] [Green Version]
- Rasheed, J.K.; Biddle, J.W.; Anderson, K.F.; Washer, L.; Chenoweth, C.; Perrin, J.; Newton, D.W.; Patel, J.B. Detection of the Klebsiella pneumoniae Carbapenemase Type 2 Carbapenem-Hydrolyzing Enzyme in Clinical Isolates of Citrobacter freundii and K. oxytoca Carrying a Common Plasmid. J. Clin. Microbiol. 2008, 46, 2066–2069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hujer, K.M.; Hujer, A.M.; Hulten, E.A.; Bajaksouzian, S.; Adams, J.M.; Donskey, C.J.; Ecker, D.J.; Massire, C.; Eshoo, M.W.; Sampath, R.; et al. Analysis of Antibiotic Resistance Genes in Multidrug-Resistant Acinetobacter sp. Isolates from Military and Civilian Patients Treated at the Walter Reed Army Medical Center. Antimicrob. Agents Chemother. 2006, 50, 4114–4123. [Google Scholar] [CrossRef] [Green Version]
- Martins, A.F.; Zavascki, A.P.; Gaspareto, P.B.; Barth, A.L. Dissemination of Pseudomonas aeruginosa Producing SPM-1-like and IMP-1-like Metallo-β-lactamases in Hospitals from Southern Brazil. Infection 2007, 35, 457–460. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Chen, Y.; Jia, X.; Luo, Y.; Song, Q.; Zhao, W.; Wang, Y.; Liu, H.; Zheng, D.; Xia, Y.; et al. Dissemination and characterization of NDM-1-producing Acinetobacter pittii in an intensive care unit in China. Clin. Microbiol. Infect. 2012, 18, E506–E513. [Google Scholar] [CrossRef] [Green Version]
- Machado, E.; Cantόn, R.; Baquero, F.; Galán, J.-C.; Rollán, A.; Peixe, L.; Coque, T.M. Integron Content of Extended-Spectrum-β-Lactamase-Producing Escherichia coli Strains over 12 Years in a Single Hospital in Madrid, Spain. Antimicrob. Agents Chemother. 2005, 49, 1823–1829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nassrf, X.; Honoré, N.; Vasselon, T.; Cole, S.T.; Sansonetti, P.J. Positive control of colanic acid synthesis in Escherichia coli by rmpA and rmpB, two virulence-plasmid genes of Kiebsiella pneumoniae. Mol. Microbiol. 1989, 3, 1349–1359. [Google Scholar] [CrossRef] [PubMed]
- Regué, M.; Hita, B.; Piqué, N.; Izquierdo, L.; Merino, S.; Fresno, S.; Benedí, V.J.; Tomás, J.M. A Gene, uge, Is Essential for Klebsiella pneumoniae Virulence. Infect. Immun. 2004, 72, 54–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Izquierdo, L.; Coderch, N.; Piqué, N.; Bedini, E.; Corsaro, M.M.; Merino, S.; Fresno, S.; Tomás, J.M.; Regué, M. The Klebsiella pneumoniae wabG Gene: Role inBiosynthesis of the Core Lipopolysaccharide andVirulence. J. Bacteriol. 2003, 185, 7213–7221. [Google Scholar] [CrossRef] [Green Version]
- Brisse, S.; Passet, V.; Haugaard, A.B.; Babosan, A.; Kassis-Chikhani, N.; Struve, C.; Decré, D. wzi Gene Sequencing, a Rapid Method for Determination of Capsular Type for Klebsiella Strains. J. Clin. Microbiol. 2013, 51, 4073–4078. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Patient | Neurosurgery Disease | Infection | Antimicrobial Treatment | Outcome |
