Analytical Performance of the Threshold Voltage and Subthreshold Swing of CSDG MOSFET
Abstract
:1. Introduction
2. Structure of CSDG MOSFET and Potential Distribution Model using EMA Model
2.1. CSDG MOSFET Structure
2.2. Potential Model Derivation with EMA Model
2.2.1. Evanescent Mode Analysis (EMA) Model
2.2.2. 2D Poisson Equation
2.2.3. Boundary Condition for the CSDG MOSFET
- (II)
- The electric field at the channel center for internal and external potential, respectively:
- (III)
- The electric field at the silicon-oxide interface for internal and external potential, respectively:
- (IV)
- The internal electrostatic field boundary condition based on 1D Poisson equation:
- (V)
- The external electrostatic field boundary condition based on 1D Poisson equation:
- (VI)
- The boundary condition along the Z-direction can be used to solve the 2D Laplace equation at the source and drain end. Therefore, the Potential at the source end where (Z = 0) is given as:
3. Threshold Voltage Model for the Proposed CSDG
4. Subthreshold Current and Subthreshold Swing
4.1. Subthreshold Current
4.2. Subthreshold Swing
5. Results and Discussions
6. Conclusions and Recommendations
Author Contributions
Funding
Conflicts of Interest
Appendix A
- (I)
- Internal Gate potential distribution can be derived by substituting Equations (8) and (13) into Equation (A1) as given:
- (II)
- External Gate potential distribution can be derived by substituting Equations (10) and (11) into Equation (A1) as given:
References
- Chan, T.Y.; Chen, J.; Ko, P.K.; Hu, C. The impact of gate-induced drain leakage current on MOSFET scaling. In Proceedings of the 1987 International Electron Devices Meeting, Washington, DC, USA, 6–9 December 1987; pp. 718–721. [Google Scholar]
- Ferry, D.K.; Akers, L.A. Scaling theory in modern VLSI. IEEE Circuits Devices Mag. 1997, 13, 41–44. [Google Scholar] [CrossRef]
- Nowak, E.J. Maintaining the benefits of CMOS scaling when scaling bogs down. IBM J. Res. Dev. 2002, 46, 169–180. [Google Scholar] [CrossRef]
- Lu, W.-Y.; Taur, Y. On the scaling limit of ultrathin SOI MOSFETs. IEEE Trans. Electron Devices 2006, 53, 1137–1141. [Google Scholar]
- Momose, H.S.; Nakamura, S.I.; Ohguro, T.; Yoshitomi, T.; Morifuji, E.; Morimoto, T.; Katsumata, Y.; Iwai, H. Uniformity and reliability of 1.5 nm direct tunneling gate oxide MOSFETs. In Proceedings of the 1997 Symposium on VLSI Technology, Kyoto, Japan, 10–12 June 1997; pp. 15–16. [Google Scholar]
- Veeraraghavan, S.; Fossum, J.G. Short-channel effects in SOI MOSFETs. IEEE Trans. Electron Devices 1989, 36, 522–528. [Google Scholar] [CrossRef]
- Young, K.K. Short-channel effect in fully depleted SOI MOSFETs. IEEE Trans. Electron Devices 1989, 36, 399–402. [Google Scholar] [CrossRef]
- Suzuki, K.; Tosaka, Y.; Sugii, T. Analytical threshold voltage model for short channel double-gate SOI MOSFETs. IEEE Trans. Electron Devices 1996, 43, 1166–1168. [Google Scholar] [CrossRef]
- Monroe, D.; Hergenrother, J.M. Evanescent-mode analysis of short-channel effects in fully depleted SOI and related MOSFETs. In Proceedings of the 1998 IEEE International SOI Conference Proceedings (Cat No.98CH36199), Stuart, FL, USA, 5–8 October 1998; pp. 157–158. [Google Scholar]
- Francis, P.; Terao, A.; Flandre, D.; Van de Wiele, F. Modeling of ultrathin double-gate nMOS/SOI transistors. IEEE Trans. Electron Devices 1994, 41, 715–720. [Google Scholar] [CrossRef]
- Barin, N.; Braccioli, M.; Fiegna, C.; Sangiorgi, E. Analysis of scaling strategies for sub-30 nm double-gate SOI N-MOSFETs. IEEE Trans. Nanotechnol. 2007, 6, 421–430. [Google Scholar] [CrossRef]
- Srivastava, V.M.; Yadav, K.S.; Singh, G. Design and performance analysis of cylindrical surrounding double-gate MOSFET for RF switch. Microelectron. J. 2011, 42, 1124–1135. [Google Scholar] [CrossRef]
- Chen, Q.; Agrawal, B.; Meindl, J.D. A comprehensive analytical subthreshold swing (S) model for double-gate MOSFETs. IEEE Trans. Electron Devices 2002, 49, 1086–1090. [Google Scholar] [CrossRef]
