Studies on Preparation and Characterization of Aluminum Nitride-Coated Carbon Fibers and Thermal Conductivity of Epoxy Matrix Composites
Abstract
:1. Introduction
2. Experimental
2.1. Sample Preparation
2.2. Composites Preparation
2.3. Characterization
3. Results and Discussion
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Alok, A.; Alok, S. Development of a heat conduction model and investigation on thermal conductivity enhancement of AlN/epoxy composites. Procedia Eng. 2013, 51, 573–578. [Google Scholar]
- Tomizawa, Y.; Sasaki, K.; Kuroda, A.; Takeda, R.; Kaito, Y. Experimental and numerical study on phase change material (PCM) for thermal management of mobile devices. Appl. Therm. Eng. 2016, 98, 320–329. [Google Scholar] [CrossRef]
- Alshaer, W.G.; Nada, S.A.; Rady, M.A.; Barrio, E.P.D.; Sommier, A. Thermal management of electronic devices using carbon foam and PCM/nano-composite. Int. J. Therm. Sci. 2015, 89, 79–86. [Google Scholar] [CrossRef]
- Wu, S.Y.; Huang, Y.L.; Ma, C.C.M.; Yuen, S.M.; Teng, C.C.; Yang, S.Y. Mechanical, thermal and electrical properties of aluminum nitride/polyetherimide composites. Compos. Part A 2011, 42, 1573–1583. [Google Scholar] [CrossRef]
- Kim, J.H.; Kim, K.H.; Park, M.S.; Bae, T.S.; Lee, Y.S. Cu nanoparticle-embedded carbon foams with improved compressive strength and thermal conductivity. Carbon Lett. 2016, 17, 65–69. [Google Scholar] [CrossRef]
- Bogner, M.; Hofer, A.; Benstetter, G.; Cruber, H.; Fu, R.Y.Q. Differential 3ω method for measuring thermal conductivity of AlN and Si3N4 thin films. Thin Solid Films 2015, 591, 267–270. [Google Scholar] [CrossRef]
- Zhou, Y.; Hyuga, H.; Kusano, D.; Yoshizawa, Y.; Ohji, T.; Hirao, K. Development of high-thermal-conductivity silicon nitride ceramics. J. Asian Ceram. Soc. 2015, 3, 221–229. [Google Scholar] [CrossRef]
- Kim, H.H.; Han, W.; Lee, H.S.; Min, B.G.; Kim, B.J. Preparation and characterization of silicon nitride coated carbon fibers and effects on thermal properties in composites. Mater. Sci. Eng. B 2015, 200, 132–138. [Google Scholar] [CrossRef]
- Kim, K.J.; Kim, Y.W.; Lim, K.Y.; Nishimura, T.; Narimatsu, E. Electrical and thermal properties of SiC-AlN ceramics without sintering additives. J. Eur. Ceram. Soc. 2015, 35, 2715–2721. [Google Scholar] [CrossRef]
- Chen, Y.C.; Lee, S.C.; Liu, T.H.; Chang, C.C. Thermal conductivity of boron nitride nanoribbons: Anisotropic effects and boundary scattering. Int. J. Therm. Sci. 2015, 94, 72–78. [Google Scholar] [CrossRef]
- Kim, K.; Kim, J. Vertical filler alignment of boron nitride/epoxy composite for thermal conductivity enhancement via external magnetic field. Int. J. Therm. Sci. 2016, 100, 29–36. [Google Scholar] [CrossRef]
- Yao, Y.; Zeng, X.; Guo, K.; Sun, R.; Xu, J.B. The effect of interfacial state on the thermal conductivity of functionalized Al2O3 filled glass fibers reinforced polymer composites. Compos. Part A 2015, 69, 49–55. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, D.; Ouyang, X.; Wang, Y.; Liu, G. Effect of one-dimensional materials on the thermal conductivity of Al2O3/glass composite. J. Alloy. Compd. 2016, 667, 23–28. [Google Scholar] [CrossRef]
- Kim, B.J.; Bae, K.M.; An, K.H.; Park, S.J. Studies on the surface properties and thermal behaviors of modified Al2O3 nanofibers-reinforced epoxy composites. Bull. Korean Chem. Soc. 2012, 33, 3258–3264. [Google Scholar] [CrossRef]
