Modeling Nanoscale III–V Channel MOSFETs with the Self-Consistent Multi-Valley/Multi-Subband Monte Carlo Approach
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Inclusion of Quantum Effects along the Channel Direction in the MV–MSMC
3.2. Use of MV–MSMC Simulations to Calibrate a Commercial TCAD Modeling Tool
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Radosavljevic, M.; Dewey, G.; Basu, D.; Boardman, J.; Chu-Kung, B.; Fastenau, J.M.; Kabehie, S.; Kavalieros, J.; Le, V.; Liu, W.K.; et al. Electrostatics improvement in 3-D tri-gate over ultra-thin body planar InGaAs quantum well field effect transistors with high-K gate dielectric and scaled gate-to-drain/gate-to-source separation. In Proceedings of the 2011 International Electron Devices Meeting, Washington, DC, USA, 5–7 December 2011; pp. 33.1.1–33.1.4. [Google Scholar] [CrossRef]
- Convertino, C.; Zota, C.; Sant, S.; Eltes, F.; Sousa, M.; Caimi, D.; Schenk, A.; Czornomaz, L. InGaAs-on-Insulator FinFETs with Reduced Off-Current and Record Performance. In Proceedings of the 2018 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 1–5 December 2018; pp. 39.2.1–39.2.4. [Google Scholar] [CrossRef]
- Riel, H.; Wernersson, L.-E.; Hong, M.; del Alamo, J.A. III–V compound semiconductor transistors—From planar to nanowire structures. MRS Bull. 2014, 39, 668–677. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Chobpattana, V.; Huang, C.-Y.; Thibeault, B.J.; Mitchell, W.; Stemmer, S.; Gossard, A.C.; Rodwell, M.J.W. Record Ion (0.50 mA/µm at VDD = 0.5 V and Ioff = 100 nA/µm) 25 nm-gate-length ZrO2/InAs/InAlAs MOSFETs. In Proceedings of the 2014 Symposium on VLSI Technology (VLSI-Technology): Digest of Technical Papers, Honolulu, HI, USA, 9–12 June 2014; pp. 1–2. [Google Scholar] [CrossRef]
- Zota, C.B.; Lindelow, F.; Wernersson, L.-E.; Lind, E. InGaAs tri-gate MOSFETs with record on-current. In Proceedings of the 2016 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 3–7 December 2016; pp. 3.2.1–3.2.4. [Google Scholar] [CrossRef] [Green Version]
- Visciarelli, M.; Gnudi, A.; Gnani, E.; Reggiani, S. A full-quantum simulation study of InGaAs NW MOSFETs including interface traps. In Proceedings of the 2016 46th European Solid-State Device Research Conference (ESSDERC), Lausanne, Switzerland, 12–15 September 2016; pp. 180–183. [Google Scholar] [CrossRef]
- Park, S.H.; Liu, Y.; Kharche, N.; Jelodar, M.S.; Klimeck, G.; Lundstrom, M.S.; Luisier, M. Performance Comparisons of III–V and Strained-Si in Planar FETs and Nonplanar FinFETs at Ultrashort Gate Length (12 nm). IEEE Trans. Electron Devices 2012, 59, 2107–2114. [Google Scholar] [CrossRef]
- Luisier, M.; Klimeck, G. Atomistic full-band simulations of silicon nanowire transistors: Effects of electron-phonon scattering. Phys. Rev. B 2009, 80, 155430. [Google Scholar] [CrossRef] [Green Version]
- Bahder, T.B. Eight-bandk⋅pmodel of strained zinc-blende crystals. Phys. Rev. B 1990, 41, 11992. [Google Scholar] [CrossRef] [PubMed]
- Zerveas, G.; Caruso, E.; Baccarani, G.; Czornomaz, L.; Daix, N.; Esseni, D.; Gnani, E.; Gnudi, A.; Grassi, R.; Luisier, M.; et al. Comprehensive comparison and experimental validation of band-structure calculation methods in III–V semiconductor quantum wells. Solid-State Electron. 2016, 115, 92–102. [Google Scholar] [CrossRef] [Green Version]
- Sentaurus Device User Guide, version Q-2019; Synopsys, Inc.: Mountain View, CA, USA, 2019.