---|---|---|---|---|
Group A—patients with a pronounced systemic inflammatory response | ||||
A | Hemorrhagic stroke. | Meningitis, abscess, and hemorrhage in the right frontal lobe of the brain, encephalitis, ventriculitis, epidural empyema, erythematous maculae and vesicles | Meropenem Tigecycline | Discharged |
D | Multiple cerebral aneurysms, subarachnoid hemorrhage into the ventricular system. | Systemic inflammatory response, sepsis, septic shock, intracerebral hematoma | Cefoperazone-sulbactam Meropenem Colistin (inhalation) | Died |
F | Rupture of aneurysm of the anterior cerebral artery, subarachnoid hemorrhage, ventriculoperitoneal shunt. | Meningitis, long-term (4 weeks) eradication of Klebsiella from cerebrospinal fluid, erythematous macules and vesicles | Meropenem Colistin (intrathecal) | Discharged |
I | Multiple cerebral aneurysms, subarachnoid hemorrhage into the ventricular system, endovascular occlusion of the basilar artery aneurysm, basilar artery thrombosis. | Multiple focal hemorrhages of supra- and subtentorial localization, erythematous macules and vesicles | Meropenem Tigecycline Amikacin | Discharged |
J | Odontoid process fracture of the C2 vertebra, dorsal fixation of the C1–C2 vertebrae. | Severe inflammatory reaction, increased markers of systemic inflammation, 50 mL of pus with blood was removed from the surgical wound. | Tigecycline, Meropenem, Ceftazidime-avibactam, Bacteriophage | Discharged |
K | Complex defect of the base of the skull, spontaneous nasal liquorrhea, ventriculoperitoneal shunt. | Meningitis, thrombus in the pulmonary artery trunk, encephalitis, ventriculitis. | Meropenem Ciprofloxacin Amikacin (intrathecal) | Discharged |
L | Mature teratoma of the chiasmal-sellar region, antitumor chemotherapy, removal of the teratoma | Meningitis, encephalitis, sepsis, severe septic reaction. | Meropenem | Discharged |
M | Open penetrating traumatic brain injury, cerebral contusion, cerebral edema, subarachnoid hemorrhage. | Pneumonia with middle level markers of systemic inflammatory response. | Meropenem, Tigecycline Amikacin Colistin (inhalation) | Discharged |
N | Large partially thrombosed cerebellar artery aneurysm, subarachnoid parenchymal hemorrhage, aneurysm clipping surgery. | Sepsis, septic reaction with markers of inflammation | Doripenem Amikacin Sulperason | Discharged |
P | Gunshot wound to the skull and brain, Intraventricular hemorrhage, subdural hematoma of the frontal-parietal-temporal region | Klebsiella meningoencephalitis had a long persistent course, subarachnoid hemorrhage; markers of systemic inflammation were increased. | Meropenem Colistin | Discharged |
