New Corrosion Inhibitors Based on Perylene Units in Epoxy Ester Resin Coatings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Compound I–IV
2.1.1. Synthesis of Compound I (C26H14N2O4; PR 179)
2.1.2. Synthesis of Perylene-3,4,9,10-tetracarboxylic Acid Salts
2.1.3. Synthesis of the Dimagnesium Salt of Perylene-3,4,9,10-tetracarboxylic Acid (C24H8O8Mg2; II-Mg)
2.1.4. Synthesis of the Dizinc Salt of Perylene-3,4,9,10-tetracarboxylic acid (C24H12O10Zn2; II-Zn)
2.1.5. Synthesis of 5,5′-(1,3,8,10-Tetraoxo-1,3,8,10-tetrahydroanthra[2,1,9-def:6,5,10-d′e′f′] diisoquinoline-2,9-diyl)bis(2-hydroxybenzoic acid) (C38H18N2O10; III)
2.1.6. Synthesis of N,N′-Bis[3,3′-(dimethylamino) propylamine]-3,4,9,10-perylenediimide (C34H32N4O4; IV)
2.2. Analytical Methods and Equipment
2.2.1. SEM
2.2.2. EDX Measurement
2.2.3. X-ray Diffraction
2.3. Characterization of the Pigment and Binder
2.3.1. Pigment Parameter Determination
2.3.2. Specification of the Binder for Coatings
2.4. Formulation and Preparation of the Organic Coatings
2.5. Corrosion Test Procedures
2.5.1. Accelerated Cyclic Corrosion Test in an Atmosphere of SO2 with Water Condensation (ISO 6988)
2.5.2. Accelerated Cyclic Corrosion Test in an Atmosphere of NaCl with Water Steam Condensation (ISO 9227)
2.5.3. Accelerated Cyclic Corrosion/Weather Resistance Test with Exposure to a Salt Electrolyte and UV Radiation
2.5.4. Evaluation of Results after Corrosion Tests
2.6. Potentiodynamic Polarization Studies
2.7. Mechanical Properties of the Paints
3. Results and Discussion
3.1. Synthesis and Characteristics of Compounds I–IV
3.2. Characterization of Pigments
3.3. SEM: Compound IV
3.4. EDX
3.5. FTIR
3.6. Pigment Specification
3.7. Accelerated Corrosion Tests in Atmosphere Containing SO2
3.8. Cyclic Corrosion/Weather Resistance Test with Exposure to a Salt Electrolyte and UV Radiation
3.9. Accelerated Corrosion Tests in a Salt Mist Atmosphere
3.10. Potentiodynamic Polarization Studies
3.11. Evaluation of Mechanical Tests
3.12. Assumed Mechanism of Action of the Perylene Acid Salts in the Organic Coatings
4. Conclusions
5. Patent
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zmozinski, A.V.; Peres, R.S.; Freiberger, K.; Ferreira, C.A.; Tamborim, S.M.M.; Azambuja, D.S. Zinc tannate and magnesium tannate as anticorrosion pigments in epoxy paint formulations. Progress Org. Coat. 2018, 21, 23–29. [Google Scholar] [CrossRef]
- Sørensen, P.A.; Kiil, S.; Dam-Johansen, K.; Weinell, C.E. Anticorrosive coatings: A review. J. Coat. Technol. Res. 2009, 6, 135–176. [Google Scholar] [CrossRef]
