Thermal Properties and Temporal Dynamics of Red Latosol (Oxisol) in Sustainable Agriculture and Environmental Conservation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Area Description
2.2. Equipment Accuracy
2.3. Representativeness of the Experimental Area
2.4. Methods for Determining Thermal Diffusivity
2.4.1. Equation to Calculate Heat Wave Velocity in the Soil
2.4.2. Equation to Calculate Damping Depth
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pellegrina, H.S. Trade, Productivity, and the Spatial Organization of Agriculture: Evidence from Brazil. J. Dev. Econ. 2022, 156, 102816. [Google Scholar] [CrossRef]
- de Carvalho, A.M.; de Jesus, D.R.; de Sousa, T.R.; Ramos, M.L.G.; de Figueiredo, C.C.; de Oliveira, A.D.; Marchão, R.L.; Ribeiro, F.P.; Dantas, R.d.A.; Borges, L.d.A.B. Soil Carbon Stocks and Greenhouse Gas Mitigation of Agriculture in the Brazilian Cerrado—A Review. Plants 2023, 12, 2449. [Google Scholar] [CrossRef] [PubMed]
- Azevedo, R.P.; Silva, L.d.C.M.d.; Pereira, F.A.C.; Peche, P.M.; Pio, L.A.S.; Mancini, M.; Curi, N.; Silva, B.M. Interactions between Intrinsic Soil Properties and Deep Tillage in the Sustainable Management of Perennial Crops. Sustainability 2023, 15, 760. [Google Scholar] [CrossRef]
- Bahry, C.A.; Fin, S.S.; Ritter, R.; Perboni, A.T.; Feliceti, M.L.; da Silva, J.A.; Carleso, Â.A. Superação da dormência de sementes de cornichão e seu efeito nos atributos fisiológicos/Dormancy overcoming of birdsfoot trefoil seeds and its effect in the physiological attributes. Braz. J. Dev. 2020, 6, 31951–31966. [Google Scholar] [CrossRef]
- dos Santos, S.R.G.; Oliveira, R.S.S.F.; Silva, S.D.S.R. Germinação de sementes de Mabea fistulifera em diferentes substratos e temperaturas. Res. Soc. Dev. 2022, 11, e197111234309. [Google Scholar] [CrossRef]
- Feng, Y.; Cui, N.; Hao, W.; Gao, L.; Gong, D. Estimation of Soil Temperature from Meteorological Data Using Different Machine Learning Models. Geoderma 2019, 338, 67–77. [Google Scholar] [CrossRef]
- Seward, A.; Reeves, R.; Alcaraz, S. Assessment of the Surface Heat Loss from Waimangu Geothermal Valley: Comparison of Terrestrial Based Assessment Techniques with Remote Sensing. J. Volcanol. Geotherm. Res. 2022, 430, 107630. [Google Scholar] [CrossRef]
- Kardani, N.; Bardhan, A.; Samui, P.; Nazem, M.; Zhou, A.; Armaghani, D.J. A Novel Technique Based on the Improved Firefly Algorithm Coupled with Extreme Learning Machine (ELM-IFF) for Predicting the Thermal Conductivity of Soil. Eng. Comput. 2021, 38, 3321–3340. [Google Scholar] [CrossRef]
- Younes, H.; Mao, M.; Sohel Murshed, S.M.; Lou, D.; Hong, H.; Peterson, G.P. Nanofluids: Key Parameters to Enhance Thermal Conductivity and Its Applications. Appl. Therm. Eng. 2022, 207, 118202. [Google Scholar] [CrossRef]
- Zeng, S.; Yan, Z.; Yang, J. An Improved Model for Predicting the Thermal Conductivity of Sand Based on a Grain Size Distribution Parameter. Int. J. Heat Mass Transf. 2023, 207, 124021. [Google Scholar] [CrossRef]
- Hassan, A.M.; Belal, A.A.; Hassan, M.A.; Farag, F.M.; Mohamed, E.S. Potential of Thermal Remote Sensing Techniques in Monitoring Waterlogged Area Based on Surface Soil Moisture Retrieval. J. Afr. Earth Sci. 2019, 155, 64–74. [Google Scholar] [CrossRef]
- da Silva, J.L.B.; Moura, G.B.d.A.; da Silva, M.V.; de Oliveira-Júnior, J.F.; Jardim, A.M.d.R.F.; Refati, D.C.; Lima, R.d.C.C.; de Carvalho, A.A.; Ferreira, M.B.; de Brito, J.I.B.; et al. Environmental Degradation of Vegetation Cover and Water Bodies in the Semiarid Region of the Brazilian Northeast via Cloud Geoprocessing Techniques Applied to Orbital Data. J. S. Am. Earth Sci. 2023, 121, 104164. [Google Scholar] [CrossRef]