Q | Closed traumatic brain injury, brain contusion with multiple hemorrhagic foci, subarachnoid hemorrhage, and occipital bone fracture. | Severe pneumonia, urinary infection, systemic inflammatory response, a rapid increase in inflammatory markers. | Tigecycline Meropenem | Died |
R | Anaplastic ependymoma, tumor removal. | Fever, increased leukocytosis, markers of systemic inflammatory response, sepsis, meningitis | Meropenem, Ciprofloxacin | Discharged |
S | Aneurysm of the right internal carotid artery, subarachnoid hemorrhage, aneurysm climax, ventricular drainage. | Meningoencephalitis, infection of the ventriculoperitoneal shunt, purulent masses in the lateral ventricles of the brain, pansinusitis. | Doripenem Colistin (inhalation) Colistin (intrathecal) | Died |
Group B—patients without severe manifestations of systemic infections | ||||
B | Rupture of middle cerebral artery aneurysms. | Urinary infection with increased markers of inflammation, fever. | Meropenem Tigecycline | Discharged |
C | Ruptured aneurysm of the internal carotid artery. | Pansinusitis, no markers of inflammation. | Cefoperazone-sulbactam Meropenem | Discharged |
E | Pilocytic astrocytoma, tumor biopsy, ventriculoperitoneal shunt. | Urinary infection without systemic markers of inflammation. | Amoxicillin-clavulanic acid | Discharged |
G | Multiple metastases of kidney cancer in the ventricles of the brain, tumor removal. | Pneumonia with low markers of systemic inflammatory response. Died of an underlying disease. | Cefoperazone-sulbactam Meropenem | Died |
H | Craniopharengioma, tumor removal. | Pneumonia without systemic markers of inflammation. | Meropenem Tigecycline Amikacin (intrathecal) | Discharged |
O | Closed traumatic brain injury, subdural hematoma, cerebral edema, subarachnoid hemorrhage. | There was no septic reaction; markers of inflammation did not increase. | Meropenem, Tigecycline Colistin (inhalation) | Discharged |
T | Arteriovenous malformation of cerebral vessels. | Tracheobronchitis, bacteriuria, leukocyturia. | Sulfamethoxazole/ Trimethoprim, Meropenem | Discharged |
Strain | Date | Source | Patient | Resistance Phenotype | Resistance Category |
---|---|---|---|---|---|
Group A—strains associated with a pronounced systemic inflammatory response | |||||
B-548/18 | 02-Apr-2018 | trachea | D # | BLACEI, TET, QNL, CM, AMI, SUL, NIT | XDR |
B-784/18 | 03-May-2018 | urine | D # | BLACEI, TET, QNL, CM, AMI, SUL, NIT | XDR |
B-1154/18 | 03-May-2018 | blood | D # | BLACE, TET, QNL, CM, AMI, SUL, NIT | XDR |
B-1396/18-2 | 25-May-2018 | blood | J | BLACEI, TET, QNL, CM, AMI, SUL, NIT | XDR |
B-1618/18 | 27-Aug-2018 | urine | Q # | BLACE, TET, QNL, CM, AMI, SUL, NIT | XDR |
B-2035K/18-2 | 23-Jul-2018 | CSF | P | BLACE, TET, QNL, CM, AMI, SUL, NIT | XDR |
B-2062/18 | 25-Jul-2018 | CSF | P | BLACE, TET, QNL, CM, AMI, SUL, NIT | XDR |
B-2086/18 | 27-Jul-2018 | CSF | P | BLACE, TET, QNL, CM, AMI, SUL, NIT | XDR |