- Naderi, R.; Mahdavian, M.; Darvish, A. Electrochemical examining behavior of epoxy coating incorporating zinc−free phosphate−based anticorrosion pigment. Progress Organic Coatings 2013, 76, 302–306. [Google Scholar] [CrossRef]
- Benda, P.; Kalendová, A. Anticorrosion properties of pigments based on ferrite coated zinc particles. Phys. Procedia 2013, 44, 185–194. [Google Scholar] [CrossRef] [Green Version]
- Xue, Y.N.; Xue, X.Z.; Miao, M.; Liu, J.K. Mass preparation and anticorrosion mechanism of highly triple-effective corrosion inhibition performance for co-modified zinc phosphate-based pigments. Dyes Pigments 2019, 161, 489–499. [Google Scholar] [CrossRef]
- Griffiths, C.M.; Wint, N.; Williams, G.; McMurray, H.N. The contribution of Zn(II) and phosphate anions to the inhibition of organic coating cathodic disbondment on galvanised steel by zinc phosphate pigment. Corros. Sci. 2022, 198, 110111. [Google Scholar] [CrossRef]
- Darvish, A.; Naderi, R.; Attar, M.M. The impact of pigment volume concentration on the protective performance of polyurethane coating with second generation of phosphate based anticorrosion pigment. Progress Org. Coat. 2014, 77, 1768–1773. [Google Scholar] [CrossRef]
- Ghali, E.; Sastri, V.S.; Elboujdaini, M. Corrosion Prevention and Protection: Practical Solutions; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2007; ISBN 978-0-470-02402-7. [Google Scholar]
- Černý, L.; Němcová, J. Inhibitory Koroze Kovů; SNTL: Prague, Czech Republic, 1964. [Google Scholar]
- Miao, M.; Yuan, X.Y.; Wang, X.G.; Lu, Y.; Liu, J.K. One step self−heating synthesis and their excellent anticorrosion performance of zinc phosphate/benzotriazole composite pigments. Dyes Pigments 2017, 141, 74–82. [Google Scholar] [CrossRef]
- Ramezanzadeh, B.; Ghasemi, E.; Askari, F.; Mah, M. Synthesis and characterization of a new generation of inhibitive pigment based on zinc acetate/benzotriazole: Solution phase and coating phase studies. Dyes Pigments 2015, 122, 331–345. [Google Scholar] [CrossRef]
- Kreislová, K. Inhibitory koroze. Koroze Ochrana Mater. 1996, 40, 25–29. [Google Scholar]
- Cervová, J.; Hagarová, M. The impact of corrosion inhibitors on the effectiveness of metallic materials corrosion protection. Koroze Ochrana Mater. 2013, 56, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Eduok, U.; Faye, O.; Szpunar, J.; Khaled, M. CS2 mediated synthesis of corrosion−inhibiting mercaptobenzothiazole molecule for industrial zinc: Experimental studies and molecular dynamic simulations. J. Mol. Liquids 2021, 324, 115129. [Google Scholar] [CrossRef]
