In Situ Peroxidase Labeling Followed by Mass-Spectrometry Reveals TIA1 Interactome
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Antibodies
2.2. Generation of DNA Constructs
2.3. In Situ Labeling of TIA1 Interactors Mediated by APEX2-Mediated Biotinylation
2.4. Immunofluorescence Staining
2.5. Preparation of Whole Protein Extracts and Affinity Capture of Biotinylated Proteins
2.6. Western Blot Analysis
2.7. Proteomics Analysis
2.8. Co-Immunoprecipitation
2.9. Gene Ontology Analysis
2.10. Statistical Analysis
3. Results
3.1. Construction of a Functional TIA1-APEX2 Fusion Protein for Proximity Labeling
3.2. Proteomic Identification of TIA1 Partners in Unstressed and Stressed Conditions
3.3. Bioinformatic Analysis of TIA1 Partners in Unstressed and Stressed Conditions
3.4. Proteomic Data Validation and Identification of TIA1 Directly Interacting Proteins
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Das, R.; Yu, J.; Zhang, Z.; Gygi, M.P.; Krainer, A.R.; Gygi, S.P.; Reed, R. SR proteins function in coupling RNAP II transcription to pre-mRNA splicing. Mol. Cell 2007, 26, 867–881. [Google Scholar] [CrossRef]
- Suswam, E.A.; Li, Y.Y.; Mahtani, H.; King, P.H. Novel DNA-binding properties of the RNA-binding protein TIAR. Nucleic Acids Res. 2005, 33, 4507–4518. [Google Scholar] [CrossRef] [Green Version]
- Zhu, H.; Hasman, R.A.; Young, K.M.; Kedersha, N.L.; Lou, H. U1 snRNP-dependent function of TIAR in the regulation of alternative RNA processing of the human calcitonin/CGRP pre-mRNA. Mol. Cell. Biol. 2003, 23, 5959–5971. [Google Scholar] [CrossRef] [Green Version]
- Zhu, H.; Hinman, M.N.; Hasman, R.A.; Mehta, P.; Lou, H. Regulation of neuron-specific alternative splicing of neurofibromatosis type 1 pre-mRNA. Mol. Cell. Biol. 2008, 28, 1240–1251. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Kayikci, M.; Briese, M.; Zarnack, K.; Luscombe, N.M.; Rot, G.; Zupan, B.; Curk, T.; Ule, J. iCLIP predicts the dual splicing effects of TIA-RNA interactions. PLoS Biol. 2010, 8, e1000530. [Google Scholar] [CrossRef] [Green Version]
- Aznarez, I.; Barash, Y.; Shai, O.; He, D.; Zielenski, J.; Tsui, L.C.; Parkinson, J.; Frey, B.J.; Rommens, J.M.; Blencowe, B.J. A systematic analysis of intronic sequences downstream of 5′ splice sites reveals a widespread role for U-rich motifs and TIA1/TIAL1 proteins in alternative splicing regulation. Genome Res. 2008, 18, 1247–1258. [Google Scholar] [CrossRef] [Green Version]
- Meyer, C.; Garzia, A.; Mazzola, M.; Gerstberger, S.; Molina, H.; Tuschl, T. The TIA1 RNA-Binding Protein Family Regulates EIF2AK2-Mediated Stress Response and Cell Cycle Progression. Mol. Cell 2018, 69, 622–635.e6. [Google Scholar] [CrossRef] [Green Version]