B-968/18-1 | 30-May-2018 | trachea | M | BLACE, TET, QNL, CM, SUL, NIT | XDR |
B-1120K/18 | 20-Jun-2018 | trachea | M | BLACE, TET, QNL, CM, SUL, NIT | XDR |
B-2625/18 | 12-Dec-2018 | trachea | S # | BLACEI, TET, QNL, CM, AMI, NIT | XDR |
B-14/19 | 09-Jan-2019 | CSF | S # | BLACEI, TET, QNL, CM, AMI, NIT | XDR |
B-21/19 | 19-Jan-2019 | trachea | S # | BLACEI, TET, QNL, CM, AMI, NIT | XDR |
B-1398/18-1 | 25-May-2018 | blood | L | BLAC, TET, CM, SUL | MDR |
B-1406/18-1 | 25-May-2018 | CSF | L | BLAC, TET, CM, SUL | MDR |
B-1412/18-1 | 25-May-2018 | blood | L | BLAC, TET, CM, SUL | MDR |
B-1230/18-1 | 10-May-2018 | CSF | K | BLA, CM, NIT | MDR |
B-849/18-2 | 11-May-2018 | trachea | K | BLA, CM, NIT | MDR |
B-1207/18 | 03-Jul-2018 | blood | N | BLAC | R |
B-1636/18 | 30-Aug-2018 | urine | R | BLA | R |
B-2523/18 | 30-Aug-2018 | blood | R | BLA | R |
B-3002K/17 * | 30-Oct-2017 | CSF | A | BLACE, TET, QNL, CM, AMI, SUL, NIT | XDR |
B-3060K/17 * | 03-Nov-2017 | CSF | A | BLACE, TET, QNL, CM, AMI, SUL, NIT | XDR |
B-2016K/17 * | 14-Nov-2017 | BA | A | BLACE, TET, QNL, CM, AMI, SUL, NIT | XDR |
B-3299/17 * | 24-Nov-2017 | CSF | A | BLACE, TET, QNL, CM, AMI, SUL, NIT | XDR |
B-1040/18-1 * | 09-Jun-2018 | trachea | I | BLAE, QNL, CM, AMI, SUL, NIT | XDR |
B-792/18 * | 03-May-2018 | trachea | I | BLAE, QNL, CM, NIT | MDR |
B-853/18-1 * | 14-May-2018 | trachea | I | BLACEI, QNL, NIT | MDR |
B-1214/18-2 * | 08-May-2018 | CSF | F | BLAC, TET, QNL, SUL | MDR |
Group B—strains not associated with severe manifestations of systemic infections | |||||
B-789/18-1 | 03-May-2018 | urine | E | BLACE, TET, QNL, AMI, SUL, NIT | XDR |
B-851/18-1 | 14-May-2018 | urine | E | BLACE, TET, QNL, AMI, SUL, NIT | XDR |
B-790/18-1 | 03-May-2018 | trachea | G # | BLACEI, QNL, CM, AMI, SUL, NIT | XDR |
B-823/18-1 | 07-May-2018 | trachea | G # | BLACEI, QNL, CM, AMI, SUL, NIT | XDR |
B-702/18 | 20-Apr-2018 | IS | C | BLACEI, TET, QNL, AMI, SUL, NIT | XDR |
B-771/18 | 28-Apr-2018 | urine | B | BLAEI, QNL, CM, AMI, SUL, NIT | XDR |
B-102/19 | 21-Jan-2019 | urine | T | BLACEI, TET, QNL, CM, AMI, SUL, NIT | XDR |
B-543/18 | 02-Apr-2018 | CSF | H | BLACEI, TET, QNL, CM, AMI, SUL, NIT | XDR |
B-587/18 | 09-Apr-2018 | trachea | H | BLACEI, QNL, CM, AMI, SUL, NIT | XDR |
B-775/18-1 | 03-May-2018 | trachea | H | BLAE, QNL, CM, AMI, SUL, NIT | XDR |
B-691/18-4 | 19-Apr-2018 | trachea | H | BLACE, QNL, CM, NIT | MDR |
B-1363/18-1 | 24-Jul-2018 | trachea | O | BLACEI, QNL, AMI, NIT | MDR |
Strain | Beta-Lactamase Genes | Int | Virulence Genes | ST | Capsular Type |
---|---|---|---|---|---|
Group A—strains associated with a pronounced systemic inflammatory response | |||||
B-548/18 | blaSHV, blaCTX-M, blaTEM, blaOXA-48 | uge, wabG, kfu, fimH, allS | 14 | K2 | |
B-784/18 | blaSHV, blaCTX-M, blaTEM, blaOXA-48 | int1,2 | uge, wabG, kfu, fimH, allS | 14 | K2 |