- Adams, R. Heubach keeps adding to its family of organic & inorganic pigments. Focus Pigments 2005, 10, 1–4. [Google Scholar]
- Zhang, T.; Zagranyarsk, I.Y.; Skabeev, A.; Müllen, K.; Li, C. Perylene pigments as alternatives to phthalocyanine and indanthrone blue. Dyes Pigments 2021, 196, 109780. [Google Scholar] [CrossRef]
- Ren, R.Y.; Yang, L.; Han, J.L.; Cheng, H.Y.; Ajibade, F.O.; Guadie, A.; Wang, H.C.; Liu, B.; Wang, A.J. Perylene pigment wastewater treatment by fenton−enhanced biological process. Environ. Res. 2020, 186, 109522. [Google Scholar] [CrossRef]
- Suzuki, E.M. Infrared spectra of North American automobile original finishes. X: Analysis of perylene pigments—In situ identification of Perylene Red Y (C.I. Pigment Red 224) and mica−based red pearlescent pigments. Forensic Chem. 2021, 25, 100350. [Google Scholar] [CrossRef]
- Kopřivová, P. Evaluation of Modified Developmental Types of Biodegradable Chelating Surfactants and Sequestering Agents. Master‘s Thesis, University of Pardubice, Pardubice, Czech Republic, 2015. [Google Scholar]
- Stohr, A.; Uschmann, H.J. Verfahren zur Herstellung von Pigment Rot 149. European Patent 2113012 B1, 28 August 2008. [Google Scholar]
- Schulz, G.R. Perylene Pigment Composition. U.S. Patent 006391104B1, 21 May 2002. [Google Scholar]
- Schulz, G.R.; Greene, M.J. Process For The Preparation Of Highly Chromatic Perylene Pigments. European Patent 1020496 A1, 19 July 2000. [Google Scholar]
- Henning, G.; Blaschka, P. N,N’-Dimethylperylene-3,4,9,10-tetracarbo xylic acid diimide pigments suitable for water-based paints. The synthesis of the PR 179 was done by the following above patents, but with miner modification. U.S. Patent 006099636A, 21 March 2000. [Google Scholar]
- Zhao, J.; Su, P.; Zhao, Y.; Li, M.; Yang, Y.; Yang, Q.; Li, C. Systematic morphology and phase control of Mg-ptcda coordination polymers by Ostwald ripening and self-templating. J. Mater. Chem. 2012, 22, 8470–8475. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, Y.; Su, P.; Jiang, Z.; Yang, Q.; Li, C. Preparation of Zn–Co–O mixed−metal oxides nanoparticles through a facile coordination polymer−based process. RSC Adv. 2013, 3, 4081–4085. [Google Scholar] [CrossRef]
- Maki, T.; Hashimot, H. Vat Dyes of Acenaphthene Series VI. Derivatives of Acenaphthene Violet1. Bull. Chem. Soc. Jpn. 1954, 27, 602–605. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.; Niu, F.; Li, P.; Wang, H.; Zhang, Z.; Meyer, G.J.; Hu, K. Visible Light Generation of a Microsecond Long-Lived Potent Reducing Agent. J. Am. Chem. Soc. 2022, 144, 7043–7047. [Google Scholar] [CrossRef]