- Li, M.; Wan, Y.; Gao, Z.; Xiong, G.; Wang, X.; Wan, C.; Luo, H. Preparation and properties of polyamide 6 thermal conductive composites reinforced with fibers. Mater. Des. 2013, 51, 257–261. [Google Scholar] [CrossRef]
- Zhou, S.; Chen, Y.; Zou, H.; Liang, M. Thermally conductive composites obtained by flake graphite filling immiscible polyamide 6/polycarbonate blends. Thermochim. Acta 2013, 566, 84–91. [Google Scholar] [CrossRef]
- Rounaghi, S.A.; Eshghi, H.; Kiani Rashid, A.R.; Vahdati Khaki, J.; Samadi Khoshkhoo, S.; Scudino, S.; Eckert, J. Synthesis of nanostructured AlN by solid state reaction of Al and diaminomaleonitrile. J. Solid State Chem. 2013, 198, 542–547. [Google Scholar] [CrossRef]
- Wang, Q.; Cui, W.; Ge, Y.; Chen, K.; Xie, Z. Carbothermal synthesis of spherical AlN granules: Effects of synthesis parameters and Y2O3 additive. Ceram. Int. 2015, 41, 6715–6721. [Google Scholar] [CrossRef]
- Wu, H.M.; Peng, Y.W. Investigation of the growth and properties of single-crystalline aluminum nitride nanowires. Ceram. Int. 2015, 41, 4847–4851. [Google Scholar] [CrossRef]
- Gao, Z.; Wan, Y.; Xiong, G.; Cuo, R.; Luo, H. Synthesis of aluminum nitride nanoparticles by a facile urea glass route and influence of urea/metal molar ratio. Appl. Surf. Sci. 2013, 280, 42–49. [Google Scholar] [CrossRef]
- Chen, F.; Ji, X.; Zhang, Q. Enhanced field emission properties from AlN nanowires synthesized on conductive graphite substrate. J. Alloy. Compd. 2015, 646, 879–884. [Google Scholar] [CrossRef]
- Radwan, M.; Bahgat, M.; El-Geassy, A.A. Formation of aluminum nitride whisker by direct nitridation. J. Eur. Ceram. Soc. 2006, 26, 2485–2488. [Google Scholar] [CrossRef]
- Wang, H.; Yang, Q.; Jia, G.; Lei, R.; Wang, S.; Xu, S. Influence of yttrium dopant on the synthesis of ultrafine AlN powders by CRN route from a sol-gel low temperature combustion precursor. Adv. Power Technol. 2014, 25, 450–456. [Google Scholar] [CrossRef]
- Shi, Z.; Radwan, M.; Kirihara, S.; Miyamoto, Y.; Jin, Z. Formation and evolution of quasi-aligned AlN nanowhiskers by combustion synthesis. J. Alloy. Compd. 2009, 47, 360–365. [Google Scholar] [CrossRef]
- Xia, H.; Zhang, X.; Shi, Z.; Zhao, C.; Li, Y.; Wang, J.; Qiao, G. Mechanical and thermal properties of reduced graphene oxide reinforced aluminum nitride ceramic composites. Mater. Sci. Eng. A 2015, 639, 29–36. [Google Scholar] [CrossRef]
- Aghdaie, A.; Haratizadeh, H.; Mousavi, S.H.; Jafari Mohammadi, S.A.; Oliveira, P.W. Effect of doping on structural and luminescence properties of AlN nanowires. Ceram. Int. 2015, 41, 2917–2922. [Google Scholar] [CrossRef]
- Paul, R.K.; Lee, K.H.; Lee, B.T.; Song, H.Y. Formation of AlN nanowires using Al powder. Mater. Chem. Phys. 2008, 112, 562–565. [Google Scholar] [CrossRef]
- Li, C. Strong cathodoluminescence of AlN nanowires synthesized by aluminum and nitrogen. Mater. Lett. 2014, 115, 212–214. [Google Scholar] [CrossRef]
- Kim, H.W.; Kebede, M.A.; Kim, H.S. Temperature-controlled growth and photoluminescence of AlN nanowires. Appl. Surf. Sci. 2009, 255, 7221–7225. [Google Scholar] [CrossRef]
- Chen, F.; Ji, X.; Zhang, Q. Radial AlN nanotips on carbon fibers as flexible electron emitters. Carbon 2015, 81, 124–131. [Google Scholar] [CrossRef]
- Kim, D.K.; An, K.H.; Bang, Y.H.; Lee, K.K.; Oh, S.Y.; Kim, B.J. Effects of electrochemical oxidation of carbon fibers on interfacial shear strength using a micro-bond method. Carbon Lett. 2016, 19, 32–39. [Google Scholar] [CrossRef]
- Raunija, T.S.K.; Supriya, N. Thermo-electrical properties of randomly oriented carbon/carbon composite. Carbon Lett. 2017, 22, 25–35. [Google Scholar]
