Combined Remediation towards Cadmium–Arsenic-Contaminated Soil via Phytoremediation and Stabilization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characteristics of the Contaminated Soil
2.2. Experimental Design of Combined Remediation
2.3. Analysis Method of Plant Samples
2.4. Analysis Method of Soil Samples
3. Results and Discussion
3.1. Results of the Biological Properties of Plants and Heavy Metal Content in Plants
3.2. Results of the Physical and Chemical Properties of Soil and Heavy Metal Content in Soil
3.3. Study on the Combined Remediation Mechanism
4. Conclusions
- (1)
- The addition of an appropriate amount of Fe-Mn material and MFA can promote plant growth, while too much MFA was adverse for plant growth.
- (2)
- Fe-Mn material and MFA can improve the transport capacity of plants for As and Cd, respectively. In addition, the contents of As and Cd in the body of B. pilosa first increased and then decreased with the increase in the addition amount of MFA.
- (3)
- The addition of MFA can help to remove As in the soil, while the addition of MFA can help to remove Cd under the addition amount being above 1%.
- (4)
- The mechanism of stabilization material–plant combined remediation includes the adsorption and precipitation of heavy metal ions, isomorphic substitution, and chelation of organic acids in the plant roots. Cadmium and arsenic ions can be stabilized on the surface of different oxides via electrostatic attraction or precipitation formation.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mama, C.N.; Nnaji, C.C.; Igwe, O.; Ozioko, O.H.; Ezugwu, C.K.; Ugwuoke, I.J. Assessment of heavy metal pollution in soils: A case study of Nsukka metropolis. Environ. Forensics 2022, 23, 389–408. [Google Scholar] [CrossRef]
- Wen, J.; Yan, C.Y.; Xing, L.; Wang, Q.; Yuan, L.; Hu, X.H. Simultaneous immobilization of As and Cd in a mining site soil using HDTMA-modified zeolite. Environ. Sci. Pollut. Res. 2021, 28, 9935–9945. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.I.; Ahmed, A.K.M.; Yunus, M.; Rahman, M.; Hore, S.K.; Vahter, M.; Wahed, M.A. Arsenic and Cadmium in Food-chain in Bangladesh—An Exploratory Study. J. Health Popul. Nutr. 2010, 28, 578–584. [Google Scholar] [CrossRef] [PubMed]
- Ishizaki, M.; Suwazono, Y.; Kido, T.; Nishijo, M.; Honda, R.; Kobayashi, E.; Nogawa, K.; Nakagawa, H. Estimation of biological half-life of urinary cadmium in inhabitants after cessation of environmental cadmium pollution using a mixed linear model. Food Addit. Contam. Part A-Chem. 2015, 32, 1273–1276. [Google Scholar] [CrossRef] [PubMed]
- Prakash, C.; Chhikara, S.; Kumar, V. Mitochondrial Dysfunction in Arsenic-Induced Hepatotoxicity: Pathogenic and Therapeutic Implications. Biol. Trace Elem. Res. 2022, 200, 261–270. [Google Scholar] [CrossRef]
- Koch, I.; Dee, J.; House, K.; Sui, J.; Zhang, J.; McKnight-Whitford, A.; Reimer, K.J. Bioaccessibility and speciation of arsenic in country foods from contaminated sites in Canada. Sci. Total Environ. 2013, 449, 1–8. [Google Scholar] [CrossRef]