- Franke, D.; Vos, M.; Antonietti, M.; Sommerdijk, N.; Faul, C. Induced Supramolecular Chirality in Nanostructured Materials: Ionic Self-Assembly of Perylene-Chiral Surfactant Complexes. Chem. Mater. 2006, 18, 1839–1847. [Google Scholar] [CrossRef]
- Hrdina, R.; Burgert, L.; Kalendová, A.; Alafid, F.; Panák, O.; Držková, M.; Kohl, M. Use of Salts of Perylenic Acid as Anticorrosive Substances. CZ308991B6, 29 September 2021. [Google Scholar]
- Chen, J.; Jiao, H.; Li, W.; Liao, D.; Zhou, H.; Yu, C. Real-Time Fluorescence Turn-On Detection of Alkaline PhosphataseActivity with a Novel Perylene Probe. Chem. Asian J. 2013, 8, 276–281. [Google Scholar] [CrossRef] [PubMed]
- Ma, T.; Li, C.; Shi, G. Optically Active Supramolecular Complex Formed by Ionic Self-Assembly of Cationic Perylenediimide Derivative and Adenosine Triphosphate. Langmuir 2008, 24, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Kohl, M.; Kalendová, A. Assessment of the impact of polyaniline salts on corrosion properties of organic coatings. Koroze Ochrana Mater. 2014, 58, 113–119. [Google Scholar] [CrossRef]
- Toshev, Y.; Mandova, V.; Boshkov, N.; Stoychev, D.; Petrov, P.; Tsvetkova, N.; Raichevski, G.; Tsvetanov, C.; Gabev, A.; Velev, R.; et al. Protective coating of zinc and zinc alloys for industrial applications. In Proceedings of the 4M 2006—Second International Conference on Multi-Material Micro Manufacture, Grenoble, France, 20–22 September 2006; pp. 323–326. [Google Scholar]
- Kouřil, M.; Novák, P.; Bojko, M. Limitations of the linear polarization method to determine stainless steel corrosion rate in concrete environment. Cement Concr. Compos. 2006, 28, 220–225. [Google Scholar] [CrossRef]
- Kalendová, A.; Veselý, D. Study of the anticorrosive efficiency of zincite and periclase-based core–shell pigments in organic coatings. Progress Org. Coat. 2009, 64, 5–19. [Google Scholar] [CrossRef]
- Millard, S.G.; Law, D.; Bungey, J.H.; Cairns, J. Environmental influences on linear polarisation corrosion rate measurement in reinforced concrete. NDT E Int. 2001, 34, 409–417. [Google Scholar] [CrossRef]
Compound | R-NH2 | Reaction Conditions |
---|---|---|
I | CH3-NH2 | Solvent: water Reaction temperature: 80 °C Reaction time: 4 h |
IV | Solvent: water Reaction temperature: 160 °C Reaction time: 23 h |
Compound | Name | Yield * (%) |
---|---|---|
I | 2,9-Dimethylanthra[2,1,9-def:6,5,10-d′e′f′]diisoquinoline-1,3,8,10(2H,9H)-tetraone (C26H14N2O4) | 95 |