- Caruso, E.; Lin, J.; Monaghan, S.; Cherkaoui, K.; Gity, F.; Palestri, P.; Esseni, D.; Selmi, L.; Hurley, P.K. The Role of Oxide Traps Aligned with the Semiconductor Energy Gap in MOS Systems. IEEE Trans. Electron Devices 2020, 67, 4372–4378. [Google Scholar] [CrossRef]
- Penzin, O.; Paasch, G.; Smith, L. Nonparabolic Multivalley Quantum Correction Model for InGaAs Double-Gate Structures. IEEE Trans. Electron Devices 2013, 60, 2246–2250. [Google Scholar] [CrossRef]
- Carapezzi, S.; Caruso, E.; Gnudi, A.; Palestri, P.; Reggiani, S.; Gnani, E. TCAD Mobility Model of III-V Short-Channel Double-Gate FETs Including Ballistic Corrections. IEEE Trans. Electron Devices 2017, 64, 4882–4888. [Google Scholar] [CrossRef]
- Zagni, N.; Caruso, E.; Puglisi, F.M.; Pavan, P.; Palestri, P.; Verzellesi, G. Systematic Modeling of Electrostatics, Transport, and Statistical Variability Effects of Interface Traps in End-of-the-Roadmap III–V MOSFETs. IEEE Trans. Electron Devices 2020, 67, 1560–1566. [Google Scholar] [CrossRef]
- Fischetti, M. Monte Carlo simulation of transport in technologically significant semiconductors of the diamond and zinc-blende structures. I. Homogeneous transport. IEEE Trans. Electron Devices 1991, 38, 634–649. [Google Scholar] [CrossRef]
- Esseni, D.; Palestri, P.; Selmi, L. Nanoscale MOS Transistors: Semi-Classical Transport and Applications; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Lucci, L.; Palestri, P.; Esseni, D.; Bergagnini, L.; Selmi, L. Multisubband Monte Carlo Study of Transport, Quantization, and Electron-Gas Degeneration in Ultrathin SOI n-MOSFETs. IEEE Trans. Electron Devices 2007, 54, 1156–1164. [Google Scholar] [CrossRef]
- Sampedro, C.; Gamiz, F.; Godoy, A.; Valín, R.; Garcia-Loureiro, A.; Ruiz, F.J.G. Multi-Subband Monte Carlo study of device orientation effects in ultra-short channel DGSOI. Solid-state Electron. 2010, 54, 131–136. [Google Scholar] [CrossRef]
- Jin, S.; Pham, A.-T.; Choi, W.; Nishizawa, Y.; Kim, Y.-T.; Lee, K.-H.; Park, Y.; Jung, E.S. Performance evaluation of InGaAs, Si, and Ge nFinFETs based on coupled 3D drift-diffusion/multisubband boltzmann transport equations solver. In Proceedings of the 2014 IEEE International Electron Devices Meeting, San Francisco, CA, USA, 15–17 December 2014; pp. 7.5.1–7.5.4. [Google Scholar] [CrossRef]
- Badami, O.; Lizzit, D.; Specogna, R.; Esseni, D. Surface roughness limited mobility in multi-gate FETs with arbitrary cross-section. In Proceedings of the 2016 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 3–7 December 2016; pp. 36.1.1–36.1.4. [Google Scholar] [CrossRef]
- Palestri, P.; Caruso, E.; Driussi, F.; Esseni, D.; Lizzit, D.; Osgnach, P.; Venica, S.; Selmi, L. State-of-the-art semi-classical Monte Carlo method for carrier transport in nanoscale transistors. In Proceedings of the 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Opatija, Croatia, 25–29 May 2015; pp. 1–8. [Google Scholar] [CrossRef]
- Selmi, L.; Caruso, E.; Carapezzi, S.; Visciarelli, M.; Gnani, E.; Zagni, N.; Pavan, P.; Palestri, P.; Esseni, D.; Gnudi, A.; et al. Modelling nanoscale n-MOSFETs with III-V compound semiconductor channels: From advanced models for band structures, electrostatics and transport to TCAD. In Proceedings of the 2017 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2–6 December 2017; pp. 13.4.1–13.4.4. [Google Scholar] [CrossRef]
- Chen, S.-H.; Liao, W.-S.; Yang, H.-C.; Wang, S.-J.; Liaw, Y.-G.; Wang, H.; Gu, H.; Wang, M.-C. High-performance III-V MOSFET with nano-stacked high-k gate dielectric and 3D fin-shaped structure. Nanoscale Res. Lett. 2012, 7, 431. [Google Scholar] [CrossRef] [Green Version]