- Yang, J.M.; Liang, X.R.; Jiang, N.; Huang, Z.H.; Mou, F.L.; Zu, Y.Q.; Li, Y. Adsorption Characteristics of Modified Eucalyptus Sawdust for Cadmium and Arsenic and Its Potential for Soil Remediation. Bull. Environ. Contam. Toxicol. 2022, 108, 1056–1063. [Google Scholar] [CrossRef]
- Zhang, K.; Yi, Y.Q.; Fang, Z.Q. Remediation of cadmium or arsenic contaminated water and soil by modified biochar: A review. Chemosphere 2023, 311, 136914. [Google Scholar] [CrossRef]
- Yang, Z.H.; Gong, H.Y.; He, F.S.; Repo, E.; Yang, W.C.; Liao, Q.; Zhao, F.P. Iron-doped hydroxyapatite for the simultaneous remediation of lead-, cadmium- and arsenic-co-contaminated soil. Environ. Pollut. 2022, 312, 119953. [Google Scholar] [CrossRef]
- Wei, M.; Chen, J.J.; Xia, C.H. Remediation of arsenic-cationic metals from smelter contaminated soil by washings of Na(2)EDTA and phosphoric acid: Removal efficiencies and mineral transformation. Environ. Technol. 2021, 42, 2211–2219. [Google Scholar] [CrossRef]
- Lin, L.Y.; Zhu, R.L.; Li, Z.H.; Han, C.L.; Li, W.Y.; Deng, Y.R. A Combined Remediation Strategy of Arsenic and Cadmium in the Paddy Soil of Polymetallic Mining Areas. Bull. Environ. Contam. Toxicol. 2021, 107, 1220–1226. [Google Scholar] [CrossRef]
- Gao, Y.Z.; Zhu, L.Z. Phytoremediation and its models for organic contaminated soils. J. Environ. Sci. 2003, 15, 302–310. [Google Scholar]
- Lee, S.H.; Park, H.; Kim, J.G. Current Status of and Challenges for Phytoremediation as a Sustainable Environmental Management Plan for Abandoned Mine Areas in Korea. Sustainability 2023, 15, 2761. [Google Scholar] [CrossRef]
- Marques, A.; Rangel, A.; Castro, P.M.L. Remediation of Heavy Metal Contaminated Soils: Phytoremediation as a Potentially Promising Clean-Up Technology. Crit. Rev. Environ. Sci. Technol. 2009, 39, 622–654. [Google Scholar] [CrossRef]
- Bell, T.H.; Joly, S.; Pitre, F.E.; Yergeau, E. Increasing phytoremediation efficiency and reliability using novel omics approaches. Trends Biotechnol. 2014, 32, 271–280. [Google Scholar] [CrossRef] [PubMed]
- Shi, P.; Fu, Y.H.; Li, Y. Study to identify potential hyper-accumulator plants suitable for phytoremediation of a copper and zinc mining wasteland in a cold region of northeastern china. Fresenius Environ. Bull. 2015, 24, 4344–4352. [Google Scholar]
- Yu, F.M.; Tang, S.T.; Shi, X.W.; Liang, X.; Liu, K.H.; Huang, Y.Z.; Li, Y. Phytoextraction of metal(loid)s from contaminated soils by six plant species: A field study. Sci. Total Environ. 2022, 804, 150282. [Google Scholar] [CrossRef]
- Yadav, R.; Singh, G.; Santal, A.R.; Singh, N.P. Omics approaches in effective selection and generation of potential plants for phytoremediation of heavy metal from contaminated resources. J. Environ. Manag. 2023, 336, 117730. [Google Scholar] [CrossRef]
- Escobar-Alvarado, L.F.; Vaca-Mier, M.; Lopez, R.; Rojas-Valencia, M.N. Hydrocarbon Degradation and Lead Solubility in a Soil Polluted with Lead and Used Motor Oil Treated by Composting and Phytoremediation. Bull. Environ. Contam. Toxicol. 2018, 100, 280–285. [Google Scholar] [CrossRef]
- Zha, F.S.; Ji, C.J.; Xu, L.; Kang, B.; Yang, C.B.; Chu, C.F. Assessment of strength and leaching characteristics of heavy metal-contaminated soils solidified/stabilized by cement/fly ash. Environ. Sci. Pollut. Res. 2019, 26, 30206–30219. [Google Scholar] [CrossRef]
