Reliability of Recurrence Quantification Analysis Measures for Sit-to-Stand and Stand-to-Sit Activities in Healthy Older Adults Using Wearable Sensors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Methodology
2.3. RQA Feature Extraction
2.4. Reliability Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
RFID | Radio frequency identification |
RQA | Recurrence quantification analysis |
Si2St | Sit-to-stand |
St2Si | Stand-to-sit |
RR | Recurrence rate |
DET | Determinism |
ENT | Entropy |
L | Average diagonal length |
FNN | False nearest neighbors |
References
- Kralj, A.; Jaeger, R.J.; Munih, M. Analysis of standing up and sitting down in humans: Definitions and normative data presentation. J. Biomech. 1990, 23, 1123–1138. [Google Scholar] [CrossRef]
- Martinez-Hernandez, U.; Dehghani-Sanij, A.A. Probabilistic identification of sit-to-stand and stand-to-sit with a wearable sensor. Pattern Recognit. Lett. 2019, 118, 32–41. [Google Scholar] [CrossRef] [Green Version]
- Massé, F.; Bourke, A.K.; Chardonnens, J.; Paraschiv-Ionescu, A.; Aminian, K. Suitability of commercial barometric pressure sensors to distinguish sitting and standing activities for wearable monitoring. Med. Eng. Phys. 2014, 36, 739–744. [Google Scholar] [CrossRef] [PubMed]
- Schenkman, M.; Berger, R.A.; Riley, P.O.; Mann, R.W.; Hodge, W.A. Whole-body movements during rising to standing from sitting. Phys. Ther. 1990, 70, 638–648. [Google Scholar] [CrossRef]
- Aggarwal, J.K.; Ryoo, M.S. Human activity analysis: A review. ACM Comput. Surv. 2011, 43, 1–43. [Google Scholar] [CrossRef]
- Mourey, F.; Grishin, A.; d’Athis, P.; Pozzo, T.; Stapley, P. Standing up from a chair as a dynamic equilibrium task: A comparison between young and elderly subjects. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2000, 55, B425–B431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Morais Faria, C.D.C.; Saliba, V.A.; Teixeira-Salmela, L.F. Musculoskeletal biomechanics in sit-to-stand and stand-to-sit activities with stroke subjects: A systematic review. Fisioter. Em Mov. 2010, 23, 35–52. [Google Scholar] [CrossRef] [Green Version]
- Nuzik, S.; Lamb, R.; VanSant, A.; Hirt, S. Sit-to-stand movement pattern: A kinematic study. Phys. Ther. 1986, 66, 1708–1713. [Google Scholar] [CrossRef]
- Cadore, E.L.; Izquierdo, M. New strategies for the concurrent strength-, power-, and endurance-training prescription in elderly individuals. J. Am. Med. Dir. Assoc. 2013, 14, 623–624. [Google Scholar] [CrossRef]
- Cadore, E.L.; Rodríguez-Mañas, L.; Sinclair, A.; Izquierdo, M. Effects of different exercise interventions on risk of falls, gait ability, and balance in physically frail older adults: A systematic review. Rejuvenation Res. 2013, 16, 105–114. [Google Scholar] [CrossRef] [Green Version]
- Cadore, E.L.; Casas-Herrero, A.; Zambom-Ferraresi, F.; Idoate, F.; Millor, N.; Gómez, M.; Rodriguez-Mañas, L.; Izquierdo, M. Multicomponent exercises including muscle power training enhance muscle mass, power output, and functional outcomes in institutionalized frail nonagenarians. Age 2014, 36, 773–785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aissaoui, R.; Dansereau, J. Biomechanical analysis and modelling of sit to stand task: A literature review. In Proceedings of the IEEE SMC’99 Conference Proceedings. 1999 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No. 99CH37028), Tokyo, Japan, 12–15 October 1999; Volume 1, pp. 141–146. [Google Scholar]
- Deandrea, S.; Lucenteforte, E.; Bravi, F.; Foschi, R.; La Vecchia, C.; Negri, E. Risk factors for falls in community-dwelling older people: A systematic review and meta-analysis. Epidemiology 2010, 21, 658–668. [Google Scholar] [CrossRef] [PubMed]
- Tinetti, M.E. Preventing falls in elderly persons. N. Engl. J. Med. 2003, 348, 42–49. [Google Scholar] [CrossRef] [Green Version]