- Franco, A.; Conti, P. Clearing a Path for Ground Heat Exchange Systems: A Review on Thermal Response Test (TRT) Methods and a Geotechnical Routine Test for Estimating Soil Thermal Properties. Energies 2020, 13, 2965. [Google Scholar] [CrossRef]
- Cai, W.; Wang, F.; Chen, C.; Chen, S.; Liu, J.; Ren, Z.; Shao, H. Long-Term Performance Evaluation for Deep Borehole Heat Exchanger Array under Different Soil Thermal Properties and System Layouts. Energy 2022, 241, 122937. [Google Scholar] [CrossRef]
- Purdin, M.S. Determination of the Coefficient of Effective Thermal Diffusivity of Soil under Natural Changes in Environmental Conditions. IOP Conf. Ser. Earth Environ. Sci. 2022, 1112, 012034. [Google Scholar] [CrossRef]
- Brunetti, C.; Lamb, J.; Wielandt, S.; Uhlemann, S.; Shirley, I.; McClure, P.; Dafflon, B. Probabilistic Estimation of Depth-Resolved Profiles of Soil Thermal Diffusivity from Temperature Time Series. Earth Surf. Dyn. 2022, 10, 687–704. [Google Scholar] [CrossRef]
- Beardsmore, G.; Egan, S.; Sandiford, M. A Fourier Spectral Method to Measure the Thermal Diffusivity of Soil. Geotech. Test. J. 2020, 43, 565–587. [Google Scholar] [CrossRef]
- Lovatto, J.; Santos, R.C.; de Souza, C.M.A.; Zucca, R.; Lovatto, F.; Geisenhoff, L.O. Use of Linear Programming for Decision Making: An Analysis of Cost, Time and Comfort of Rural Housing Dwellings. Rev. Bras. Eng. Agríc. Ambient. 2020, 24, 622–629. [Google Scholar] [CrossRef]
- Romio, L.C.; Zimmer, T.; Bremm, T.; Buligon, L.; Herdies, D.L.; Roberti, D.R. Influence of Different Methods to Estimate the Soil Thermal Properties from Experimental Dataset. Land 2022, 11, 1960. [Google Scholar] [CrossRef]
- Zhang, J.; Dias, D.; Pan, Q.; Ma, C.; Tsuha, C.d.H.C. Long-Term Thermo-Hydraulic Numerical Assessment of Thermo-Active Piles—A Case of Tropical Soils. Appl. Sci. 2022, 12, 7653. [Google Scholar] [CrossRef]
- Novak, E.; Carvalho, L.A.; Santiago, E.F.; Ferreira, F.S.; Maestre, M.R. Composição química do solo em diferentes condições ambientais. Ciênc. Florest. 2021, 31, 1063–1085. [Google Scholar] [CrossRef]
- Vergasta, L.A.; Correia, F.W.S.; Chou, S.C.; Nobre, P.; Lyra, A.d.A.; Gomes, W.d.B.; Capistrano, V.; Veiga, J.A.P. Assessment of the Water Budget in Madeira River Basin Simulated by the Eta Regional Climate and MGB Large-Scale Hydrological Models. Rev. Bras. Meteorol. 2021, 36, 153–169. [Google Scholar] [CrossRef]
- Nunes, H.B.; Kato, E.; de Sá, M.A.C.; Rosa, V.A.; de Carvalho, A.d.S.; Soares Neto, J.P. Influência da temperatura sobre a agregação do solo avaliada por dois métodos. Ciênc. Florest. 2019, 29, 496–507. [Google Scholar] [CrossRef]
- Silva, J.F.G.; Gonçalves, W.G.; Costa, K.A.d.P.; Neto, J.F.; de Brito, M.F.; da Silva, F.C.; Severiano, E.d.C. Crop-Livestock Integration and the Physical Resilience of a Degraded Latosol. Semin. Ciências Agrárias 2019, 40, 2973–2990. [Google Scholar] [CrossRef]
- de Melo Benites, V.; Schaefer, C.E.G.R.; Machado, P.L.O.A.; Polidoro, J.C.; da Silva Teixeira, R. Insights into Brazilian Soils and Sustainable Agriculture Scenarios. In The Soils of Brazil; Schaefer, C.E.G.R., Ed.; World Soils Book Series; Springer International Publishing: Cham, Switzerland, 2023; pp. 471–486. ISBN 978-3-031-19949-3. [Google Scholar]
- INMET. Clima e Tempo. Temperatura Média Anual. Available online: https://www.gov.br/agricultura/pt-br/assuntos/inmet/clima-e-tempo (accessed on 29 June 2023).