- Zhu, Q.H.; Wu, J.; Wang, L.L.; Yang, G.; Zhang, X.H. Effect of Biochar on Heavy Metal Speciation of Paddy Soil. Water Air Soil Pollut. 2015, 226, 429. [Google Scholar] [CrossRef]
- He, X.M.; Zhang, J.; Ren, Y.N.; Sun, C.Y.; Deng, X.P.; Qian, M.; Hu, Z.B.; Li, R.; Chen, Y.H.; Shen, Z.G.; et al. Polyaspartate and liquid amino acid fertilizer are appropriate alternatives for promoting the phytoextraction of cadmium and lead in Solanum nigrum L. Chemosphere 2019, 237, 124483. [Google Scholar] [CrossRef] [PubMed]
- Guo, J. Study on Heavy Metal Contaminated Soil in E-waste Dismantling Site Combined with Sludge High-temperature Treatment Residue and Plants. Master’s Thesis, Shanghai Polytechnic University, Shanghai, China, 2022. [Google Scholar]
- Wu, J.M.; Zhang, C.X.; Yang, H.F.; Chen, P.; Cao, J. Combined Remediation Effects of Pioneer Plants and Solid Waste towards Cd- and As-Contaminated Farmland Soil. Appl. Sci. 2023, 13, 5695. [Google Scholar] [CrossRef]
- El Fadili, H.; Ben Ali, M.; Touach, N.; El Mahi, M.; Mostapha Lotfi, E. Ecotoxicological and pre-remedial risk assessment of heavy metals in municipal solid wastes dumpsite impacted soil in morocco. Environ. Nanotechnol. Monit. Manag. 2022, 17, 100640. [Google Scholar] [CrossRef]
- Klik, B.; Holatko, J.; Jaskulska, I.; Gusiatin, M.Z.; Hammerschmiedt, T.; Brtnicky, M.; Liniauskiene, E.; Baltazar, T.; Jaskulski, D.; Kintl, A.; et al. Bentonite as a Functional Material Enhancing Phytostabilization of Post-Industrial Contaminated Soils with Heavy Metals. Materials 2022, 15, 8331. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Wu, J.M.; Li, L.; Yang, Y.H.; Cao, J. Modified fly ash as an effect adsorbent for simultaneous removal of heavy metal cations and anions in wastewater. Appl. Surf. Sci. 2023, 624, 157165. [Google Scholar] [CrossRef]
- Kashem, M.A.; Singh, B.R. Metal availability in contaminated soils: I. Effects of flooding and organic matter on changes in Eh, pH and solubility of Cd, Ni andZn. Nutr. Cycl. Agroecosyst. 2001, 61, 247–255. [Google Scholar] [CrossRef]
- Liu, Y.X.; Zeng, F.G.; Sun, B.L.; Jia, P. Research on XRD and FTIR Spectra of Fly Ash in Different Particle Size from Gujiao Power Plant. Spectrosc. Spectr. Anal. 2020, 40, 1452–1456. [Google Scholar] [CrossRef]
- Liu, J.A.; Wang, J.; Chen, Y.H.; Lippold, H.; Lippmann-Pipke, J. Comparative characterization of two natural humic acids in the Pearl River Basin, China and their environmental implications. J. Environ. Sci. 2010, 22, 1695–1702. [Google Scholar] [CrossRef]
- Pei, J.C.; Fan, L.W.; Xie, H. Study on the Vibrational Spectra and XRD Characters of Huanglong Jade from Longling County, Yunnan Province. Spectrosc. Spectr. Anal. 2014, 34, 3411–3414. [Google Scholar] [CrossRef]
- Kannan, R.; Jegan, A.; Ramasubbu, A.; Karunakaran, K.; Vasanthkumar, S. Synthesis and catalytic stuides of layered and oms type nano manganese oxide material. Dig. J. Nanomater. Biostruct. 2011, 6, 755–760. [Google Scholar]