- Palestri, P.; Caruso, E.; Badami, O.; Driussi, F.; Esseni, D.; Selmi, L. Semi-classical modeling of nanoscale nMOSFETs with III-V channel. In Proceedings of the 2019 Electron Devices Technology and Manufacturing Conference (EDTM), Singapore, 12–15 March 2019; pp. 234–236. [Google Scholar] [CrossRef]
- De Michielis, M.; Esseni, D.; Palestri, P.; Selmi, L. Semiclassical Modeling of Quasi-Ballistic Hole Transport in Nanoscale pMOSFETs Based on a Multi-Subband Monte Carlo Approach. IEEE Trans. Electron Devices 2009, 56, 2081–2091. [Google Scholar] [CrossRef]
- Lenzi, M.; Palestri, P.; Gnani, E.; Reggiani, S.; Gnudi, A.; Esseni, D.; Selmi, L.; Baccarani, G. Investigation of the Transport Properties of Silicon Nanowires Using Deterministic and Monte Carlo Approaches to the Solution of the Boltzmann Transport Equation. IEEE Trans. Electron Devices 2008, 55, 2086–2096. [Google Scholar] [CrossRef]
- Jin, S.; Fischetti, M.; Tang, T.-W. Modeling of electron mobility in gated silicon nanowires at room temperature: Surface roughness scattering, dielectric screening, and band nonparabolicity. J. Appl. Phys. 2007, 102, 083715. [Google Scholar] [CrossRef]
- Vurgaftman, I.; Meyer, J.R.; Ram-Mohan, L.R. Band parameters for III–V compound semiconductors and their alloys. J. Appl. Phys. 2001, 89, 5815–5875. [Google Scholar] [CrossRef] [Green Version]
- Lizzit, D.; Esseni, D.; Palestri, P.; Osgnach, P.; Selmi, L. Performance Benchmarking and Effective Channel Length for Nanoscale InAs, In0.53Ga0.47As, and sSi n-MOSFETs. IEEE Trans. Electron Devices 2014, 61, 2027–2034. [Google Scholar] [CrossRef]
- Yokoyama, K.; Hess, K. Monte Carlo study of electronic transport inAl1−xGaxAs/GaAs single-well heterostructures. Phys. Rev. B 1986, 33, 5595–5606. [Google Scholar] [CrossRef]
- Caruso, E.; Pin, A.; Palestri, P.; Selmi, L. On the electron velocity-field relation in ultra-thin films of III–V compound semiconductors for advanced CMOS technology nodes. In Proceedings of the 2017 Joint International EUROSOI Workshop and International Conference on Ultimate Integration on Silicon (EUROSOI-ULIS), Athens, Greece, 3–5 April 2017; pp. 152–155. [Google Scholar]
- Caruso, E.; Palestri, P.; Lizzit, D.; Osgnach, P.; Esseni, D.; Selmi, L. Quasi-Ballistic Γ- and L-Valleys Transport in Ultrathin Body Strained (111) GaAs nMOSFETs. IEEE Trans. Electron Devices 2016, 63, 4685–4692. [Google Scholar] [CrossRef] [Green Version]
- Prange, R.E.; Nee, T.-W. Quantum Spectroscopy of the Low-Field Oscillations in the Surface Impedance. Phys. Rev. 1968, 168, 779. [Google Scholar] [CrossRef]
- Lizzit, D.; Esseni, D.; Palestri, P.; Selmi, L. A new formulation for surface roughness limited mobility in bulk and ultra-thin-body metal–oxide–semiconductor transistors. J. Appl. Phys. 2014, 116, 223702. [Google Scholar] [CrossRef]
- Medina, A.G.; Padilla, J.L.; Sampedro, C.; Godoy, A.; Donetti, L.; Gamiz, F. Source-to-Drain Tunneling Analysis in FDSOI, DGSOI, and FinFET Devices by Means of Multisubband Ensemble Monte Carlo. IEEE Trans. Electron Devices 2018, 65, 4740–4746. [Google Scholar] [CrossRef]
- Palestri, P.; Lucci, L.; Tos, S.D.; Esseni, D.; Selmi, L. An improved empirical approach to introduce quantization effects in the transport direction in multi-subband Monte Carlo simulations. Semicond. Sci. Technol. 2010, 25, 055011. [Google Scholar] [CrossRef]
- Ferry, D.K. Effective potentials and the onset of quantization in ultrasmall MOSFETs. Superlattices Microstruct. 2000, 28, 419–423. [Google Scholar] [CrossRef]
- Revelant, A.; Palestri, P.; Osgnach, P.; Selmi, L. Calibrated multi-subband Monte Carlo modeling of tunnel-FETs in silicon and III–V channel materials. Solid-state Electron. 2013, 88, 54–60. [Google Scholar] [CrossRef]