- IBGE-BDIA BDIA—Banco de Dados de Informações Ambientais. Pedologia. Available online: https://bdiaweb.ibge.gov.br/#/consulta/pedologia (accessed on 29 June 2023).
- Çuhac, C.; Mäkiranta, A.; Välisuo, P.; Hiltunen, E.; Elmusrati, M. Temperature Measurements on a Solar and Low Enthalpy Geothermal Open-Air Asphalt Surface Platform in a Cold Climate Region. Energies 2020, 13, 979. [Google Scholar] [CrossRef]
- Sanches, Í.S.; Sanches, É.S.; Omido, A.R.; Barboza, C.S.; Jordan, R.A. Prelúdio para utilização da energia geotérmica superficial na climatização do ambiente construído na Cidade de Naviraí, Estado do Mato Grosso do Sul, Brasil. Res. Soc. Dev. 2020, 9, e4909108864. [Google Scholar] [CrossRef]
- Agostinho, V.P.; Sanches, I.S.; Sanches, É.S.; Omido, T.V.; Barboza, C.S.; Omido, A.R. Subsídios Para Utilização Da Energia Geotérmica Superficial Na Climatização Do Ambiente Construído Em Ouro Verde—SP: Monitoramento Da Temperatura Do Subsolo Local. Rev. Caribeña Cienc. Soc. 2023, 12, 607–626. [Google Scholar] [CrossRef]
- Cesca, R.S.; Santos, R.C.; Goes, R.H.d.T.e.B.d.; Favarim, A.P.C.; de Oliveira, M.S.G.; da Silva, N.C. Thermal Comfort of Beef Cattle in the State of Mato Grosso Do Sul, Brazil. Ciênc. Agrotec. 2021, 45, e008321. [Google Scholar] [CrossRef]
- Pinto, L.C.; Chagas, W.F.T.; Amaral, F.H.C. Physical Attributes of a Dystroferric Red Latosol (Oxisol) under Different Management Systems. R. Agrogeoambiental 2019, 11, 111–119. [Google Scholar] [CrossRef]
- Mangieri, V.L.; Tavares, J. Avaliação de matéria orgânica, densidade e porosidade do latossolo vermelho em contato com lixiviado de resíduos sólidos urbanos. Eng. Sanit. Ambient. 2019, 24, 1251–1258. [Google Scholar] [CrossRef]
- Zhu, X.; Gao, Z.; Chen, T.; Wang, W.; Lu, C.; Zhang, Q. Study on the Thermophysical Properties and Influencing Factors of Regional Surface Shallow Rock and Soil in China. Front. Earth Sci. 2022, 10, 1–13. [Google Scholar] [CrossRef]
- Tong, B.; Xu, H.; Horton, R.; Bian, L.; Guo, J. Determination of Long-Term Soil Apparent Thermal Diffusivity Using Near-Surface Soil Temperature on the Tibetan Plateau. Remote Sens. 2022, 14, 4238. [Google Scholar] [CrossRef]
- Okorie, B.O.; Niraj, Y. Effects of Different Tillage Practices on Soil Fertility Properties: A Review. Int. J. Agric. Environ. Res. 2022, 8, 176–193. [Google Scholar] [CrossRef]
- Pessoa, T.N.; Cooper, M.; Nunes, M.R.; Uteau, D.; Peth, S.; Vaz, C.M.P.; Libardi, P.L. 2D and 3D Techniques to Assess the Structure and Porosity of Oxisols and Their Correlations with Other Soil Properties. CATENA 2022, 210, 105899. [Google Scholar] [CrossRef]
- Jackson, R.D.; Kirkham, D. Method of Measurement of the Real Thermal Diffusivity of Moist Soil. Soil Sci. Soc. Am. J. 1958, 22, 479–482. [Google Scholar] [CrossRef]
- Klute, A.; Dirksen, C. Hydraulic Conductivity and Diffusivity: Laboratory Methods. In Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 1986; Volume 5, pp. 687–734. ISBN 978-0-89118-864-3. [Google Scholar]
- Horton, R.; Wierenga, P.J.; Nielsen, D.R. Evaluation of Methods for Determining the Apparent Thermal Diffusivity of Soil Near the Surface. Soil Sci. Soc. Am. J. 1983, 47, 25–32. [Google Scholar] [CrossRef]