B-1154/18 | blaSHV, blaCTX-M, blaTEM, blaOXA-48 | int1 | uge, wabG, kfu, fimH, allS | 14 | K2 |
B-1396/18-2 | blaSHV, blaCTX-M, blaTEM, blaOXA-48 | uge, wabG, fimH, allS | 2674 | K47 | |
B-1618/18 | blaSHV, blaCTX-M, blaTEM | rmpA, iroN, iroD, uge, wabG, fimH, allS | 268 | K20 | |
B-2035K/18-2 | blaSHV, blaCTX-M, blaTEM | int1 | wabG, fimH, allS | 23 | K57 |
B-2062/18 | blaSHV, blaCTX-M, blaTEM | wabG, fimH, allS | 23 | K57 | |
B-2086/18 | blaSHV, blaCTX-M, blaTEM | wabG, fimH, allS | 23 | K57 | |
B-968/18-1 | blaSHV, blaCTX-M, blaOXA-48 | rmpA, wabG, fimH, allS | 23 | K57 | |
B-1120K/18 | blaSHV, blaCTX-M, blaTEM, blaOXA-48 | rmpA, wabG, fimH, allS | 23 | K57 | |
B-2625/18 | blaSHV, blaCTX-M, blaTEM, blaOXA-48 | uge, wabG, fimH, allS | 39 | K23 | |
B-14/19 | blaSHV, blaCTX-M, blaTEM, blaOXA-48, blaKPC | uge, wabG, fimH, allS | 39 | K23 | |
B-21/19 | blaSHV, blaCTX-M, blaTEM, blaOXA-48 | uge, wabG, fimH, allS | 39 | K23 | |
B-1398/18-1 | blaSHV, blaCTX-M | uge, wabG, kfu, fimH, allS | 219 | KL125/114 | |
B-1406/18-1 | blaSHV, blaCTX-M | int1 | uge, wabG, kfu, fimH, allS | 219 | KL125/114 |
B-1412/18-1 | blaSHV, blaCTX-M | int1 | uge, wabG, kfu, fimH, allS | 219 | KL125/114 |
B-1230/18-1 | blaSHV | rmpA, iroN, iroD, wabG, fimH, allS | 218 | K57 | |
B-849/18-2 | blaSHV | rmpA, iroN, iroD, wabG, fimH, allS | 218 | K57 | |
B-1207/18 | blaSHV, blaCTX-M | rmpA, uge, wabG, fimH, allS | 76 | K23 | |
B-1636/18 | blaSHV | rmpA, iroN, iroD, uge, wabG, fimH, allS | 86 | K2 | |
B-2523/18 | blaSHV | rmpA, iroN, iroD, uge, wabG, fimH, allS | 86 | K2 | |
B-3002K/17 * | blaSHV, blaCTX-M, blaTEM | uge, wabG, fimH, allS | 395 | K2 | |
B-3060K/17 * | blaSHV, blaCTX-M, blaTEM | uge, wabG, fimH, allS | 395 | K2 | |
B-2016K/17 * | blaSHV, blaCTX-M, blaTEM | uge, wabG, fimH, allS | 395 | K2 | |
B-3299/17 * | blaSHV, blaCTX-M, blaTEM | uge, wabG, fimH, allS | 395 | K2 | |
B-1040/18-1 * | blaSHV, blaOXA-48 | uge, wabG, fimH, allS | 395 | K2 | |
B-792/18 * | blaSHV, blaOXA-48 | int1 | uge, wabG, fimH, allS | 395 | K2 |
B-853/18-1 * | blaSHV, blaOXA-48 | uge, wabG, fimH, allS | 395 | K2 | |
B-1214/18-2 * | blaSHV, blaCTX-M, blaTEM | uge, wabG, fimH, allS | 307 | KL102/149/155 | |
Group B—strains not associated with severe manifestations of systemic infections | |||||
B-789/18-1 | blaSHV, blaCTX-M, blaTEM | uge, wabG, fimH, allS | 307 | KL102/149/155 | |
B-851/18-1 | blaSHV, blaCTX-M, blaTEM | int1 | uge, wabG, fimH, allS | 307 | KL102/149/155 |
B-790/18-1 | blaSHV, blaOXA-48 | int1 | uge, wabG, fimH, allS | 395 | K2 |
B-823/18-1 | blaSHV, blaOXA-48 | uge, wabG, fimH, allS | 395 | K2 | |
B-702/18 | blaSHV, blaCTX-M, blaTEM, blaOXA-48 | uge, wabG, fimH, allS | 395 | K2 | |
B-771/18 | blaSHV, blaCTX-M, blaOXA-48 | int1 | uge, wabG, fimH, allS | 395 | K2 |
B-102/19 | blaSHV, blaOXA-48 | int1 | uge, wabG, fimH, allS | 395 | KL39 |
