Radiometric Signatures of Gold Mineralization Zone in Pongkor, West Java, Indonesia: A Baseline for Radiometric Mapping Application on Low-Sulfidation Epithermal Deposit
Abstract
:1. Introduction
2. Geological Setting
- Pyrite–chalcopyrite–sphalerite–galena. This ore assemblage is the most common sulfide mineral in the vein system. It formed from the early stage (CQ) to the late stage of mineralization (GSQ).
- Au–Ag alloy–acanthite–polybasite–pearceite. Various types of sulfide-sulfosal minerals characterize this assemblage. These minerals are dominantly found in the GSQ in isolated patches, as vug fillings, interstitial aggregates, or as inclusions in pyrite.
- Chalcocite–acanthite–aguilarite. These ore assemblages originated from the supergene process and formed later in the mineralization system.
3. Materials and Methods
4. Results
4.1. Radiometric Signatures of the Unaltered and Altered Zones
4.2. Radiometric Signatures of the Mining Fronts and Outcrop
4.3. Geochemistry of the Mining Fronts and Outcrop
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Elkhateeb, S.O.; Abdellatif, M.A.G. Delineation potential gold mineralization zones in a part of Central Eastern Desert, Egypt using Airborne Magnetic and Radiometric data. NRIAG J. Astron. Geophys. 2018, 7, 361–376. [Google Scholar] [CrossRef]
- Chiozzi, P.; Pasquale, V.; Verdoya, M. Radiometric survey for exploration of hydrothermal alteration in a volcanic area. J. Geochem. Explor. 2007, 93, 13–20. [Google Scholar] [CrossRef]
- Syaeful, H.; Sukadana, I.G.; Sumaryanto, A. Radiometric Mapping for Naturally Occurring Radioactive Materials (NORM) Assessment in Mamuju, West Sulawesi. Atom Indones. 2014, 40, 33–39. [Google Scholar] [CrossRef]
- Gde Sukadana, I.; Wayan Warmada, I.; Harijoko, A.; Indrastomo, F.D.; Syaeful, H. The Application of Geostatistical Analysis on Radiometric Mapping Data to Recognized the Uranium and Thorium Anomaly in West Sulawesi, Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2021, 819, 012030. [Google Scholar] [CrossRef]
- El-Sadek, M.A. Radiospectrometric and magnetic signatures of a gold mine in Egypt. J. Appl. Geophys. 2009, 67, 34–43. [Google Scholar] [CrossRef]
- Shives, R.B.K.; Charbonneau, B.W.; Ford, K.L. The detection of potassic alteration by gamma-ray spectrometry-Recognition of alteration related to mineralization. Geophysics 2000, 65, 2001–2011. [Google Scholar] [CrossRef]
- Atta, S.K. Mapping subsurface geological structures in the Birimian Supergroup, Ghana using airborne magnetic and radiometric data: Implications for gold exploration. J. Afr. Earth Sci. 2023, 205, 105003. [Google Scholar] [CrossRef]
- Olomo, K.O.; Bayode, S.; Alagbe, O.A.; Olayanju, G.M.; Olaleye, O.K. Multifaceted investigation of porphyry Cu-Au-Mo deposit in hydrothermal alteration zones within the gold field of Ilesha Schist Belt. Malaysian J. Geosci. 2022, 6, 45–53. [Google Scholar] [CrossRef]
- Salawu, N.B.; Omosanya, K.O.L.; Eluwole, A.B.; Saleh, A.; Adebiyi, L.S. Structurally-controlled Gold Mineralization in the Southern Zuru Schist Belt NW Nigeria: Application of Remote Sensing and Geophysical Methods. J. Appl. Geophys. 2023, 211, 104969. [Google Scholar] [CrossRef]
- Honarmand, M. Application of Airborne Geophysical and ASTER Data for Hydrothermal Alteration Mapping in the Sar-Kuh Porphyry Copper Area, Kerman Province, Iran. Open J. Geol. 2016, 6, 1257–1268. [Google Scholar] [CrossRef]