- Byres, L.P.; Mufteev, M.; Yuki, K.E.; Wei, W.; Piekna, A.; Wilson, M.D.; Rodrigues, D.C.; Ellis, J. Identification of TIA1 mRNA targets during human neuronal development. Mol. Biol. Rep. 2021, 48, 6349–6361. [Google Scholar] [CrossRef]
- Lopez de Silanes, I.; Galban, S.; Martindale, J.L.; Yang, X.; Mazan-Mamczarz, K.; Indig, F.E.; Falco, G.; Zhan, M.; Gorospe, M. Identification and functional outcome of mRNAs associated with RNA-binding protein TIA-1. Mol. Cell. Biol. 2005, 25, 9520–9531. [Google Scholar] [CrossRef] [Green Version]
- Diaz-Munoz, M.D.; Kiselev, V.Y.; Le Novere, N.; Curk, T.; Ule, J.; Turner, M. Tia1 dependent regulation of mRNA subcellular location and translation controls p53 expression in B cells. Nat. Commun. 2017, 8, 530. [Google Scholar] [CrossRef] [Green Version]
- Gilks, N.; Kedersha, N.; Ayodele, M.; Shen, L.; Stoecklin, G.; Dember, L.M.; Anderson, P. Stress granule assembly is mediated by prion-like aggregation of TIA-1. Mol. Biol. Cell 2004, 15, 5383–5398. [Google Scholar] [CrossRef] [Green Version]
- Wang, I.; Hennig, J.; Jagtap, P.K.; Sonntag, M.; Valcarcel, J.; Sattler, M. Structure, dynamics and RNA binding of the multi-domain splicing factor TIA-1. Nucleic Acids Res. 2014, 42, 5949–5966. [Google Scholar] [CrossRef] [Green Version]
- Bley, N.; Lederer, M.; Pfalz, B.; Reinke, C.; Fuchs, T.; Glass, M.; Moller, B.; Huttelmaier, S. Stress granules are dispensable for mRNA stabilization during cellular stress. Nucleic Acids Res. 2015, 43, e26. [Google Scholar] [CrossRef]
- Hackman, P.; Sarparanta, J.; Lehtinen, S.; Vihola, A.; Evila, A.; Jonson, P.H.; Luque, H.; Kere, J.; Screen, M.; Chinnery, P.F.; et al. Welander distal myopathy is caused by a mutation in the RNA-binding protein TIA1. Ann. Neurol. 2013, 73, 500–509. [Google Scholar] [CrossRef]
- Mackenzie, I.R.; Nicholson, A.M.; Sarkar, M.; Messing, J.; Purice, M.D.; Pottier, C.; Annu, K.; Baker, M.; Perkerson, R.B.; Kurti, A.; et al. TIA1 Mutations in Amyotrophic Lateral Sclerosis and Frontotemporal Dementia Promote Phase Separation and Alter Stress Granule Dynamics. Neuron 2017, 95, 808–816.e9. [Google Scholar] [CrossRef]
- Piecyk, M.; Wax, S.; Beck, A.R.; Kedersha, N.; Gupta, M.; Maritim, B.; Chen, S.; Gueydan, C.; Kruys, V.; Streuli, M.; et al. TIA-1 is a translational silencer that selectively regulates the expression of TNF-alpha. EMBO J. 2000, 19, 4154–4163. [Google Scholar] [CrossRef] [Green Version]
- Beck, A.R.; Miller, I.J.; Anderson, P.; Streuli, M. RNA-binding protein TIAR is essential for primordial germ cell development. Proc. Natl. Acad. Sci. USA 1998, 95, 2331–2336. [Google Scholar] [CrossRef] [Green Version]
- Rayman, J.B.; Hijazi, J.; Li, X.; Kedersha, N.; Anderson, P.J.; Kandel, E.R. Genetic Perturbation of TIA1 Reveals a Physiological Role in Fear Memory. Cell Rep. 2019, 26, 2970–2983.e4. [Google Scholar] [CrossRef] [Green Version]