- Barbato, G.; Barini, E.M.; Genta, G.; Levi, R. Features and Performance of Some Outlier Detection Methods. J. Appl. Stat. 2011, 38, 2133–2149. [Google Scholar] [CrossRef]
- Dhekale, B.S.; Vishwajith, K.P.; Mishra, P.; Vani, G.K.; Ramesh, D. Time Series. In Essentials of Statistics in Agricultural Sciences; Apple Academic Press: Palm Bay, FL, USA, 2019; ISBN 978-0-429-42576-9. [Google Scholar]
- Shapiro, S.S.; Wilk, M.B. An Analysis of Variance Test for Normality (Complete Samples). Biometrika 1965, 52, 591–611. [Google Scholar] [CrossRef]
- Hanusz, Z.; Tarasinska, J.; Zielinski, W. Shapiro–Wilk Test with Known Mean. REVSTAT-Stat. J. 2016, 14, 89–100. [Google Scholar] [CrossRef]
- Wei, J. The Adoption of Repeated Measurement of Variance Analysis and Shapiro—Wilk Test. Front. Med. 2022, 16, 659–660. [Google Scholar] [CrossRef] [PubMed]
- de Souza, R.R.; Toebe, M.; Mello, A.C.; Bittencourt, K.C. Sample Size and Shapiro-Wilk Test: An Analysis for Soybean Grain Yield. Eur. J. Agron. 2023, 142, 126666. [Google Scholar] [CrossRef]
- da Silva, N.C.; Santos, R.C.; Zucca, R.; Geisenhoff, L.O.; Cesca, R.S.; Lovatto, J. Enthalpy Thematic Map Interpolated with Spline Method for Management of Broiler Chicken Production. Rev. Bras. Eng. Agríc. Ambient. 2020, 24, 431–436. [Google Scholar] [CrossRef]
- Kisekka, I.; Peddinti, S.R.; Kustas, W.P.; McElrone, A.J.; Bambach-Ortiz, N.; McKee, L.; Bastiaanssen, W. Spatial–Temporal Modeling of Root Zone Soil Moisture Dynamics in a Vineyard Using Machine Learning and Remote Sensing. Irrig. Sci. 2022, 40, 761–777. [Google Scholar] [CrossRef]
- Sun, J.; Gan, W.; Chao, H.-C.; Yu, P.S. Metaverse: Survey, Applications, Security, and Opportunities. arXiv 2022, arXiv:2210.07990. [Google Scholar]
- Domingues, L.M.; de Abreu, R.C.; da Rocha, H.R. Hydrologic Impact of Climate Change in the Jaguari River in the Cantareira Reservoir System. Water 2022, 14, 1286. [Google Scholar] [CrossRef]
- Bezari, S.; Metidji, N.; Lebbi, M.; Salem, M.; Tearnbucha, C.; Sudsutad, W.; Lorenzini, G.; Ahmad, H.; Menni, Y. Investigation and Analysis of Soil Temperature under Solar Greenhouse Conditions in a Semi-Arid Region. Int. J. Des. Nat. Ecodynamics 2022, 17, 325–332. [Google Scholar] [CrossRef]
- Donatoni, K.A.P.; Biancho, L.E.; Aparecido, C.F.F.; de Carvalho, J.B. Temperatura do solo em áreas irrigadas com diferentes coberturas vegetais. Unifunec Científica Multidiscip. 2021, 10, 1–13. [Google Scholar] [CrossRef]
- Diniz, J.M.T.; dos Santos, C.A.C.; da Silva, J.P.S.; da Rocha, Á.B. Reformulation of the Used Model to Estimate Soil Temperature. Energies 2022, 15, 2905. [Google Scholar] [CrossRef]
- Oorthuis, R.; Vaunat, J.; Hürlimann, M.; Lloret, A.; Moya, J.; Puig-Polo, C.; Fraccica, A. Slope Orientation and Vegetation Effects on Soil Thermo-Hydraulic Behavior. An Experimental Study. Sustainability 2021, 13, 14. [Google Scholar] [CrossRef]
- Brunel, C.; Farnet Da Silva, A.-M.; Lerch, T.Z.; Gros, R. Influence of Tree Residue Retention in Mediterranean Forest on Soil Microbial Communities Responses to Frequent Warming and Drying Events. Eur. J. Soil Biol. 2023, 118, 103541. [Google Scholar] [CrossRef]