- Kwan, K.; Prikhodko, A.; Legault, J.M.; Plastow, G.C.; Kapetas, J.; Druecker, M. VTEM airborne EM, aeromagnetic and gamma-ray spectrometric data over the Cerro Quema high sulphidation epithermal gold deposits, Panama. Explor. Geophys. 2016, 47, 179–190. [Google Scholar] [CrossRef]
- Richarte, D.; Correa-Otto, S.; Lince Klinger, F.; Giménez, M. Geophysical characterization of a low sulfidation epithermal gold and silver deposit, Mendoza, Argentina. J. S. Am. Earth Sci. 2023, 123, 104227. [Google Scholar] [CrossRef]
- Maden, N.; Akaryali, E. Gamma ray spectrometry for recognition of hydrothermal alteration zones related to a low sulfidation epithermal gold mineralization (eastern Pontides, NE Türkiye). J. Appl. Geophys. 2015, 122, 74–85. [Google Scholar] [CrossRef]
- Feebrey, C.A.; Hishida, H.; Yoshioka, K.; Nakayama, K. Geophysical Expression of Low Sulphidation Epithermal Au-Ag Deposits and Exploration Implications -Examples from the Hokusatsu Region of SW Kyushu, Japan. Resour. Geol. 1998, 48, 75–86. [Google Scholar] [CrossRef]
- Susilohadi, S.; Gaedicke, C.; Ehrhardt, A. Neogene structures and sedimentation history along the Sunda forearc basins off southwest Sumatra and southwest Java. Mar. Geol. 2005, 219, 133–154. [Google Scholar] [CrossRef]
- Milési, J.P.; Marcoux, E.; Sitorus, T.; Simandjuntak, M.; Leroy, J.; Bailly, L. Pongkor (west Java, Indonesia): A Pliocene supergene-enriched epithermal Au-Ag-(Mn) deposit. Miner. Depos. 1999, 34, 131–149. [Google Scholar] [CrossRef]
- Warmada, I.W.; Lehmann, B.; Simandjuntak, M.; Hemes, H.S. Fluid inclusion, rare-earth element and stable isotope study of carbonate minerals from the Pongkor epithermal gold-silver deposit, West Java, Indonesia. Resour. Geol. 2007, 57, 124–135. [Google Scholar] [CrossRef]
- Titisari, A.D.; Phillips, D.; Warmada, I.W.; Hartono; Idrus, A. 40Ar/39Ar geochronology of the Pongkor low sulfidation epithermal gold mineralisation, West Java, Indonesia. Ore Geol. Rev. 2020, 119, 103341. [Google Scholar] [CrossRef]
- Syafrizal; Imai, A.; Watanabe, K. Origin of ore-forming fluids responsible for gold mineralization of the Pongkor Au-Ag deposit, West Java, Indonesia: Evidence from mineralogic, fluid inclusion microthermometry and stable isotope study of the Ciurug-Cikoret veins. Resour. Geol. 2007, 57, 136–148. [Google Scholar] [CrossRef]
- Prihatmoko, S.; Idrus, A. Low-sulfidation epithermal gold deposits in Java, Indonesia: Characteristics and linkage to the volcano-tectonic setting. Ore Geol. Rev. 2020, 121, 103490. [Google Scholar] [CrossRef]
- Carlile, J.C.; Mitchell, A.H.G. Magmatic arcs and associated gold and copper mineralization in Indonesia. J. Geochem. Explor. 1994, 50, 91–142. [Google Scholar] [CrossRef]
- Setijadji, L.D.; Kajino, S.; Imai, A.; Watanabe, K. Cenozoic island arc magmatism in Java Island (Sunda Arc, Indonesia): Clues on relationships between geodynamics of volcanic centers and ore mineralization. Resour. Geol. 2006, 56, 267–292. [Google Scholar] [CrossRef]
- Clements, B.; Hall, R. Cretaceous to Late Miocene Stratigraphic and Tectonic Evolution of West Java. In Proceedings of the 31st Annual Convention Proceedings of Indonesian Petroleum Association; Jakarta, Indonesia, 14–16 May 2007. [CrossRef]
- Wang, D.; Lin, F.; Shi, M.; Wang, H.; Yang, X. Geological setting, tectonic evolution and spatio-temporal distributions of main mineral resources in South East Asia: A comprehensive review. Solid Earth Sci. 2023, 8, 34–48. [Google Scholar] [CrossRef]