- Tinetti, M.E.; Williams, C.S. Falls, injuries due to falls, and the risk of admission to a nursing home. N. Engl. J. Med. 1997, 337, 1279–1284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schultz, A.B.; Alexander, N.B.; Ashton-Miller, J.A. Biomechanical analyses of rising from a chair. J. Biomech. 1992, 25, 1383–1391. [Google Scholar] [CrossRef] [Green Version]
- Bernardi, M.; Rosponi, A.; Castellano, V.; Rodio, A.; Traballesi, M.; Delussu, A.; Marchetti, M. Determinants of sit-to-stand capability in the motor impaired elderly. J. Electromyogr. Kinesiol. 2004, 14, 401–410. [Google Scholar] [CrossRef] [PubMed]
- Doulah, A.; Shen, X.; Sazonov, E. A method for early detection of the initiation of sit-to-stand posture transitions. Physiol. Meas. 2016, 37, 515. [Google Scholar] [CrossRef]
- Wolf, K.H.; Hetzer, K.; Zu Schwabedissen, H.; Wiese, B.; Marschollek, M. Development and pilot study of a bed-exit alarm based on a body-worn accelerometer. Z. Gerontol. Geriatr. 2013, 46, 727–733. [Google Scholar] [CrossRef]
- Ganea, R.; Paraschiv-Ionescu, A.; Büla, C.; Rochat, S.; Aminian, K. Multi-parametric evaluation of sit-to-stand and stand-to-sit transitions in elderly people. Med. Eng. Phys. 2011, 33, 1086–1093. [Google Scholar] [CrossRef]
- Janssen, W.G.; Kulcu, D.G.; Horemans, H.L.; Stam, H.J.; Bussmann, J.B. Sensitivity of accelerometry to assess balance control during sit-to-stand movement. IEEE Trans. Neural Syst. Rehabil. Eng. 2008, 16, 479–484. [Google Scholar] [CrossRef]
- Janssen, W.G.; Bussmann, J.B.; Horemans, H.L.; Stam, H.J. Validity of accelerometry in assessing the duration of the sit-to-stand movement. Med. Biol. Eng. Comput. 2008, 46, 879–887. [Google Scholar] [CrossRef] [PubMed]
- Pozaic, T.; Lindemann, U.; Grebe, A.K.; Stork, W. Sit-to-Stand Transition Reveals Acute Fall Risk in Activities of Daily Living. IEEE J. Transl. Eng. Health Med. 2016, 4. [Google Scholar] [CrossRef]
- Ejupi, A.; Brodie, M.; Lord, S.R.; Annegarn, J.; Redmond, S.J.; Delbaere, K. Wavelet-Based Sit-To-Stand Detection and Assessment of Fall Risk in Older People Using a Wearable Pendant Device. IEEE Trans. Biomed. Eng. 2017, 64, 1602–1607. [Google Scholar] [CrossRef] [PubMed]
- Torres, R.L.S.; Ranasinghe, D.C.; Shi, Q. Evaluation of wearable sensor tag data segmentation approaches for real time activity classification in elderly. In Proceedings of the International Conference on Mobile and Ubiquitous Systems: Computing, Networking, and Services, Tokyo, Japan, 2–4 December 2013; Springer: Cham, Switzerland, 2013; pp. 384–395. [Google Scholar]
- Penatti, O.A.; Santos, M.F. Human activity recognition from mobile inertial sensors using recurrence plots. arXiv 2017, arXiv:1712.01429. [Google Scholar]
- Capela, N.A.; Lemaire, E.D.; Baddour, N. Improving classification of sit, stand, and lie in a smartphone human activity recognition system. In Proceedings of the 2015 IEEE International Symposium on Medical Measurements and Applications (MeMeA) Proceedings, Turin, Italy, 7–9 May 2015; pp. 473–478. [Google Scholar]
- Wickramasinghe, A.; Ranasinghe, D.C. Recognising activities in real time using body worn passive sensors with sparse data streams: To interpolate or not to interpolate? In Proceedings of the 12th EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services, Coimbra, Portugal, 22–24 July 2016; pp. 21–30. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.M.; Lee, Y.K.; Lee, S.Y.; Kim, T.S. A triaxial accelerometer-based physical-activity recognition via augmented-signal features and a hierarchical recognizer. IEEE Trans. Inf. Technol. Biomed. 2010, 14, 1166–1172. [Google Scholar] [CrossRef] [PubMed]
- Bao, L.; Intille, S.S. Activity recognition from user-annotated acceleration data. In Proceedings of the International Conference on Pervasive Computing, Vienna, Austria, 21–23 April 2004; Springer: Berlin/Heidelberg, Germany, 2004; pp. 1–17. [Google Scholar]