B-543/18 | blaSHV, blaOXA-48 | int1 | uge, wabG, fimH, allS | 395 | K2 |
B-587/18 | blaSHV, blaCTX-M, blaOXA-48 | uge, wabG, fimH, allS | 395 | K2 | |
B-775/18-1 | blaSHV, blaOXA-48 | uge, wabG, fimH, allS | 395 | K2 | |
B-691/18-4 | blaSHV, blaOXA-48 | uge, wabG, fimH, allS | 395 | K2 | |
B-1363/18-1 | blaSHV, blaCTX-M, blaTEM, blaNDM | uge, wabG, fimH, allS | 147 | K14/64 |
Isolate | B1396/18-2 | B1120K/18 | B14/19 | B1406/18-1 | B1230/18-1 | B1207/18 | B2523/18 | B1214/18-2 | B102/19 |
---|---|---|---|---|---|---|---|---|---|
SCPM-O’s ID | B-9325 | B-9326 | B-9136 | B;-9327 | B-9138 | B-9328 | B-9220 | B-9329 | B-9137 |
ST/CT | ST2674/K47 | ST23/K57 | ST39/K23 | ST219/K125 | ST218/K57 | ST76/K23 | ST86/K2 | ST307/K102 | ST395/K39 |
Source | blood | trachea | CSF | CSF | CSF | Blood | blood | CSF | urine |
Date | 25-May-2018 | 20-Jun-2018 | 09-Jan-2019 | 25-May-2018 | 10-May-2018 | 03-Jul-2018 | 30-Aug-2018 | 08-May-2018 | 21-Jan-2019 |
BioSample ID | SAMN18679914 | SAMN18679915 | SAMN17885212 | SAMN18679916 | SAMN17885214 | SAMN18679917 | SAMN18679918 | SAMN18679919 | SAMN17885213 |
Read Archive | SRR14194623 | SRR14194622 | SRR13695927 | SRR14194621 | SRR13695925 | SRR14194620 | SRR14194625 | SRR14194624 | SRR13695926 |
GenBank | JAGRZJ000000000 | JAGRZI000000000 | JAFFJK000000000 | JAGRZH000000000 | JAFFJI000000000 | JAGRZG000000000 | JAGRZF000000000 | JAGRZE000000000 | JAFFJJ000000000 |
GC-content, % | 56.76 | 57.07 | 56.76 | 57.26 | 57.29 | 56.9 | 57.39 | 57.38 | 57.24 |
Reads | 1,461,812 | 1,268,077 | 4,656,796 | 1,031,631 | 904,468 | 920,438 | 659,438 | 932,557 | 939,118 |
Contigs, n | 168 | 103 | 164 | 94 | 86 | 117 | 125 | 93 | 154 |
Genome, bp | 5,777,126 | 5,581,990 | 5,855,608 | 5,407,960 | 5,422,578 | 5,724,981 | 5,430,135 | 5,434,336 | 5,494,443 |
Coverage, × | 58 | 49 | 196 | 44 | 44 | 37 | 24.8 | 40 | 42 |
N50 value, bp | 128,340 | 136,532 | 247,851 | 219,102 | 126,261 | 162,973 | 71,482 | 179,463 | 106,056 |
Genes | 5812 | 5540 | 5845 | 5309 | 5121 | 5711 | 5326 | 5291 | 5535 |
Antimicrobial resistance genetic determinants | |||||||||
Beta-Lactams | blaSHV-182 blaTEM-1B blaCTX-M-15 blaOXA-1 blaOXA-48 | blaSHV-33 blaTEM-1Bbla CTX-M-15 | blaSHV-40 blaTEM-1B blaCTX-M-15 blaOXA-1 blaOXA-48 blaKPC-2 | blaSHV-26 blaCTX-M-15 | blaSHV-33 | blaSHV-59 blaCTX-M-15 | blaSHV-28 | blaSHV-28 blaTEM-1B blaCTX-M-15 blaOXA-1 | blaSHV-182, blaOXA-48 |
Aminoglycosides | ant(2”)-Ia aac(6’)-Ib-cr aadA1 | aph(6)-Id rmtB aph(3”)-Ib | ant(2′’)-Ia aac(6′)-Ib-cr aadA1 | aadA2 aph(3”)-Ib | aph(3’)-VIa aph(6)-Id aph(3′’)-Ib | aph(6)-Id aph(3”)-Ib | aac(6′)-Ib-cr aph(6)-Id aph(3”)-Ib | aadA5 armA | |
Fosfomycin | fosA | fosA | fosA | fosA | fosA | fosA | fosA | fosA | fosA |
Phenicols | catA1 catB3 | catA2 | catA1 catB3 | catA2 | catA3 | catB3 | catA1 | ||