- Wonzniak, M.; Danelska, A.; Keta, D.; Szafran, M. New anhydrous aluminum nitride dispersions as potential heat-transferring media. Powder Technol. 2013, 235, 717–722. [Google Scholar] [CrossRef]
- Wozniak, M.; Danelska, A.; Rultkowski, P.; Kata, D. Thermal conductivity of highly loaded aluminium nitride-poly(propylene glycol) dispersions. Int. J. Heat Mass Transf. 2013, 65, 592–598. [Google Scholar] [CrossRef]
- Zyla, G.; Fal, J. Experimental studies on viscosity, thermal and electrical conductivity of aluminum nitride-ethylene glycol (AlN-EG) nanofludis. Thermochim. Acta 2016, 637, 11–16. [Google Scholar] [CrossRef]
- Kim, S.; Song, Y.; Wright, J.; Heller, M.J. Graphene bi- and trilayers produced by a novel aqueous arc discharge process. Carbon 2016, 102, 339–345. [Google Scholar] [CrossRef]
- Mashhadi, M.; Mearaji, F.; Tanizifar, M. The effects of NH4Cl addition and particle size of Al powder in AlN whiskers synthesis by direct nitridation. Int. J. Refract. Met. Hard Mater. 2014, 46, 181–187. [Google Scholar] [CrossRef]
- Radwan, M.; Bahgat, M. A modified direct nitridation method for formation of nano-AlN whiskers. J. Mater. Process. Technol. 2007, 181, 99–108. [Google Scholar] [CrossRef]
- Niu, J.; Suzuki, S.; Yi, X.; Akiyama, T. Fabrication of AlN particles and whiskers via salt-assisted combustion synthesis. Ceram. Int. 2015, 41, 4438–4443. [Google Scholar] [CrossRef]
- Qi, S.; Mao, X.; Li, X.; Feng, M.; Jiang, B.; Zhang, L. Synthesis of AlN hexagonal bipyramids by carbothermal reduction nitridation. Mater. Lett. 2016, 174, 167–170. [Google Scholar] [CrossRef]
- Suehiro, T.; Tatami, J.; Meguro, T.; Matsuo, S.; Komeya, K. Morphology-retaining synthesis of AlN particles by gas reduction-nitridation. Mater. Lett. 2002, 57, 910–913. [Google Scholar] [CrossRef]
- Liu, G.; Dai, P.; Wang, Y.; Yang, J.; Qiao, G. Fabrication of pure SiC ceramic foams using SiO2 as a foaming agent via high-temperature recrystallization. Mater. Sci. Eng. A 2011, 528, 2418–2422. [Google Scholar] [CrossRef]
- Wastson, I.M. Metal organic vapour phase epitaxy of AlN, GaN, InN and their alloys: A key chemical technology for advanced device application. J. Coord. Chem. 2013, 257, 2120–2141. [Google Scholar] [CrossRef]
- Bakina, O.V.; Svarovskaya, N.V.; Glazkova, E.A.; Lozhkomoev, A.S.; Khorobraya, E.G.; Lerner, M.I. Flower-shaped ALOOH nanostructures synthesized by the reaction of an AlN/Al composite nanopowder in water. Adv. Powder Technol. 2015, 26, 1512–1519. [Google Scholar] [CrossRef]
- Lei, M.; Song, B.; Guo, X.; Guo, Y.F.; Li, P.G.; Tang, W.H. Large-scale AlN nanowires synthesized by direct sublimation method. J. Eur. Ceram. Soc. 2009, 29, 195–200. [Google Scholar] [CrossRef]
- Wu, H.; Qin, M.; Chu, A.; Wan, Q.; Cao, Z.; Liu, Y.; Qu, X.; Volinsky, A.A. AlN powder synthesis by sodium fluoride-assisted carbothermal combustion. Ceram. Int. 2014, 40, 14447–14452. [Google Scholar] [CrossRef]
- Peebles, L.H. Carbon Fibers: Formation, Structure and Properties; CRC Press: Boca Raton, FL, USA, 1995. [Google Scholar]
- Keyan, Z.; Lianshan, W.; Jin, C.S.; Thompson, C.V. Structural analysis of metalorganic chemical vapor deposited AlN nucleation layers on Si (111). J. Cryst. Growth 2004, 268, 515–520. [Google Scholar]
- Kukushkin, S.A.; Osipov, A.V.; Bessolov, V.N.; Medvedev, B.K.; Nevolin, V.K.; Tcarik, K.A. Substrates for epitaxy of gallium nitride: New materials and techniques. Rev. Mater. Sci. 2008, 17, 1–32. [Google Scholar]