- Pugliese, G.; Ingrisch, J.; Meredith, L.K.; Pfannerstill, E.Y.; Klüpfel, T.; Meeran, K.; Byron, J.; Purser, G.; Gil-Loaiza, J.; van Haren, J.; et al. Effects of Drought and Recovery on Soil Volatile Organic Compound Fluxes in an Experimental Rainforest. Nat. Commun. 2023, 14, 5064. [Google Scholar] [CrossRef]
- Guauque-Mellado, D.; Rodrigues, A.; Terra, M.; Mantovani, V.; Yanagi, S.; Diotto, A.; Mello, C. de Evapotranspiration under Drought Conditions: The Case Study of a Seasonally Dry Atlantic Forest. Atmosphere 2022, 13, 871. [Google Scholar] [CrossRef]
- Sanches, É.S.; Sanches, Í.S.; Jordan, R.A.; Omido, A.R.; Motomiya, A.V.d.A.; Barboza, C.S.; Santos, R.C.; Antunes, B.M. Heat Transfer in Oxisol in Heat Storage Process. Rev. Bras. Eng. Agríc. Ambient. 2023, 27, 512–520. [Google Scholar]
- Azevedo, R.P.; Corinto, L.M.; Peixoto, D.S.; De Figueiredo, T.; Silveira, G.C.D.; Peche, P.M.; Pio, L.A.S.; Pagliari, P.H.; Curi, N.; Silva, B.M. Deep Tillage Strategies in Perennial Crop Installation: Structural Changes in Contrasting Soil Classes. Plants 2022, 11, 2255. [Google Scholar] [CrossRef]
- Qin, Y.; Zhang, X.; Tan, K.; Wang, J. A Review on the Influencing Factors of Pavement Surface Temperature. Env. Sci. Pollut. Res. 2022, 29, 67659–67674. [Google Scholar] [CrossRef]
- Chung, W.J.; Park, S.H. Utilization of Thermally Activated Building System with Horizontal Ground Heat Exchanger Considering the Weather Conditions. Energies 2021, 14, 7927. [Google Scholar] [CrossRef]
- Santos, R.C.; Lopes, A.L.N.; Sanches, A.C.; Gomes, E.P.; da Silva, E.A.S.; da Silva, J.L.B. Intelligent Automated Monitoring Integrated with Animal Production Facilities. Eng. Agríc. 2023, 43, e20220225. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, Q.; Ma, Z.; Jin, H.; Chang, X.; Marchenko, S.S.; Spektor, V.V. Seasonal Variations in Temperature Sensitivity of Soil Respiration in a Larch Forest in the Northern Daxing’an Mountains in Northeast China. J. For. Res. 2022, 33, 1061–1070. [Google Scholar] [CrossRef]
- Léger, E.; Saintenoy, A.; Serhir, M.; Costard, F.; Grenier, C. Brief Communication: Monitoring Active Layer Dynamics Using a Lightweight Nimble Ground-Penetrating Radar System—A Laboratory Analogue Test Case. Cryosphere 2023, 17, 1271. [Google Scholar] [CrossRef]
- Karim, A.A.; Kumar, M.; Singh, E.; Kumar, A.; Kumar, S.; Ray, A.; Dhal, N.K. Enrichment of Primary Macronutrients in Biochar for Sustainable Agriculture: A Review. Crit. Rev. Environ. Sci. Technol. 2022, 52, 1449–1490. [Google Scholar] [CrossRef]
- Erdel, E.; Mikailsoy, F. Determination of Thermophysical Properties of Fluvisols in Eastern Turkey Using Various Models. Eurasian Soil Sc. 2022, 55, 1568–1575. [Google Scholar] [CrossRef]
- Ioannidis, T.; Bakas, N.A. An Analytical Solution for the Heat Conduction–Convection Equation in Non-Homogeneous Soil. Bound. Layer Meteorol 2023, 186, 199–216. [Google Scholar] [CrossRef]
- Hou, R.; Li, T.; Fu, Q.; Liu, D.; Li, M.; Zhou, Z.; Yan, J.; Zhang, S. Research on the Distribution of Soil Water, Heat, Salt and Their Response Mechanisms under Freezing Conditions. Soil Tillage Res. 2020, 196, 104486. [Google Scholar] [CrossRef]