- Ravi, N.; Dandekar, N.; Mysore, P.; Littman, M.L. Activity recognition from accelerometer data. In Proceedings of the Twentieth National Conference on Artificial Intelligence and the Seventeenth Innovative Applications of Artificial Intelligence Conference, Pittsburgh, PA, USA, 9–13 July 2005; Volume 5, pp. 1541–1546. [Google Scholar]
- Parlitz, U. Nonlinear time-series analysis. In Nonlinear Modeling; Springer: Berlin/Heidelberg, Germany, 1998; pp. 209–239. [Google Scholar]
- Riley, M.; Balasubramaniam, R.; Turvey, M. Recurrence quantification analysis of postural fluctuations. Gait Posture 1999, 9, 65–78. [Google Scholar] [CrossRef]
- Marwan, N.; Romano, M.C.; Thiel, M.; Kurths, J. Recurrence plots for the analysis of complex systems. Phys. Rep. 2007, 438, 237–329. [Google Scholar] [CrossRef]
- Webber, C.; Marwan, N. Recurrence quantification analysis. In Theory and Best Practices; Springer: Cham, Switzerland, 2015. [Google Scholar]
- Ramdani, S.; Tallon, G.; Bernard, P.L.; Blain, H. Recurrence quantification analysis of human postural fluctuations in older fallers and non-fallers. Ann. Biomed. Eng. 2013, 41, 1713–1725. [Google Scholar] [CrossRef]
- Anderson, N.C.; Bischof, W.F.; Laidlaw, K.E.; Risko, E.F.; Kingstone, A. Recurrence quantification analysis of eye movements. Behav. Res. Methods 2013, 45, 842–856. [Google Scholar] [CrossRef] [Green Version]
- Gurtner, L.M.; Bischof, W.F.; Mast, F.W. Recurrence quantification analysis of eye movements during mental imagery. J. Vis. 2019, 19, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Fragkou, A.D.; Karakasidis, T.E.; Nathanail, E. Detection of traffic incidents using nonlinear time series analysis. Chaos 2018, 28, 063108. [Google Scholar] [CrossRef]
- Santos, B.R.; Delisle, A.; Larivière, C.; Plamondon, A.; Imbeau, D. Reliability of centre of pressure summary measures of postural steadiness in healthy young adults. Gait Posture 2008, 27, 408–415. [Google Scholar] [CrossRef]
- Green, S.B.; Yang, Y.; Alt, M.; Brinkley, S.; Gray, S.; Hogan, T.; Cowan, N. Use of internal consistency coefficients for estimating reliability of experimental task scores. Psychon. Bull. Rev. 2016, 23, 750–763. [Google Scholar] [CrossRef] [Green Version]
- Varghese, R.; Hui-Chan, C.W.; Wang, E.; Bhatt, T. Internal consistency and test-retest reliability of an instrumented functional reaching task using wireless electromyographic sensors. J. Electromyogr. Kinesiol. 2014, 24, 593–600. [Google Scholar] [CrossRef] [PubMed]
- Cronbach, L.J. Coefficient alpha and the internal structure of tests. Psychometrika 1951, 16, 297–334. [Google Scholar] [CrossRef] [Green Version]
- Cronbach, L.J.; Shavelson, R.J. My current thoughts on coefficient alpha and successor procedures. Educ. Psychol. Meas. 2004, 64, 391–418. [Google Scholar] [CrossRef]
- Mazaheri, M.; Negahban, H.; Salavati, M.; Sanjari, M.A.; Parnianpour, M. Reliability of recurrence quantification analysis measures of the center of pressure during standing in individuals with musculoskeletal disorders. Med. Eng. Phys. 2010, 32, 808–812. [Google Scholar] [CrossRef] [PubMed]
- van Lummel, R.C.; Walgaard, S.; Maier, A.B.; Ainsworth, E.; Beek, P.J.; van Dieën, J.H. The Instrumented Sit-to-Stand Test (iSTS) has greater clinical relevance than the manually recorded sit-to-stand test in older adults. PLoS ONE 2016, 11, e0157968. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torres, R.L.S.; Ranasinghe, D.C.; Shi, Q.; Sample, A.P. Sensor enabled wearable RFID technology for mitigating the risk of falls near beds. In Proceedings of the 2013 IEEE International Conference on RFID (RFID), Orlando, FL, USA, 30 April–2 May 2013; pp. 191–198. [Google Scholar]
- Roberto, L.S.T.; Damith, R. Activity Recognition with Healthy Older People Using a Batteryless Wearable Sensor. 2016. Available online: https://archive.ics.uci.edu/ml/datasets/Activity+recognition+with+healthy+older+people+using+a+batteryless+wearable+sensor (accessed on 23 June 2021).