IV | 2,9-bis(3-(Dimethylamino)propyl)anthra[2,1,9-def:6,5,10-d′e′f′]diisoquinoline-1,3,8,10(2H,9H)-tetraone (C34H32N4O4) | 85.3 |
Compound | R-NH2 | Reaction Conditions |
---|---|---|
III | Solvent: water Reaction temperature: 160 °C Reaction time: 23 h |
Compound | Name | Yield * (%) |
---|---|---|
III | 5,5′-(1,3,8,10-tetraoxo-1,3,8,10-tetrahydroanthra[2,1,9-def:6,5,10-d′e′f′]diisoquinoline-2,9-diyl)bis(2-hydroxybenzoic acid) (C38H18N2O10) | 88 |
Compound | MeCl2 | Reaction Conditions |
---|---|---|
II-Mg | MgCl2 | Solvent: water Reaction temperature: 90 °C Reaction time: 4 h |
II-Zn | ZnCl2 | Solvent: water Reaction temperature: 90 °C Reaction time: 4 h |
Compound | Name | Yield * (%) |
---|---|---|
II-Mg | Magnesium perylene-3,4,9,10-tetracarboxylate (C24H8O8Mg2) | 90.2 |
II-Zn | Zinc perylene-3,4,9,10-tetracarboxylate (C24H12O10Zn2) | 82.8 |
Pigment | Molecular Weight | Elemental Analysis | Metal Content |
---|---|---|---|
(g·mol−1) | (%) | (mg·kg−1) | |
Compound I, C26H14N2O4 | 418.4 | C: 73.96 H: 3.27 N: 6.73 | 0 |
Compound III, C38H18N2O10 | 662.57 | C: 67.04 H: 2.77 N: 4.21 | 0 |
Compound IV, C34H32N4O4 | 560.65 | C: 73.08 H: 5.80 N: 9.66 | 0 |
Compound II-Mg, C24H8O8Mg2 | 472.93 | C: 54.37 H: 2.78 Mg: 10.10 | Mg: 101,010 |
Compound II-Zn, C24H12O10Zn2 | 591.13 | C: 48.17 H: 2.13 Zn: 21.37 | Zn: 213,700 |
Pigment | Density | Oil Absorption | CPVC |
---|---|---|---|
(g/cm3) | (g/100 g) | (-) | |
C26H14N2O4 | 1.57 ± 0.02 | 65 | 47 |
C38H18N2O10 | 1.56 ± 0.02 | 64 | 48 |
C34H32N4O4 | 1.33 ± 0.02 | 65 | 52 |
C24H8O8Mg2 | 1.67 ± 0.02 | 68 | 45 |
C24H12O10Zn2 | 1.98 ± 0.02 | 67 | 41 |
C8H5N06-Zn | 2.60 ± 0.02 | 42 | 43 |
TiO2 | 4.12 ± 0.02 | 27 | 45 |
Pigment | PVC (%) | Blistering | Corrosion | ||
---|---|---|---|---|---|
Metal Base (dg) | In the Cut (dg) | In the Cut (mm) | Metal Base (%) | ||
C38H18N2O10 | 0.1 | 8 M | 6 D | 1.5–2 | 1 |
0.25 | 8 M | 6 MD | 1–1.5 | 0.3 | |
0.50 | 8 M | 6 MD | 1–1.5 | 0.3 | |
C34H32N4O4 | 0.1 | 8 M | 6 MD | 1–1.5 | 0.3 |
0.25 | 8 F | 8 M | 1–1.5 | 0.1 | |
0.50 | 8 F | 8 M | 1–1.5 | 0.1 | |
C24H8O8Mg2 | 0.1 | 8 M | 6 D | 1–1.5 | 3 |
0.25 | 8 F | 8 M | 1–1.5 | 0.1 | |
0.50 | 8 F | 8 M | 1–1.5 | 0.1 | |
C24H12O10Zn2 | 0.1 | 8 F | 8 M | 1–1.5 | 0.1 |
0.25 | 8 F | 8 M | 1–1.5 | 0.1 | |
0.50 | 8 M | 6 MD | 1–1.5 | 0.1 | |
C8H5N06-Zn | 0.1 | 8 M | 6 MD | 1–1.5 | 0.3 |
0.5 | 8 M | 6 MD | 1–1.5 | 0.3 | |
C26H14N2O4 | 1 | 8 M | 6 D | 1.5–2 | 3 |
TiO2 | 1.5 | 8 MD | 6 D | 1.5–2 | 3 |
Pigment | PVC (%) | Blistering | Corrosion | ||
---|---|---|---|---|---|