- Heck, M.V.; Azizov, M.; Stehning, T.; Walter, M.; Kedersha, N.; Auburger, G. Dysregulated expression of lipid storage and membrane dynamics factors in Tia1 knockout mouse nervous tissue. Neurogenetics 2014, 15, 135–144. [Google Scholar] [CrossRef] [Green Version]
- Sanchez-Jimenez, C.; Izquierdo, J.M. T-cell intracellular antigen (TIA)-proteins deficiency in murine embryonic fibroblasts alters cell cycle progression and induces autophagy. PLoS ONE 2013, 8, e75127. [Google Scholar] [CrossRef] [Green Version]
- Sanchez-Jimenez, C.; Ludena, M.D.; Izquierdo, J.M. T-cell intracellular antigens function as tumor suppressor genes. Cell Death Dis. 2015, 6, e1669. [Google Scholar] [CrossRef]
- Tak, H.; Eun, J.W.; Kim, J.; Park, S.J.; Kim, C.; Ji, E.; Lee, H.; Kang, H.; Cho, D.H.; Lee, K.; et al. T-cell-restricted intracellular antigen 1 facilitates mitochondrial fragmentation by enhancing the expression of mitochondrial fission factor. Cell Death Differ. 2017, 24, 49–58. [Google Scholar] [CrossRef] [Green Version]
- Carrascoso, I.; Alcalde, J.; Sanchez-Jimenez, C.; Gonzalez-Sanchez, P.; Izquierdo, J.M. T-Cell Intracellular Antigens and Hu Antigen R Antagonistically Modulate Mitochondrial Activity and Dynamics by Regulating Optic Atrophy 1 Gene Expression. Mol. Cell. Biol. 2017, 37, e00174-17. [Google Scholar] [CrossRef] [Green Version]
- Rayman, J.B.; Kandel, E.R. TIA-1 Is a Functional Prion-Like Protein. Cold Spring Harb. Perspect. Biol. 2017, 9, a030718. [Google Scholar] [CrossRef] [Green Version]
- Lam, S.S.; Martell, J.D.; Kamer, K.J.; Deerinck, T.J.; Ellisman, M.H.; Mootha, V.K.; Ting, A.Y. Directed evolution of APEX2 for electron microscopy and proximity labeling. Nat. Methods 2015, 12, 51–54. [Google Scholar] [CrossRef]
- Fragkouli, A.; Koukouraki, P.; Vlachos, I.S.; Paraskevopoulou, M.D.; Hatzigeorgiou, A.G.; Doxakis, E. Neuronal ELAVL proteins utilize AUF-1 as a co-partner to induce neuron-specific alternative splicing of APP. Sci. Rep. 2017, 7, 44507. [Google Scholar] [CrossRef] [Green Version]
- Makridakis, M.; Vlahou, A. GeLC-MS: A Sample Preparation Method for Proteomics Analysis of Minimal Amount of Tissue. Methods Mol. Biol. 2018, 1788, 165–175. [Google Scholar] [CrossRef]
- Liao, Y.; Wang, J.; Jaehnig, E.J.; Shi, Z.; Zhang, B. WebGestalt 2019: Gene set analysis toolkit with revamped UIs and APIs. Nucleic Acids Res. 2019, 47, W199–W205. [Google Scholar] [CrossRef] [Green Version]
- Bindea, G.; Mlecnik, B.; Hackl, H.; Charoentong, P.; Tosolini, M.; Kirilovsky, A.; Fridman, W.H.; Pages, F.; Trajanoski, Z.; Galon, J. ClueGO: A Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 2009, 25, 1091–1093. [Google Scholar] [CrossRef] [Green Version]
- Markmiller, S.; Soltanieh, S.; Server, K.L.; Mak, R.; Jin, W.; Fang, M.Y.; Luo, E.C.; Krach, F.; Yang, D.; Sen, A.; et al. Context-Dependent and Disease-Specific Diversity in Protein Interactions within Stress Granules. Cell 2018, 172, 590–604.e13. [Google Scholar] [CrossRef] [Green Version]