- Chiang, T.K. A new quasi-2-D threshold voltage model for short-channel junctionless cylindrical surrounding gate (JLCSG) MOSFETs. IEEE Trans. Electron Devices 2012, 59, 3127–3129. [Google Scholar] [CrossRef]
- Hu, G.; Xiang, P.; Ding, Z.; Liu, R.; Wang, L.; Tang, T.A. Analytical models for electric potential, threshold voltage, and subthreshold swing of junctionless surrounding-gate transistors. IEEE Trans. Electron Devices 2014, 61, 688–695. [Google Scholar] [CrossRef]
- Hu, G.; Hu, S.; Feng, J.; Liu, R.; Wang, L.; Zheng, L. Analytical models for channel potential, threshold voltage, and subthreshold swing of junctionless triple-gate FinFETs. Microelectron. J. 2016, 50, 60–65. [Google Scholar] [CrossRef]
- Auth, C.P.; Plummer, J.D. Scaling theory for cylindrical, fully-depleted, surrounding-gate MOSFET’s. IEEE Electron Device Lett. 1997, 18, 74–76. [Google Scholar] [CrossRef]
- Watanabe, S.; Tsuchida, K.; Takashima, D.; Oowaki, Y.; Nitayama, A.; Hieda, K.; Takato, H.; Sunouchi, K.; Horiguchi, F.; Ohuchi, K.; et al. A novel circuit technology with surrounding gate transistors (SGT’s) for ultra high density DRAM’s. IEEE J. Solid-State Circuits 1995, 30, 960–971. [Google Scholar] [CrossRef]
- Frank, D.J.; Taur, Y.; Wong, H.-P. Generalized scale length for two-dimensional effects in MOSFETs. IEEE Electron Device Lett. 1998, 19, 385–387. [Google Scholar] [CrossRef]
- Oh, S.-H.; Monroe, D.; Hergenrother, J.M. Analytic description of short-channel effects in fully-depleted double-gate and cylindrical, surrounding-gate MOSFETs. IEEE Electron Device Lett. 2000, 21, 445–447. [Google Scholar]
- Arora, N.D. MOSFET Models for VLSI Circuit Simulation: Theory and Practice; Springer Science & Business Media: New York, NY, USA, 2012. [Google Scholar]
- Fahad, H.M.; Smith, C.E.; Rojas, J.P.; Hussain, M.M. Silicon nanotube field effect transistor with core–shell gate stacks for enhanced high-performance operation and area scaling benefits. Nano Lett. 2011, 11, 4393–4399. [Google Scholar] [CrossRef]
- Srivastava, V.M.; Singh, G. MOSFET Technologies for Double-Pole Four-Throw Radio-Frequency Switch; Elsevier: Amsterdam, Netherlands, 2014. [Google Scholar]
- Srivastava, V.M. Signal processing for wireless communication MIMO system with nano-scaled CSDG MOSFET based DP4T RF Switch. Recent Patents Nanotechnol. 2015, 9, 26–32. [Google Scholar] [CrossRef]
- Srivastava, V.M.; Yadav, K.S.; Singh, G. Explicit model of cylindrical surrounding double-gate MOSFETs. WSEAS Trans. Circuits Syst. 2013, 12, 81–90. [Google Scholar]
- Srivastava, V.M.; Singh, G.; Yadav, K.S. An approach for the design of Cylindrical Surrounding Double-Gate MOSFET. In Proceedings of the 2011 IEEE 4th International Symposium on Microwave, Antenna, Propagation, and EMC Technologies for Wireless Communications (MAPE), Beijing, China, 1–3 November 2011; pp. 313–316. [Google Scholar]
- Verma, J.H.K.; Haldar, S.; Gupta, R.S.; Gupta, M. Modelling and simulation of subthreshold behaviour of cylindrical surrounding double gate MOSFET for enhanced electrostatic integrity. Superlattices Microstruct. 2015, 88, 354–364. [Google Scholar] [CrossRef]
- Omura, Y.; Horiguchi, S.; Tabe, M.; Kishi, K. Quantum-mechanical effects on the threshold voltage of ultrathin-SOI nMOSFETs. IEEE Electron Device Lett. 1993, 14, 569–571. [Google Scholar] [CrossRef]
- Maduagwu, U.A.; Srivastava, V.M. Bridge rectifier with Cylindrical Surrounding Double-Gate MOSFET: A model for better efficiency. In Proceedings of the 2017 International Conference on Domestic Use of Energy (DUE), Cape Town, South Africa, 4–5 April 2017; pp. 109–113. [Google Scholar]
- Mehta, V.K. Principles of Electronics; S. Chand: New Delhi, India, 2005. [Google Scholar]
- Liu, Z.H.; Hu, C.; Huang, J.H.; Chan, T.Y.; Jeng, M.C.; Ko, P.K.; Cheng, Y.C. Threshold voltage model for deep-submicrometer MOSFETs. IEEE Trans. Electron Devices 1993, 40, 86–95. [Google Scholar] [CrossRef]
- Pandian, M.K.; Balamurugan, N.B. Analytical threshold voltage modeling of surrounding gate silicon nanowire transistors with different geometries. J. Electr. Eng. Technol. 2014, 9, 2079–2088. [Google Scholar] [CrossRef]