- Montoya, A.; Reyes, J.L.; Reyes, I.A.; Cruz, R.; Lazaro, I.; Rodriguez, I. Effect of sodium hypochlorite as a depressant for copper species in Cu-Mo flotation separation. Miner. Eng. 2023, 201, 108166. [Google Scholar] [CrossRef]
- Kong, H.S.; Kim, B.J.; Kang, K.S. Enhancement of Fire Retardancy Using Surface-Modified Silica Spheres with Aluminum Hydroxide. Arab. J. Sci. Eng. 2017, 42, 4473–4477. [Google Scholar] [CrossRef]
- Xie, J.; Wu, S.P.; Pang, L.; Lin, J.T.; Zhu, Z.H. Influence of surface treated fly ash with coupling agent on asphalt mixture moisture damage. Constr. Build. Mater. 2012, 30, 340–346. [Google Scholar] [CrossRef]
- Chelike, D.K.; Alagumalai, A.; Acharya, J.; Kumar, P.; Sarkar, K.; Thangavelu, S.A.G.; Chandrasekhar, V. Functionalized iron oxide nanoparticles conjugate of multi-anchored Schiff’s base inorganic heterocyclic pendant groups: Cytotoxicity studies. Appl. Surf. Sci. 2020, 501, 143963. [Google Scholar] [CrossRef]
- Abd Malek, N.N.; Jawad, A.H.; Abdulhameed, A.S.; Ismail, K.; Hameed, B.H. New magnetic Schiffs base-chitosan-glyoxal/fly ash/Fe3O4 biocomposite for the removal of anionic azo dye: An optimized process. Int. J. Biol. Macromol. 2020, 146, 530–539. [Google Scholar] [CrossRef]
- Madejova, J.; Keckes, J.; Palkova, H.; Komadel, P. Identification of components in smectite/kaolinite mixtures. Clay Min. 2002, 37, 377–388. [Google Scholar] [CrossRef]
- Chamling, P.K.; Haldar, S.; Patra, S. Physico-Chemical and Mechanical Characterization of Steel Slag as Railway Ballast. Indian Geotech. J. 2020, 50, 267–275. [Google Scholar] [CrossRef]
- Chen, G.; Ling, Y.Q.; Li, Q.N.; Zheng, H.; Jiang, Q.; Li, K.Q.; Chen, J.; Peng, J.H.; Gao, L.; Omran, M.; et al. Investigation on microwave carbothermal reduction behavior of low-grade pyrolusite. J. Mater. Res. Technol. 2020, 9, 7862–7869. [Google Scholar] [CrossRef]
- Jiang, Q.; He, Y.M.; Wu, Y.L.; Dian, B.; Zhang, J.L.; Li, T.G.; Jiang, M. Stabilization/stabilization of soil heavy metals by alkaline industrial wastes: A critical review. Environ. Pollut. 2022, 312, 120094. [Google Scholar] [CrossRef]
- Liu, M.H.; Xia, Y.; Zhao, Y.D.; Chi, X.F.; Du, J.X.; Du, D.H.; Guo, J.Z.; Cao, Z.G. Na2SO4 modified low-carbon cementitious binder containing commercial low-reactivity metakaolin for heavy metal immobilization: Mechanism of physical encapsulation and chemical binding. J. Build. Eng. 2022, 60, 105194. [Google Scholar] [CrossRef]
- Wang, X.J.; Wang, K.; Li, J.W.; Wang, W.L.; Mao, Y.P.; Wu, S.; Yang, S.Z. Heavy metals migration during the preparation and hydration of an eco-friendly steel slag-based cementitious material. J. Clean Prod. 2021, 329, 129715. [Google Scholar] [CrossRef]
- Wang, S.T.; Dong, Q.; Wang, Z.L. Differential effects of citric acid on cadmium uptake and accumulation between tall fescue and Kentucky bluegrass. Ecotox. Environ. Saf. 2017, 145, 200–206. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.N.; Zhou, S.W.; Huang, Q.; Huang, Y.C.; Qiu, W.W.; Song, Z.G. Capacity and mechanism of arsenic adsorption on red soil supplemented with ferromanganese oxide-biochar composites. Environ. Sci. Pollut. Res. 2018, 25, 20116–20124. [Google Scholar] [CrossRef]