- Zhang, Z.; Shu, Q.; Yang, X.; Wu, C.; Zheng, C.; Xu, J. Review on the Tectonic Terranes Associated with Metallogenic Zones in Southeast Asia. J. Earth Sci. 2019, 30, 1–19. [Google Scholar] [CrossRef]
- Angeles, C.A.; Prihatmoko, S.; Walker, J.S. Geology and Alteration-Mineralization Characteristics of the Cibaliung Epithermal Gold Deposit, Banten, Indonesia. Resour. Geol. 2002, 52, 329–339. [Google Scholar] [CrossRef]
- Harijoko, A.; Sanematsu, K.; Duncan, R.A.; Prihatmoko, S.; Watanabe, K. Timing of the mineralization and volcanism at Cibaliung gold deposit, western Java, Indonesia. Resour. Geol. 2004, 54, 187–195. [Google Scholar] [CrossRef]
- Lubis, H.; Prihatmoko, S.; Herunanto, Y. Geology and exploration for low-sulfidation epithermal gold-silver mineralization in Kerta, Banten, Indonesia. In Proceedings of the MGEI Annual Convention on Banda and Eastern Sunda Arcs (BESA), Malang, Indonesia, 26–27 November 2012; pp. 39–71. [Google Scholar]
- Marcoux, E.; Milési, J.P. Epithermal gold deposits in West Java, Indonesia: Geology, age and crustal source. J. Geochem. Explor. 1994, 50, 393–408. [Google Scholar] [CrossRef]
- Basuki, A.; Aditya Sumanagara, D.; Sinambela, D. The Gunung Pongkor gold-silver deposit, West Java, Indonesia. J. Geochem. Explor. 1994, 50, 371–391. [Google Scholar] [CrossRef]
- Rosana, M.F.; Matsueda, H. Cikidang Hydrothermal Gold Deposit in Western Java, Indonesia. Resour. Geol. 2002, 52, 341–352. [Google Scholar] [CrossRef]
- Warmada, I.W.; Lehmann, B.; Simandjuntak, M. Polymetallic sulfides and sulfosalts of the Pongkor epithermal gold-silver deposit, West Java, Indonesia. Can. Mineral. 2003, 41, 185–200. [Google Scholar] [CrossRef]
- Syafrizal; Imai, A.; Motomura, Y.; Watanabe, K. Characteristics of gold mineralization at the Ciurug vein, Pongkor gold-silver deposit, West Java, Indonesia. Resour. Geol. 2005, 55, 225–238. [Google Scholar] [CrossRef]
- Bakhsh, R.A.; Ahmed, A.H. The Umm Matierah gold prospect: Mineralogical and geochemical characteristics of a potential low-sulfidation epithermal gold deposits, southeastern Arabian Shield, Saudi Arabia. J. Asian Earth Sci. X 2023, 9, 100153. [Google Scholar] [CrossRef]
- Arhin, E.; Boadi, S.; Esoah, M.C. Identifying pathfinder elements from termite mound samples for gold exploration in regolith complex terrain of the Lawra belt, NW Ghana. J. Afr. Earth Sci. 2015, 109, 143–153. [Google Scholar] [CrossRef]
- Balaram, V.; Sawant, S.S. Indicator Minerals, Pathfinder Elements, and Portable Analytical Instruments in Mineral Exploration Studies. Minerals 2022, 12, 394. [Google Scholar] [CrossRef]
- Akinlalu, A.A. Radiometric Mapping for The Identification of Hydrothermally Altered Zones Related to Gold Mineralization in Ife–Ilesa Schist Belt, Southwestern Nigeria. Indones. J. Earth Sci. 2023, 3, A519. [Google Scholar] [CrossRef]
- Ohioma, O.J.; Ezomo, F.; Akinsunmade, A. Delineation of Hydrothermally Altered Zones that Favour Gold Mineralization in Isanlu Area, Nigeria Using Aeroradiometric Data. Int. Ann. Sci. 2017, 2, 20–27. [Google Scholar] [CrossRef]
- Omel’yanenko, B.I.; Petrov, V.A.; Poluektov, V.V. Behavior of uranium under conditions of interaction of rocks and ores with subsurface water. Geol. Ore Depos. 2007, 49, 378–391. [Google Scholar] [CrossRef]