- Padron, A.; Iwasaki, S.; Ingolia, N.T. Proximity RNA Labeling by APEX-Seq Reveals the Organization of Translation Initiation Complexes and Repressive RNA Granules. Mol. Cell 2019, 75, 875–887.e5. [Google Scholar] [CrossRef]
- Ravanidis, S.; Doxakis, E. RNA-Binding Proteins Implicated in Mitochondrial Damage and Mitophagy. Front. Cell Dev. Biol. 2020, 8, 372. [Google Scholar] [CrossRef]
- Marmor-Kollet, H.; Siany, A.; Kedersha, N.; Knafo, N.; Rivkin, N.; Danino, Y.M.; Moens, T.G.; Olender, T.; Sheban, D.; Cohen, N.; et al. Spatiotemporal Proteomic Analysis of Stress Granule Disassembly Using APEX Reveals Regulation by SUMOylation and Links to ALS Pathogenesis. Mol. Cell 2020, 80, 876–891.e6. [Google Scholar] [CrossRef]
- Klaric, J.A.; Wust, S.; Panier, S. New Faces of old Friends: Emerging new Roles of RNA-Binding Proteins in the DNA Double-Strand Break Response. Front. Mol. Biosci. 2021, 8, 668821. [Google Scholar] [CrossRef]
GO Term | Nr | % | Associated Genes | PVal |
---|---|---|---|---|
RNA binding | 89 | 5 | AGO2, AIMP1, ALDH18A1, ANKHD1, ANXA1, ARCN1, ASS1, CCAR1, CDC5L, CSTF2, CTNNA1, DCD, DDX20, DDX39B, DDX41, DHX30, DHX36, EIF2S2, EIF2S3, EIF3G, EIF3I, ESRP2, EXOSC10, FAU, FIP1L1, FMR1, FUBP1, HADHB, HNRNPA2B1, HNRNPH1, HNRNPH2, HNRNPL, HNRNPM, IGF2BP1, ILF2, ILF3, IMP4, IPO5, LARP1, LARP4, LGALS3, LRPPRC, LRRC47, MRPL15, MRPL4, MRPS34, MTREX, NAA15, NAP1L1, NME1, NPM1, PABPC3, PDCD4, PELP1, PPP1CC, PSMC1, PUF60, RPL10A, RPL12, RPL13A, RPL17, RPL27, RPL34, RPL37A, RPL39, RPL7A, RPL7L1, RPP25L, RPS15, RPS17, RTRAF, SART3, SF3B1, SLC4A1AP, SNRPD1, SRBD1, SRRM1, SRSF9, TARDBP, TIA1, TIAL1, TRMT1, TRMT10A, TXN, XRCC5, XRCC6, YWHAE, ZC3HAV1, ZNF622 | 5.5 × 10−26 |
Translation initiation factor activity | 5 | 10 | AGO2, EIF2S2, EIF2S3, EIF3G, EIF3I | 4.7 × 10−2 |
C-acyltransferase activity | 4 | 14 | ACAT1, ACSM5, HADHB, SPTLC1 | 3.8 × 10−2 |
Protein C-terminus binding | 10 | 5 | AGO2, CCN2, CSK, MSH2, PHB, PPP1CC, PPP2CB, PRDX3, XRCC5, XRCC6 | 3.9 × 10−2 |
Ubiquitin protein ligase binding | 13 | 4 | CACYBP, CUL4B, EGFR, ERLIN2, LRPPRC, PSMD1, RELA, RPA2, RPL17, TPI1, TRAF2, XRCC5, YWHAE | 3.6 × 10−2 |
Cadherin binding | 17 | 5 | ANXA1, CTNNA1, EGFR, EHD4, EIF2S3, EMD, GAPVD1, JUP, LARP1, PCMT1, PTPN11, PUF60, RPL34, RPL7A, S100A11, YWHAE, ZC3HAV1 | 1.1 × 10−3 |
RAGE receptor binding | 3 | 30 | S100A7, S100A8, S100A9 | 2.1 × 10−2 |
pre-mRNA intronic binding | 3 | 25 | HNRNPA2B1, HNRNPL, TARDBP | 3.6 × 10−2 |
Nucleocytoplasmic carrier activity | 4 | 13 | CSE1L, IPO4, IPO5, KPNA5 | 5.0 × 10−2 |
Ligase activity, forming carbon-carbon bonds | 3 | 30 | KRT17, MCCC1, PCCA | 2.1 × 10−2 |