Quinolones | aac(6’)-Ib-cr qnrS1 oqxA oqxB | qnrS1 qepA1 oqxA oqxB | qnrS1 aac(6’)-Ib-cr | qnrS1 oqxA oqxB | oqxA oqxB | aac(6′)-Ib-cr qnrB1 oqxA oqxB | |||
Sulfonamides | sul1 | sul2 | sul1 | sul1 sul2 | sul2 | sul1 | |||
Tetracyclines | tet | tet | tet | tet | tet | ||||
Trimethoprim | dfrA1 | dfrA12 | dfrA14 | dfrA17 dfrA1 | |||||
Macrolides | mph | ||||||||
Efflux | acr env fis mar oqx ram rar rob sdi sox | acr env fis mar oqx rar rob sdi sox | acr env fis mar oqx ram rar rob sdi sox | acr env fis mar oqx ram rar rob sdi sox | acr env fis mar oqx ram rar rob sdi sox | acr env fis mar oqx ram ram rob sdi sox | acr env fis mar oqx ram rar rob sdi sox | acr env fis mar oqx ram rar rob sdi sox | acr env fis mar oqx rar rob sdi sox |
Virulence genetic determinants (locuses) | |||||||||
Type 3 adhesin | mrk | mrk | mrk | mrk | mrk | mrk | mrk | mrk | mrk |
Yersiniabactin biosynthesis | irp | irp | irp | irp | irp | irp | irp | ||
Yersiniabactin transcriptional regulator | ybt | ybt | ybt | ybt | ybt | ybt | ybt | ||
Siderophore yersiniabactin receptor | fyu | fyu | fyu | fyu | fyu | fyu | |||
Aerobactin siderophore synthesis | iuc | iuc | iuc | iuc | iuc | ||||
Ferric aerobactin receptor | iut | iut | iut | iut | iut | iut | |||
Regulator of capsular polysaccharide synthesis | kvg | kvg | |||||||
Plasmids | IncFIB IncHI1B IncR | IncC IncFIA IncFII | IncFIB IncFII IncHI1B | IncFIB | IncM1 | IncFIB | IncHI1B | IncFIB | IncM2 IncR |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fursova, N.K.; Astashkin, E.I.; Ershova, O.N.; Aleksandrova, I.A.; Savin, I.A.; Novikova, T.S.; Fedyukina, G.N.; Kislichkina, A.A.; Fursov, M.V.; Kuzina, E.S.; et al. Multidrug-Resistant Klebsiella pneumoniae Causing Severe Infections in the Neuro-ICU. Antibiotics 2021, 10, 979. https://doi.org/10.3390/antibiotics10080979
Fursova NK, Astashkin EI, Ershova ON, Aleksandrova IA, Savin IA, Novikova TS, Fedyukina GN, Kislichkina AA, Fursov MV, Kuzina ES, et al. Multidrug-Resistant Klebsiella pneumoniae Causing Severe Infections in the Neuro-ICU. Antibiotics. 2021; 10(8):979. https://doi.org/10.3390/antibiotics10080979
Chicago/Turabian StyleFursova, Nadezhda K., Evgenii I. Astashkin, Olga N. Ershova, Irina A. Aleksandrova, Ivan A. Savin, Tatiana S. Novikova, Galina N. Fedyukina, Angelina A. Kislichkina, Mikhail V. Fursov, Ekaterina S. Kuzina, and et al. 2021. "Multidrug-Resistant Klebsiella pneumoniae Causing Severe Infections in the Neuro-ICU" Antibiotics 10, no. 8: 979. https://doi.org/10.3390/antibiotics10080979
APA StyleFursova, N. K., Astashkin, E. I., Ershova, O. N., Aleksandrova, I. A., Savin, I. A., Novikova, T. S., Fedyukina, G. N., Kislichkina, A. A., Fursov, M. V., Kuzina, E. S., Biketov, S. F., & Dyatlov, I. A. (2021). Multidrug-Resistant Klebsiella pneumoniae Causing Severe Infections in the Neuro-ICU. Antibiotics, 10(8), 979. https://doi.org/10.3390/antibiotics10080979