- Ma, L.; Cai, D.M.; Tu, S.X. Arsenite simultaneous sorption and oxidation by natural ferruginous manganese ores with various ratios of Mn/Fe. Chem. Eng. J. 2020, 382, 123040. [Google Scholar] [CrossRef]
- Frau, F.; Rossi, A.; Ardau, C.; Biddau, R.; Da Pelo, S.; Atzei, D.; Licheri, C.; Cannas, C.; Capitani, G. Determination of arsenic speciation in complex environmental samples by the combined use of TEM and XPS. Microchim. Acta 2005, 151, 189–201. [Google Scholar] [CrossRef]
- Zhu, J.F.; Gao, W.C.; Zhao, W.T.; Ge, L.; Zhu, T.; Zhang, G.H.; Niu, Y.H. Wood vinegar enhances humic acid-based remediation material to solidify Pb(II) for metal-contaminated soil. Environ. Sci. Pollut. Res. 2021, 28, 12648–12658. [Google Scholar] [CrossRef]
- Yamashita, T.; Hayes, P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl. Surf. Sci. 2008, 254, 2441–2449. [Google Scholar] [CrossRef]
- Rao, X.F.; Lou, Y.T.; Zhao, J.J.; Chen, J.; Qiu, Y.P.; Wu, T.T.; Zhong, S.W.; Wang, H.; Wu, L.J. Carbon nanofibers derived from carbonization of electrospinning polyacrylonitrile (PAN) as high performance anode material for lithium ion batteries. J. Porous Mat. 2023, 30, 403–419. [Google Scholar] [CrossRef]
- Xu, W.; Lan, H.C.; Wang, H.J.; Liu, H.M.; Qu, J.H. Comparing the adsorption behaviors of Cd, Cu and Pb from water onto Fe-Mn binary oxide, MnO2 and FeOOH. Front. Environ. Sci. Eng. 2015, 9, 385–393. [Google Scholar] [CrossRef]
Soil Parameter | Value |
---|---|
Soil pH | 6.25 |
Organic matter content (mg·kg−1) | 13.5 |
Available N (mg·kg−1) | 663 |
Available P (mg·kg−1) | 360 |
Available K (mg·kg−1) | 64 |
Cation exchange capacity (meq·100g−1) | 6.37 |
Total Cd (mg·kg−1) | 0.38 |
Total As (mg·kg−1) | 76.14 |
Compound | CaO | Fe2O3 | SiO2 | MgO | Al2O3 | MnO | SO3 | P2O5 | TiO2 |
---|---|---|---|---|---|---|---|---|---|
Content (%) | 44.32 | 18.12 | 12.12 | 8.74 | 7.96 | 3.07 | 1.56 | 1.48 | 1.29 |
Compound | SiO2 | MnO | Fe2O3 | Al2O3 | CaO | K2O | MgO | P2O5 | TiO2 |
---|---|---|---|---|---|---|---|---|---|
Content (%) | 44.00 | 23.67 | 22.54 | 6.27 | 0.80 | 0.77 | 0.52 | 0.43 | 0.21 |
Compound | SiO2 | Al2O3 | Fe2O3 | CaO | K2O | TiO2 | Na2O | MgO | SO3 |
---|---|---|---|---|---|---|---|---|---|
Content (%) | 62.30 | 26.27 | 3.50 | 2.54 | 2.17 | 1.02 | 0.67 | 0.64 | 0.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Wu, J.; Cao, J. Combined Remediation towards Cadmium–Arsenic-Contaminated Soil via Phytoremediation and Stabilization. Resources 2023, 12, 109. https://doi.org/10.3390/resources12090109
Zhang C, Wu J, Cao J. Combined Remediation towards Cadmium–Arsenic-Contaminated Soil via Phytoremediation and Stabilization. Resources. 2023; 12(9):109. https://doi.org/10.3390/resources12090109
Chicago/Turabian StyleZhang, Chenxu, Jiamei Wu, and Jian Cao. 2023. "Combined Remediation towards Cadmium–Arsenic-Contaminated Soil via Phytoremediation and Stabilization" Resources 12, no. 9: 109. https://doi.org/10.3390/resources12090109
APA StyleZhang, C., Wu, J., & Cao, J. (2023). Combined Remediation towards Cadmium–Arsenic-Contaminated Soil via Phytoremediation and Stabilization. Resources, 12(9), 109. https://doi.org/10.3390/resources12090109