Metal Base (dg) | In the Cut (dg) | In the Cut (mm) | Metal Base (%) | ||
C38H18N2O10 | 0.1 | 8 M | 4 MD | 3–4 | 3 |
0.25 | 8 MD | 4 MD | 3–4 | 10 | |
0.50 | 8 D | 4 MD | 3–4 | 16 | |
C34H32N4O4 | 0.1 | 8 F | 4 M | 2–3 | 0.3 |
0.25 | - | 4 M | 3–4 | 0.3 | |
0.50 | - | 4 M | 3–4 | 0.3 | |
C24H8O8Mg2 | 0.1 | 8 F | 6 M | 2–3 | 1 |
0.25 | 8 M | 6 M | 2–3 | 0.3 | |
0.50 | 8 M | 6 M | 2–3 | 0.3 | |
C24H12O10Zn2 | 0.1 | 8 MD | 6 M | 3–4 | 3 |
0.25 | 8 MD | 6 M | 3–4 | 3 | |
0.50 | 8 D | 6 MD | 3–4 | 16 | |
C8H5N06-Zn | 0.1 | - | 6 M | 2–3 | 0.3 |
0.5 | 6 F | 4 M | 2–3 | 0.3 | |
C26H14N2O4 | 1 | 4 F | 2 MD | 5–6 | 0.3 |
TiO2 | 1.5 | 4 M | 6 M | 3–4 | 0.3 |
Pigment | PVC (%) | Blistering | Corrosion | ||
---|---|---|---|---|---|
Metal Base (dg) | In the Cut (dg) | In the Cut (mm) | Metal Base (%) | ||
C38H18N2O10 | 0.1 | 6 M | 2 MD | 4–5 | 1 |
0.25 | 6 M | 2 MD | 4–5 | 1 | |
0.50 | 6 M | 2 M | 2–3 | 1 | |
C34H32N4O4 | 0.1 | 6 M | 2 D | 4–5 | 0.3 |
0.25 | 6 MD | 2 MD | 4–5 | 0.3 | |
0.50 | 6 M | 2 M | 2–3 | 0.3 | |
C24H8O8Mg2 | 0.1 | 8 M | 4 M | 2–3 | 0.3 |
0.25 | 8 M | 2 M | 2–3 | 0.1 | |
0.50 | 8 M | 2 M | 2–3 | 0.1 | |
C24H12O10Zn2 | 0.1 | 6 MD | 2 MD | 3–4 | 0.3 |
0.25 | 6 MD | 2 MD | 3–4 | 0.3 | |
0.50 | 6 MD | 2 M | 3–4 | 0.3 | |
C8H5N06-Zn | 0.1 | 6 M | 2 M | 3–4 | 0.3 |
0.5 | 6 MD | 2 M | 2–3 | 0.3 | |
C26H14N2O4 | 1 | 6 MD | 2 D | 5–6 | 1 |
TiO2 | 1.5 | 6 MD | 2 D | 7–8 | 3 |
Pigment | PVC (%) | Ecorr (mV) | Icorr (µA) | βa (mV) | βc (mV) | Rp (Ω) | υcorr (mm year−1) |
---|---|---|---|---|---|---|---|
C38H18N2O10 | 0.1 | −193 | 0.4 × 10−3 | 16.1 | 19.9 | 9.78 × 106 | 53.1 × 10−7 |
0.25 | −123 | 0.1 × 10−3 | 40.2 | 32.7 | 7.62 × 106 | 19.9 × 10−7 | |
0.50 | −246 | 0.2 × 10−3 | 16.6 | 19.0 | 9.65 × 106 | 30.5 × 10−7 | |
C34H32N4O4 | 0.1 | −330 | 0.8 × 10−4 | 22.6 | 23.0 | 5.76 × 107 | 11.5 × 10−7 |
0.25 | −555 | 0.7 × 10−4 | 42.2 | 42.0 | 6.75 × 107 | 19.2 × 10−7 | |
0.50 | −368 | 0.7 × 10−4 | 21.8 | 22.9 | 4.68 × 107 | 12.8 × 10−7 | |
C24H8O8Mg2 | 0.1 | −451 | 0.3 × 10−4 | 28.9 | 24.3 | 2.21 × 108 | 36.9 × 10−8 |
0.25 | −354 | 0.1 × 10−4 | 35.2 | 33.6 | 6.86 × 108 | 14.8 × 10−8 | |
0.50 | −440 | 0.1 × 10−4 | 33.6 | 39.0 | 6.44 × 108 | 14.1 × 10−8 | |
C24H12O10Zn2 | 0.1 | −415 | 0.2 × 10−4 | 20.0 | 15.1 | 1.66 × 108 | 28.5 × 10−8 |
0.25 | −563 | 0.1 × 10−4 | 26.7 | 14.7 | 3.75 × 108 | 16.2 × 10−8 | |
0.50 | −486 | 0.2 × 10−4 | 22.6 | 23.8 | 3.68 × 108 | 16.8 × 10−8 | |
C8H5N06−Zn | 0.1 | −145 | 0.4 × 10−3 | 38.6 | 30.2 | 5.44 × 106 | 93.2 × 10−7 |
0.5 | −428 | 0.5 × 10−3 | 42.7 | 31.3 | 1.51 × 107 | 76.4 × 10−7 | |