- Dua, D.; Graff, C. Irvine, CA: University of California, School of Information and Computer Science UCI Machine Learning Repository. 2017. Available online: https://archive.ics.uci.edu/ml/citation_policy.html (accessed on 30 September 2021).
- Kaufmann, T.; Ranasinghe, D.C.; Zhou, M.; Fumeaux, C. Wearable quarter-wave folded microstrip antenna for passive UHF RFID applications. Int. J. Antennas Propag. 2013, 2013, 129839. [Google Scholar] [CrossRef] [Green Version]
- Janssen, W.G.; Bussmann, J.B.; Horemans, H.L.; Stam, H.J. Analysis and decomposition of accelerometric signals of trunk and thigh obtained during the sit-to-stand movement. Med. Biol. Eng. Comput. 2005, 43, 265–272. [Google Scholar] [CrossRef]
- Doheny, E.P.; Walsh, C.; Foran, T.; Greene, B.R.; Fan, C.W.; Cunningham, C.; Kenny, R.A. Falls classification using tri-axial accelerometers during the five-times-sit-to-stand test. Gait Posture 2013, 38, 1021–1025. [Google Scholar] [CrossRef] [PubMed]
- Millor, N.; Lecumberri, P.; Gomez, M.; Martinez-Ramirez, A.; Izquierdo, M. Kinematic parameters to evaluate functional performance of sit-to-stand and stand-to-sit transitions using motion sensor devices: A systematic review. IEEE Trans. Neural Syst. Rehabil. Eng. 2014, 22, 926–936. [Google Scholar] [CrossRef] [PubMed]
- Taslim Reza, S.M.; Ahmad, N.; Choudhury, I.A.; Ghazilla, R.A.R. A fuzzy controller for lower limb exoskeletons during sit-to-stand and stand-to-sit movement using wearable sensors. Sensors 2014, 14, 4342–4363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carter, R.; Lubinsky, J. Rehabilitation Research: Principles and Applications; Elsevier: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Cao, L. Practical method for determining the minimum embedding dimension of a scalar time series. Phys. D Nonlinear Phenom. 1997, 110, 43–50. [Google Scholar] [CrossRef]
- Rosenstein, M.T.; Collins, J.J.; De Luca, C.J. Reconstruction expansion as a geometry-based framework for choosing proper delay times. Phys. D Nonlinear Phenom. 1994, 73, 82–98. [Google Scholar] [CrossRef]
- Tavakol, M.; Dennick, R. Making sense of Cronbach’s alpha. Int. J. Med. Educ. 2011, 2, 53. [Google Scholar] [CrossRef]
- Kellar, S.P.; Kelvin, E.A. Munro’s Statistical Methods for Health Care Research; Wolters Kluwer Health/Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2013. [Google Scholar]
- Munro, C.A. The development of a pressure ulcer risk-assessment scale for perioperative patients. Aorn J. 2010, 92, 272–287. [Google Scholar] [CrossRef]
- Atkinson, G.; Nevill, A.M. Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine. Sports Med. 1998, 26, 217–238. [Google Scholar] [CrossRef]
- Donoghue, O.A.; Savva, G.M.; Börsch-Supan, A.; Kenny, R.A. Reliability, measurement error and minimum detectable change in mobility measures: A cohort study of community-dwelling adults aged 50 years and over in Ireland. BMJ Open 2019, 9, e030475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corriveau, H.; Hébert, R.; Prince, F.; Raîche, M. Intrasession reliability of the “center of pressure minus center of mass” variable of postural control in the healthy elderly. Arch. Phys. Med. Rehabil. 2000, 81, 45–48. [Google Scholar] [PubMed]