- Khan, M.S.; Ivoke, J.; Nobahar, M.; Amini, F. Artificial Neural Network (ANN) Based Soil Temperature Model of Highly Plastic Clay. Geomech. Geoengin. 2022, 17, 1230–1246. [Google Scholar] [CrossRef]
- Gao, W.; Masum, S.; Qadrdan, M.; Rhys Thomas, H. A Numerical Study on Performance Efficiency of a Low-Temperature Horizontal Ground-Source Heat Pump System. Energy Build. 2023, 291, 113137. [Google Scholar] [CrossRef]
- Suft, O.; Bertermann, D. One-Year Monitoring of a Ground Heat Exchanger Using the In Situ Thermal Response Test: An Experimental Approach on Climatic Effects. Energies 2022, 15, 9490. [Google Scholar] [CrossRef]
- Neto, J.d.A.M.; Antonino, A.C.D.; Lima, J.R.d.S.; de Souza, E.S.; Soares, W.d.A.; Alves, E.M.; de Almeida, C.A.B.; Neto, J.A.d.S. Caracterização Térmica de Solos no Agreste Meridional do Estado de Pernambuco, Brasil (Thermal Characterization of Soils in Southern Wasteland of the State of Pernambuco, Brazil). Rev. Bras. Geogr. Física 2015, 8, 167–178. [Google Scholar] [CrossRef]
- Omido, A.R.; Barboza, C.S.; Sanches, É.S.; Sanches, Í.S.; Omido, T.V. Subsídios Para Utilização Da Energia Geotérmica Superficial Na Climatização de Edificações: Comportamento Térmico Do Solo Latossolo Vermelho Nas Regiões Sudeste e Centro-Oeste Do Brasil. Obs. Econ. Latinoam. 2023, 21, 2672–2697. [Google Scholar] [CrossRef]
- Silva, L.d.C.M.d.; Peixoto, D.S.; Azevedo, R.P.; Avanzi, J.C.; Dias Junior, M.d.S.; Vanella, D.; Consoli, S.; Acuña-Guzman, S.F.; Borghi, E.; de Resende, Á.V.; et al. Assessment of Soil Water Content Variability Using Electrical Resistivity Imaging in an Oxisol under Conservation Cropping Systems. Geoderma Reg. 2023, 33, e00624. [Google Scholar] [CrossRef]
- Hartmann, M.; Six, J. Soil Structure and Microbiome Functions in Agroecosystems. Nat. Rev. Earth Environ. 2023, 4, 4–18. [Google Scholar] [CrossRef]
- Borowski, P.F. Water and Hydropower—Challenges for the Economy and Enterprises in Times of Climate Change in Africa and Europe. Water 2022, 14, 3631. [Google Scholar] [CrossRef]
- Chouhan, S.; Kumari, S.; Kumar, R.; Chaudhary, P.L. Climate Resilient Water Management for Sustainable Agriculture. Int. J. Environ. Clim. Change 2023, 13, 411–426. [Google Scholar] [CrossRef]
- Dai, B.; Zhang, Y.; Ding, H.; Xu, Y.; Liu, Z. Characteristics and Prediction of the Thermal Diffusivity of Sandy Soil. Energies 2022, 15, 1524. [Google Scholar] [CrossRef]
- Tuntrachanida, J.; Wisawapipat, W.; Aramrak, S.; Chittamart, N.; Klysubun, W.; Amonpattaratkit, P.; Duboc, O.; Wenzel, W.W. Combining Spectroscopic and Flux Measurement Techniques to Determine Solid-Phase Speciation and Solubility of Phosphorus in Agricultural Soils. Geoderma 2022, 410, 115677. [Google Scholar] [CrossRef]
- Zhu, D.; Ciais, P.; Krinner, G.; Maignan, F.; Jornet Puig, A.; Hugelius, G. Controls of Soil Organic Matter on Soil Thermal Dynamics in the Northern High Latitudes. Nat. Commun. 2019, 10, 3172. [Google Scholar] [CrossRef]
- Krcmar, D.; Flakova, R.; Ondrejkova, I.; Hodasova, K.; Rusnakova, D.; Zenisova, Z.; Zatlakovic, M. Assessing the Impact of a Heated Basement on Groundwater Temperatures in Bratislava, Slovakia. Groundwater 2020, 58, 406–412. [Google Scholar] [CrossRef] [PubMed]