- Bland, D.R. Solutions of Laplace’s Equation; Springer Science & Business Media: New York, NY, USA, 2012. [Google Scholar]
- Cong, L.; Yi-Qi, Z.; Li, Z.; Gang, J. A two-dimensional analytical subthreshold behavior model for junctionless dual-material cylindrical surrounding-gate MOSFETs. Chin. Phys. B 2014, 23, 038502. [Google Scholar]
- Li, C.; Zhuang, Y.; Di, S.; Han, R. Subthreshold behavior models for nanoscale short-channel junctionless cylindrical surrounding-gate MOSFETs. IEEE Trans. Electron Devices 2013, 60, 3655–3662. [Google Scholar]
- Guisasola, J.; Almudí, J.M.; Furió, C. The nature of science and its implications for physics textbooks. Sci. Educ. 2005, 14, 321–328. [Google Scholar] [CrossRef]
- Knight, R.D. Physics for Scientists and Engineers: A Strategic Approach with Modern Physics; Pearson Publishing: Cambridge, UK, 2017. [Google Scholar]
- Sze, S.M.; Ng, K.K. Physics of Semiconductor Devices; John Wiley & Sons: New York, NY, USA, 2006. [Google Scholar]
- Gupta, S.K. Threshold voltage model of junctionless cylindrical surrounding gate MOSFETs including fringing field effects. Superlattices Microstruct. 2015, 88, 188–197. [Google Scholar] [CrossRef]
- Chiang, T.K. A new two-dimensional analytical subthreshold behavior model for short-channel tri-material gate-stack SOI MOSFET’s. Microelectron. Reliab. 2009, 49, 113–119. [Google Scholar] [CrossRef]
- Tsividis, Y.; McAndrew, C. Operation and Modeling of the MOS Transistor; Oxford University Press: Oxford, UK, 2011. [Google Scholar]
- Dubey, S.; Tiwari, P.K.; Jit, S. A two-dimensional model for the subthreshold swing of short-channel double-gate metal–oxide–semiconductor field effect transistors with a vertical Gaussian-like doping profile. J. Appl. Phys. 2011, 109, 054508. [Google Scholar] [CrossRef]
- Colinge, J.P.; Colinge, C.A. Physics of Semiconductor Devices; John Wiley & Sons: Hoboken, NJ, USA, 2002. [Google Scholar]
- El Hamid, H.A.; Iníguez, B.; Guitart, J.R. Analytical model of the threshold voltage and subthreshold swing of undoped cylindrical gate-all-around-based MOSFETs. IEEE Trans. Electron Devices 2007, 54, 572–579. [Google Scholar] [CrossRef]
- Godoy, A.; Lopez-Villanueva, J.A.; Jiménez-Tejada, J.A.; Palma, A.; Gamiz, F. A simple subthreshold swing model for short channel MOSFETs. Solid-State Electron. 2001, 45, 391–397. [Google Scholar] [CrossRef]
- Bowman, F. Introduction to Bessel Functions; Courier Corporation: Washington, DC, USA, 2012. [Google Scholar]
- Chiang, T.K. A new compact subthreshold behavior model for dual-material surrounding gate (DMSG) MOSFETs. Solid-State Electron. 2009, 53, 490–496. [Google Scholar] [CrossRef]
- Wang, H.K.; Wu, S.; Chiang, T.K.; Lee, M.S. A new two-dimensional analytical threshold voltage model for short-channel triple-material surrounding-gate metal–oxide–semiconductor field-effect transistors. Jpn. J. Appl. Phys. 2012, 51, 054301. [Google Scholar] [CrossRef]
Parameters | Values |
---|---|
tox1, tox2 | 2–5 nm (each) |
L | 9–90 nm |
a | 3–6 nm |
b | 13 nm |
tsi = (b − a) | 10 nm |
NA | 1017 cm−3 |
ΦMS1, ΦMS2 | 4.8 eV |
VDS | 0.1 V |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maduagwu, U.A.; Srivastava, V.M. Analytical Performance of the Threshold Voltage and Subthreshold Swing of CSDG MOSFET. J. Low Power Electron. Appl. 2019, 9, 10. https://doi.org/10.3390/jlpea9010010
Maduagwu UA, Srivastava VM. Analytical Performance of the Threshold Voltage and Subthreshold Swing of CSDG MOSFET. Journal of Low Power Electronics and Applications. 2019; 9(1):10. https://doi.org/10.3390/jlpea9010010
Chicago/Turabian StyleMaduagwu, Uchechukwu A., and Viranjay M. Srivastava. 2019. "Analytical Performance of the Threshold Voltage and Subthreshold Swing of CSDG MOSFET" Journal of Low Power Electronics and Applications 9, no. 1: 10. https://doi.org/10.3390/jlpea9010010
APA StyleMaduagwu, U. A., & Srivastava, V. M. (2019). Analytical Performance of the Threshold Voltage and Subthreshold Swing of CSDG MOSFET. Journal of Low Power Electronics and Applications, 9(1), 10. https://doi.org/10.3390/jlpea9010010