- He, Z.; Jin, L. Activity recognition from acceleration data based on discrete cosine transform and SVM. In Proceedings of the 2009 IEEE International Conference on Systems, Man and Cybernetics, San Antonio, TX, USA, 11–14 October 2009; pp. 5041–5044. [Google Scholar]
- Muhammad, S.A.; Klein, B.N.; Van Laerhoven, K.; David, K. A feature set evaluation for activity recognition with body-worn inertial sensors. In Proceedings of the International Joint Conference on Ambient Intelligence, Amsterdam, The Netherlands, 16–18 November 2011; Springer: Berlin/Heidelberg, Germany, 2011; pp. 101–109. [Google Scholar]
- Shinmoto Torres, R.L.; Visvanathan, R.; Hoskins, S.; Van den Hengel, A.; Ranasinghe, D.C. Effectiveness of a batteryless and wireless wearable sensor system for identifying bed and chair exits in healthy older people. Sensors 2016, 16, 546. [Google Scholar] [CrossRef] [Green Version]
- Najafi, B.; Aminian, K.; Paraschiv-Ionescu, A.; Loew, F.; Bula, C.J.; Robert, P. Ambulatory system for human motion analysis using a kinematic sensor: Monitoring of daily physical activity in the elderly. IEEE Trans. Biomed. Eng. 2003, 50, 711–723. [Google Scholar] [CrossRef] [PubMed]
Si2St | St2Si | |||||||
---|---|---|---|---|---|---|---|---|
(95% CI) | SEM | MMDC | CV(%) | (95% CI) | SEM | MMDC | CV(%) | |
RR | 0.58 (0.12 0.72) | 0.05 | 0.10 | 22.00 | 0.35 (0.07 0.52) | 0.06 | 0.12 | 22.57 |
DET | 0.54 (0.23 0.74) | 0.11 | 0.21 | 0.04 | 0.51 (0.44 0.59) | 0.04 | 0.08 | 0.00 |
ENT | 0.72 (0.48 0.86) | 0.39 | 0.76 | 13.91 | 0.64 (0.37 0.81) | 0.56 | 1.10 | 17.18 |
L | 0.21 (0.08 0.78) | 8.32 | 16.30 | 82.74 | 0.45 (0.26 0.69) | 6.88 | 13.50 | 94.11 |
Si2St | St2Si | |||||||
---|---|---|---|---|---|---|---|---|
(95% CI) | SEM | MMDC | CV(%) | (95% CI) | SEM | MMDC | CV(%) | |
RR | 0.16 (0.08 0.32) | 2.04 | 3.99 | 25.64 | 0.25 (−0.1 0.32) | 1.40 | 2.74 | 19.07 |
DET | 0.68 (0.33 0.86) | 0.45 | 0.88 | 0.64 | 0.29 (0.01 0.35) | 0.16 | 0.31 | 0.50 |
ENT | 0.71 (0.48 0.86) | 2.23 | 4.37 | 5.81 | 0.69 (0.37 0.81) | 2.56 | 5.01 | 6.41 |
L | 0.55 (0.43 0.88) | 10.32 | 20.22 | 39.74 | 0.18 (0.06 0.38) | 7.08 | 13.87 | 44.31 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nasim, A.; Nchekwube, D.C.; Kim, Y.S. Reliability of Recurrence Quantification Analysis Measures for Sit-to-Stand and Stand-to-Sit Activities in Healthy Older Adults Using Wearable Sensors. Electronics 2021, 10, 2438. https://doi.org/10.3390/electronics10192438
Nasim A, Nchekwube DC, Kim YS. Reliability of Recurrence Quantification Analysis Measures for Sit-to-Stand and Stand-to-Sit Activities in Healthy Older Adults Using Wearable Sensors. Electronics. 2021; 10(19):2438. https://doi.org/10.3390/electronics10192438
Chicago/Turabian StyleNasim, Amnah, David C. Nchekwube, and Yoon Sang Kim. 2021. "Reliability of Recurrence Quantification Analysis Measures for Sit-to-Stand and Stand-to-Sit Activities in Healthy Older Adults Using Wearable Sensors" Electronics 10, no. 19: 2438. https://doi.org/10.3390/electronics10192438
APA StyleNasim, A., Nchekwube, D. C., & Kim, Y. S. (2021). Reliability of Recurrence Quantification Analysis Measures for Sit-to-Stand and Stand-to-Sit Activities in Healthy Older Adults Using Wearable Sensors. Electronics, 10(19), 2438. https://doi.org/10.3390/electronics10192438