C26H14N2O4 | 1 | −331 | 0.1 × 10−2 | 32.1 | 25.5 | 5.54 × 106 | 14.8 × 10−6 |
TiO2 | 1.5 | −357 | 0.2 × 10−2 | 33.8 | 33.2 | 3.41 × 105 | 29.5 × 10−5 |
Pigment | PVC (%) | Ecorr (mV) | Icorr (µA) | βa (mV) | βc (mV) | Rp (Ω) | υcorr (mm year−1) |
---|---|---|---|---|---|---|---|
C38H18N2O10 | 0.1 | −490 | 0.5 × 10−1 | 46.2 | 52.8 | 2.20 × 105 | 69.4 × 10−5 |
0.25 | −523 | 0.4 × 10−1 | 45.8 | 50.6 | 3.14 × 105 | 58.2 × 10−5 | |
0.50 | −563 | 0.2 × 10−1 | 43.3 | 46.1 | 5.52 × 105 | 25.1 × 10−5 | |
C34H32N4O4 | 0.1 | −489 | 0.5 × 10−1 | 42.6 | 39.6 | 2.28 × 105 | 73.3 × 10−5 |
0.25 | −491 | 0.4 × 10−1 | 43.2 | 45.7 | 3.62 × 105 | 69.2 × 10−5 | |
0.50 | −499 | 0.3 × 10−1 | 42.8 | 43.6 | 4.12 × 105 | 48.9 × 10−5 | |
C24H8O8Mg2 | 0.1 | −522 | 0.9 × 10−2 | 39.6 | 39.1 | 1.22 × 106 | 10.3 × 10−6 |
0.25 | −513 | 0.1 × 10−3 | 26.2 | 24.8 | 3.65 × 107 | 17.8 × 10−7 | |
0.50 | −518 | 0.1 × 10−3 | 21.3 | 16.5 | 2.95 × 107 | 17.9 × 10−7 | |
C24H12O10Zn2 | 0.1 | −487 | 0.3 × 10−1 | 43.6 | 44.1 | 2.02 × 105 | 35.9 × 10−5 |
0.25 | −496 | 0.1 × 10−2 | 42.1 | 43.8 | 6.17 × 106 | 11.6 × 10−6 | |
0.50 | −498 | 0.2 × 10−2 | 40.8 | 41.6 | 2.21 × 106 | 23.2 × 10−6 | |
C8H5N06−Zn | 0.1 | −189 | 0.1 × 10−2 | 38.2 | 36.3 | 3.63 × 106 | 11.6 × 10−6 |
0.5 | −398 | 0.4 × 10−2 | 38.3 | 34.8 | 1.34 × 106 | 46.8 × 10−6 | |
C26H14N2O4 | 1 | −470 | 0.9 × 10−2 | 42.3 | 37.9 | 9.65 × 104 | 13.3 × 10−4 |
TiO2 | 1.5 | −401 | 0.9 × 10−1 | 30.5 | 41.2 | 4.12 × 103 | 10.3 × 10−3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kohl, M.; Alafid, F.; Bouška, M.; Krejčová, A.; Raycha, Y.; Kalendová, A.; Hrdina, R.; Burgert, L. New Corrosion Inhibitors Based on Perylene Units in Epoxy Ester Resin Coatings. Coatings 2022, 12, 923. https://doi.org/10.3390/coatings12070923
Kohl M, Alafid F, Bouška M, Krejčová A, Raycha Y, Kalendová A, Hrdina R, Burgert L. New Corrosion Inhibitors Based on Perylene Units in Epoxy Ester Resin Coatings. Coatings. 2022; 12(7):923. https://doi.org/10.3390/coatings12070923
Chicago/Turabian StyleKohl, Miroslav, Fouzy Alafid, Marek Bouška, Anna Krejčová, Yash Raycha, Andréa Kalendová, Radim Hrdina, and Ladislav Burgert. 2022. "New Corrosion Inhibitors Based on Perylene Units in Epoxy Ester Resin Coatings" Coatings 12, no. 7: 923. https://doi.org/10.3390/coatings12070923
APA StyleKohl, M., Alafid, F., Bouška, M., Krejčová, A., Raycha, Y., Kalendová, A., Hrdina, R., & Burgert, L. (2022). New Corrosion Inhibitors Based on Perylene Units in Epoxy Ester Resin Coatings. Coatings, 12(7), 923. https://doi.org/10.3390/coatings12070923