- Abd El-Naby, H.H.; Saleh, G.M. Radioelement distributions in the Proterozoic granites and associated pegmatites of Gabal El Fereyid area, Southeastern Desert, Egypt. Appl. Radiat. Isot. 2003, 59, 289–299. [Google Scholar] [CrossRef]
- Omoniyi, I.M.; Oludare, S.M.B.; Oluwaseyi, O.M. Determination of radionuclides and elemental composition of clay soils by gamma- and X-ray spectrometry. Springerplus 2013, 2, 1–11. [Google Scholar] [CrossRef]
- Varner, T.S.; Kulkarni, H.V.; Bhuiyan, M.U.; Cardenas, M.B.; Knappett, P.S.K.; Datta, S. Mineralogical Associations of Sedimentary Arsenic within a Contaminated Aquifer Determined through Thermal Treatment and Spectroscopy. Minerals 2023, 13, 889. [Google Scholar] [CrossRef]
- Rehman, A.; Rukh, S.; Ayoubi, S.A.; Khattak, S.A.; Mehmood, A.; Ali, L.; Khan, A.; Malik, K.M.; Qayyum, A.; Salam, H. Natural Clay Minerals as Potential Arsenic Sorbents from Contaminated Groundwater: Equilibrium and Kinetic Studies. Int. J. Environ. Res. Public Health 2022, 19, 16292. [Google Scholar] [CrossRef]
Unit | Radioelement | Mn | Fe | Zn | As | Pb |
---|---|---|---|---|---|---|
Host Rock | K (%) | 0.00 | 0.29 | −0.02 | 0.14 | −0.07 |
eU (ppm) | −0.20 | −0.04 | −0.18 | −0.03 | −0.44 | |
eTh (ppm) | 0.00 | −0.37 | 0.00 | −0.43 | 0.35 | |
BOQ Vein | K (%) | −0.48 | −0.46 | 0.06 | 0.59 | |
eU (ppm) | −0.08 | −0.18 | 0.12 | 0.71 | ||
eTh (ppm) | −0.46 | −0.53 | −0.10 | 0.29 | ||
CQ Vein | K (%) | 0.26 | 0.04 | −0.13 | −0.17 | −0.09 |
eU (ppm) | 0.16 | −0.27 | −0.43 | −0.10 | −0.60 | |
eTh (ppm) | −0.03 | −0.30 | −0.48 | −0.28 | −0.14 | |
MOQ Vein | K (%) | −0.57 | −0.24 | −0.42 | 0.97 | −0.41 |
eU (ppm) | −0.52 | −0.44 | −0.41 | 0.17 | −0.57 | |
eTh (ppm) | −0.28 | 0.05 | −0.40 | 0.85 | −0.48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Syaeful, H.; Ciputra, R.C.; Adimedha, T.B.; Sumaryanto, A.; Sukadana, I.G.; Indrastomo, F.D.; Pratiwi, F.; Sucipta, S.; Pratama, H.A.; Mustika, D.; et al. Radiometric Signatures of Gold Mineralization Zone in Pongkor, West Java, Indonesia: A Baseline for Radiometric Mapping Application on Low-Sulfidation Epithermal Deposit. Resources 2024, 13, 2. https://doi.org/10.3390/resources13010002
Syaeful H, Ciputra RC, Adimedha TB, Sumaryanto A, Sukadana IG, Indrastomo FD, Pratiwi F, Sucipta S, Pratama HA, Mustika D, et al. Radiometric Signatures of Gold Mineralization Zone in Pongkor, West Java, Indonesia: A Baseline for Radiometric Mapping Application on Low-Sulfidation Epithermal Deposit. Resources. 2024; 13(1):2. https://doi.org/10.3390/resources13010002
Chicago/Turabian StyleSyaeful, Heri, Roni Cahya Ciputra, Tyto Baskara Adimedha, Agus Sumaryanto, I Gde Sukadana, Frederikus Dian Indrastomo, Fadiah Pratiwi, Sucipta Sucipta, Hendra Adhi Pratama, Deni Mustika, and et al. 2024. "Radiometric Signatures of Gold Mineralization Zone in Pongkor, West Java, Indonesia: A Baseline for Radiometric Mapping Application on Low-Sulfidation Epithermal Deposit" Resources 13, no. 1: 2. https://doi.org/10.3390/resources13010002
APA StyleSyaeful, H., Ciputra, R. C., Adimedha, T. B., Sumaryanto, A., Sukadana, I. G., Indrastomo, F. D., Pratiwi, F., Sucipta, S., Pratama, H. A., Mustika, D., Widana, K. S., Widodo, S., Burhannudinnur, M., Syafri, I., & Sutopo, B. (2024). Radiometric Signatures of Gold Mineralization Zone in Pongkor, West Java, Indonesia: A Baseline for Radiometric Mapping Application on Low-Sulfidation Epithermal Deposit. Resources, 13(1), 2. https://doi.org/10.3390/resources13010002