Organic acid binding | 9 | 5 | ASS1, FABP5, GLUL, HBD, KRT17, MCCC1, PCCA, S100A8, S100A9 | 3.8 × 10−2 |
Biotin binding | 3 | 38 | KRT17, MCCC1, PCCA | 1.0 × 10−2 |
DNA helicase activity | 9 | 10 | ANXA1, DHX36, MCM2, MCM4, MCM5, RAD50, WRNIP1, XRCC5, XRCC6 | 3.0 × 10−4 |
Damaged DNA binding | 6 | 8 | CUL4B, FEN1, MSH2, RPA2, XRCC5, XRCC6 | 4.3 × 10−2 |
Telomeric DNA binding | 5 | 11 | HNRNPA2B1, RAD50, RPA2, XRCC5, XRCC6 | 3.1 × 10−2 |
Double-stranded telomeric DNA binding | 3 | 30 | RAD50, XRCC5, XRCC6 | 2.1 × 10−2 |
ATPase, acting on DNA | 15 | 7 | ANXA1, DDX20, DDX39B, DDX41, DHX30, DHX36, MCM2, MCM4, MCM5, MSH2, MTREX, RAD50, WRNIP1, XRCC5, XRCC6 | 2.0 × 10−5 |
Single-stranded DNA binding | 12 | 9 | ANXA1, DHX36, FUBP1, HNRNPA2B1, LRPPRC, MCM2, MCM4, MCM5, MSH2, NME1, RAD50, RPA2 | 2.2 × 10−5 |
Helicase activity | 15 | 8 | ANXA1, DDX20, DDX39B, DDX41, DHX30, DHX36, MCM2, MCM4, MCM5, MSH2, MTREX, RAD50, WRNIP1, XRCC5, XRCC6 | 3.8 × 10−6 |
Double-stranded RNA binding | 6 | 9 | AGO2, DHX36, FMR1, IGF2BP1, ILF2, ILF3 | 2.3 × 10−2 |
Single-stranded RNA binding | 9 | 10 | AGO2, ANXA1, EXOSC10, FMR1, HNRNPH1, ILF3, LARP4, PABPC3, TIA1 | 3.6 × 10−4 |
mRNA binding | 22 | 7 | AGO2, CSTF2, DHX36, EIF2S2, ESRP2, FMR1, FUBP1, HNRNPA2B1, HNRNPL, HNRNPM, IGF2BP1, ILF3, LARP1, LARP4, PABPC3, RPL13A, SF3B1, SLC4A1AP, SRBD1, TARDBP, TIA1, TIAL1 | 6.2 × 10−8 |
mRNA 3′-UTR binding | 11 | 12 | DHX36, FMR1, HNRNPA2B1, IGF2BP1, ILF3, LARP1, LARP4, PABPC3, TARDBP, TIA1, TIAL1 | 6.7 × 10−6 |
mRNA 5′-UTR binding | 4 | 14 | DHX36, FMR1, IGF2BP1, LARP1 | 4.1 × 10−2 |
Poly-purine tract binding | 4 | 14 | FMR1, LARP4, PABPC3, TIA1 | 4.1 × 10−2 |
mRNA 3′-UTR AU-rich region binding | 4 | 16 | DHX36, ILF3, TIA1, TIAL1 | 2.6 × 10−2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gourdomichali, O.; Zonke, K.; Kattan, F.-G.; Makridakis, M.; Kontostathi, G.; Vlahou, A.; Doxakis, E. In Situ Peroxidase Labeling Followed by Mass-Spectrometry Reveals TIA1 Interactome. Biology 2022, 11, 287. https://doi.org/10.3390/biology11020287
Gourdomichali O, Zonke K, Kattan F-G, Makridakis M, Kontostathi G, Vlahou A, Doxakis E. In Situ Peroxidase Labeling Followed by Mass-Spectrometry Reveals TIA1 Interactome. Biology. 2022; 11(2):287. https://doi.org/10.3390/biology11020287
Chicago/Turabian StyleGourdomichali, Olga, Katerina Zonke, Fedon-Giasin Kattan, Manousos Makridakis, Georgia Kontostathi, Antonia Vlahou, and Epaminondas Doxakis. 2022. "In Situ Peroxidase Labeling Followed by Mass-Spectrometry Reveals TIA1 Interactome" Biology 11, no. 2: 287. https://doi.org/10.3390/biology11020287
APA StyleGourdomichali, O., Zonke, K., Kattan, F. -G., Makridakis, M., Kontostathi, G., Vlahou, A., & Doxakis, E. (2022). In Situ Peroxidase Labeling Followed by Mass-Spectrometry Reveals TIA1 Interactome. Biology, 11(2), 287. https://doi.org/10.3390/biology11020287