- Ozlu, E.; Arriaga, F.J.; Bilen, S.; Gozukara, G.; Babur, E. Carbon Footprint Management by Agricultural Practices. Biology 2022, 11, 1453. [Google Scholar] [CrossRef]
- Sonu; Rani, G.M.; Pathania, D.; Abhimanyu; Umapathi, R.; Rustagi, S.; Huh, Y.S.; Gupta, V.K.; Kaushik, A.; Chaudhary, V. Agro-Waste to Sustainable Energy: A Green Strategy of Converting Agricultural Waste to Nano-Enabled Energy Applications. Sci. Total Environ. 2023, 875, 162667. [Google Scholar] [CrossRef] [PubMed]
- Kazmierczak, R.; Giarola, N.F.B.; Riferte, F.B.; dos Santos, J.B.; Fogaça, A.M.; Carpinelli, S. Selection of Indicators to Discriminate Soil Tillage Systems and to Assess Soil Quality in a Red Latosol. Braz. Arch. Biol. Technol. 2020, 63, e20190489. [Google Scholar] [CrossRef]
- Dalmolin, R.S.D.; de Araújo Pedron, F.; Curcio, G.R. Soils of the Southern Araucaria Highlands. In The Soils of Brazil; Schaefer, C.E.G.R., Ed.; World Soils Book Series; Springer International Publishing: Cham, Switzerland, 2023; pp. 269–297. ISBN 978-3-031-19949-3. [Google Scholar]
- Cima, I.S.; Amaral, S.; Massi, K.G. Mapping Cerrado Remnants in an Anthropized Landscape in Southeast Brazil. Remote Sens. Appl. Soc. Environ. 2023, 32, 101032. [Google Scholar] [CrossRef]
Soil Layer (m) | Thermal Diffusivity (10−6 m2 s−1) | Propagation Velocity (10−6 m2 s−1) | Damping Depth (m) |
---|---|---|---|
0.05 to 1.00 | 0.137 | 0.233 | 1.172 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jordan, R.A.; Santos, R.C.; Freitas, R.L.; Motomiya, A.V.d.A.; Geisenhoff, L.O.; Sanches, A.C.; Ávalo, H.; Mesquita, M.; Ferreira, M.B.; Silva, P.C.; et al. Thermal Properties and Temporal Dynamics of Red Latosol (Oxisol) in Sustainable Agriculture and Environmental Conservation. Resources 2023, 12, 104. https://doi.org/10.3390/resources12090104
Jordan RA, Santos RC, Freitas RL, Motomiya AVdA, Geisenhoff LO, Sanches AC, Ávalo H, Mesquita M, Ferreira MB, Silva PC, et al. Thermal Properties and Temporal Dynamics of Red Latosol (Oxisol) in Sustainable Agriculture and Environmental Conservation. Resources. 2023; 12(9):104. https://doi.org/10.3390/resources12090104
Chicago/Turabian StyleJordan, Rodrigo Aparecido, Rodrigo Couto Santos, Ricardo Lordelo Freitas, Anamari Viegas de Araújo Motomiya, Luciano Oliveira Geisenhoff, Arthur Carniato Sanches, Hélio Ávalo, Marcio Mesquita, Maria Beatriz Ferreira, Patrícia Costa Silva, and et al. 2023. "Thermal Properties and Temporal Dynamics of Red Latosol (Oxisol) in Sustainable Agriculture and Environmental Conservation" Resources 12, no. 9: 104. https://doi.org/10.3390/resources12090104
APA StyleJordan, R. A., Santos, R. C., Freitas, R. L., Motomiya, A. V. d. A., Geisenhoff, L. O., Sanches, A. C., Ávalo, H., Mesquita, M., Ferreira, M. B., Silva, P. C., Sanches, Í. S., Sanches, É. S., Da Silva, J. L. B., & Silva, M. V. d. (2023). Thermal Properties and Temporal Dynamics of Red Latosol (Oxisol) in Sustainable Agriculture and Environmental Conservation. Resources, 12(9), 104. https://doi.org/10.3390/resources12090104