- Mohammed Sadiq, I.; Pakrashi, S.; Chandrasekaran, N.; Mukherjee, A. Studies on toxicity of aluminum oxide (Al2O3) nanoparticles to microalgae species: Scenedesmus sp. and Chlorella sp. J. Nanopart. Res. 2011, 13, 3287–3299. [Google Scholar] [CrossRef]
- Kong, S.; Wei, H.; Yang, S.; Li, H.; Feng, Y.; Chen, Z.; Liu, X.; Wang, L.; Wang, Z. Morphology and structure controlled growth of one-dimensional AlN nanorod arrays by hydride vapor phase epitaxy. RSC Adv. 2014, 4, 54902–54906. [Google Scholar] [CrossRef]
- Shen, L.; Cheng, T.; Wu, L.; Li, X.; Cui, Q. Synthesis and optical properties of aluminum nitride nanowires prepared by arc discharge method. J. Alloy. Compd. 2008, 465, 562–566. [Google Scholar] [CrossRef]
Step | Process | Chemical | Concentration | Temperature (°C) | Time (min) |
---|---|---|---|---|---|
1 | Sensitizing | SnCl2/HCl | 10 g/L 10 mL/L | 35 | 30 |
2 | Rinse | H2O | – | 25 | 5 |
3 | Activator | PdCl2/HCl | 0.4 g/L 3 mL/L | 40 | 30 |
4 | Rinse | H2O | – | 25 | 5 |
5 | Pd reduction | NaOH | 100 g/L | 25 | 60 |
6 | Rinse | H2O | – | ||
7 | Copper plating | CuSO4·5H2O | 18 mL/L | 52–58 | 180 |
KNaC4H4O6 | 120 m/L | ||||
NaOH | 24 mL/L | ||||
PbNO3 | 1 mL/L | ||||
37% HCOH | 9 mL/L |
Treatment Conditions | Sample Name |
---|---|
As-received carbon fiber (CF) | ARCF |
5 wt % of AlCl3 treated CF | AlClF |
Copper (Cu) coated carbon fiber | CuF |
Cu coated CF added into 5 wt % of AlCl3 solution | AlCuF |
Synthesis of Al2O3 coated CF from AlCl3 treated CF at 1500 °C without Cu | T15AOF |
Synthesis of AlN coated CF from AlCl3 and Cu hybrid treated CF at 1500 °C | T15ANF |
Synthesis of AlN coated CF from AlCl3 and Cu hybrid treated CF at 1600 °C | T16ANF |
Synthesis of AlN coated CF from AlCl3 and Cu hybrid treated CF at 1700 °C | T17ANF |
ARCF reinforced epoxy matrix composites | NOFP |
Synthesized T15ANF reinforced epoxy matrix composites | T15ANP |
Synthesized T17ANF reinforced epoxy matrix composites | T17ANP |
Samples | 002 Peak | 100 Peak | ||||||
---|---|---|---|---|---|---|---|---|
2θ | d002 (Å) | FWHM | Lc (Å) | 2θ | d100 (Å) | FWHM | La (Å) | |
T15ANF | 36.21 | 2.480 | 0.4436 | 1043.83 | 33.38 | 2.683 | 0.4799 | 59.80 |
T16ANF | 36.27 | 2.476 | 0.5737 | 807.32 | 33.44 | 2.679 | 0.5792 | 49.56 |
T17ANF | 36.25 | 2.477 | 0.5550 | 834.41 | 33.43 | 2.680 | 0.5493 | 52.25 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.-H.; Lee, Y.-S.; Chung, D.C.; Kim, B.-J. Studies on Preparation and Characterization of Aluminum Nitride-Coated Carbon Fibers and Thermal Conductivity of Epoxy Matrix Composites. Coatings 2017, 7, 121. https://doi.org/10.3390/coatings7080121
Kim H-H, Lee Y-S, Chung DC, Kim B-J. Studies on Preparation and Characterization of Aluminum Nitride-Coated Carbon Fibers and Thermal Conductivity of Epoxy Matrix Composites. Coatings. 2017; 7(8):121. https://doi.org/10.3390/coatings7080121
Chicago/Turabian StyleKim, Hyeon-Hye, Youn-Sik Lee, Dong Chul Chung, and Byung-Joo Kim. 2017. "Studies on Preparation and Characterization of Aluminum Nitride-Coated Carbon Fibers and Thermal Conductivity of Epoxy Matrix Composites" Coatings 7, no. 8: 121. https://doi.org/10.3390/coatings7080121
APA StyleKim, H. -H., Lee, Y. -S., Chung, D. C., & Kim, B. -J. (2017). Studies on Preparation and Characterization of Aluminum Nitride-Coated Carbon Fibers and Thermal Conductivity of Epoxy Matrix Composites. Coatings, 7(8), 121. https://doi.org/10.3390/coatings7080121