- Taoka, N.; Yokoyama, M.; Kim, S.H.; Suzuki, R.; Iida, R.; Lee, S.; Hoshii, T.; Jevasuwan, W.; Maeda, T.; Yasuda, T.; et al. Impact of Fermi level pinning inside conduction band on electron mobility of InxGa1xAs MOSFETs and mobility enhancement by pinning modulation. In Proceedings of the 2011 International Electron Devices Meeting, Washington, DC, USA, 5–7 December 2011; pp. 27.2.1–27.2.4. [Google Scholar] [CrossRef]
- Osgnach, P.; Caruso, E.; Lizzit, D.; Palestri, P.; Esseni, D.; Selmi, L. The impact of interface states on the mobility and drive current of In0.53Ga0.47As semiconductor n-MOSFETs. Solid-state Electron. 2015, 108, 90–96. [Google Scholar] [CrossRef]
- Rau, M.; Caruso, E.; Lizzit, D.; Palestri, P.; Esseni, D.; Schenk, A.; Selmi, L.; Luisier, M. Performance projection of III-V ultra-thin-body, FinFET, and nanowire MOSFETs for two next-generation technology nodes. In Proceedings of the 2016 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 5–7 December 2016; pp. 30.6.1–30.6.4. [Google Scholar] [CrossRef]
- Rau, M.; Lin, J.; Antoniadis, D.A.; Del Alamo, J.A.; Luisier, M. Investigation of Source Starvation in High-Transconductance III–V Quantum-Well MOSFETs. IEEE Trans. Electron Devices 2019, 66, 4698–4705. [Google Scholar] [CrossRef]
- ITRS. International Technology Roadmap for Semiconductors. 2013. Available online: http://www.itrs2.net/2013-itrs.html. (accessed on 8 August 2021).
- Visciarelli, M.; Gnani, E.; Gnudi, A.; Reggiani, S.; Baccarani, G. Impact of Strain on Tunneling Current and Threshold Voltage in III–V Nanowire TFETs. IEEE Electron Device Lett. 2016, 37, 560–563. [Google Scholar] [CrossRef]
- Badami, O.; Caruso, E.; Lizzit, D.; Osgnach, P.; Esseni, D.; Palestri, P.; Selmi, L. An Improved Surface Roughness Scattering Model for Bulk, Thin-Body, and Quantum-Well MOSFETs. IEEE Trans. Electron Devices 2016, 63, 2306–2312. [Google Scholar] [CrossRef]
- Takei, K.; Fang, H.; Kumar, S.B.; Kapadia, R.; Gao, Q.; Madsen, M.; Kim, H.S.; Liu, C.-H.; Chueh, Y.-L.; Plis, E.; et al. Quantum Confinement Effects in Nanoscale-Thickness InAs Membranes. Nano Lett. 2011, 11, 5008–5012. [Google Scholar] [CrossRef] [PubMed]
- O’Regan, T.P.; Fischetti, M.; Soree, B.; Jin, S.; Magnus, W.; Meuris, M. Calculation of the electron mobility in III-V inversion layers with high-κ dielectrics. J. Appl. Phys. 2010, 108, 103705. [Google Scholar] [CrossRef] [Green Version]
- Mateos, J.; Gonzalez, T.; Pardo, D.; Hoel, V.; Happy, H.; Cappy, A. Improved Monte Carlo algorithm for the simulation of δ-doped AlInAs/GaInAs HEMTs. IEEE Trans. Electron Devices 2000, 47, 250–253. [Google Scholar] [CrossRef]
- Aguirre, P.; Carrillo-Nunez, H.; Ziegler, A.; Luisier, M.; Schenk, A. Drift-diffusion quantum corrections for In0.53Ga0.47As double gate ultra-thin-body FETs. In Proceedings of the 2016 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), Nuremberg, Germany, 6–8 September 2016; pp. 53–56. [Google Scholar] [CrossRef]
- Badami, O.; Lizzit, D.; Driussi, F.; Palestri, P.; Esseni, D. Benchmarking of 3-D MOSFET Architectures: Focus on the Impact of Surface Roughness and Self-Heating. IEEE Trans. Electron Devices 2018, 65, 3646–3653. [Google Scholar] [CrossRef]
ION [mA/μm] | |||
---|---|---|---|
LG [nm] | NEGF | MV-MSMC σx = 0 nm | MV-MSMC σx = 4.25 nm |
15 (InGaAs) | 2.43 | 2.91 | 2.13 |
10.4 (InGaAs) | 2.53 | 3.10 | 2.23 |
10.4 (InAs) | 2.04 | 2.45 | 2.09 |
8.3 (InGaAs) | 1.94 | 2.71 | 1.82 |
Band structure | Γ valley | M = 0.043 (m0) |
α = 1.5 eV−1 | ||
Satellite valleys | From [48] | |
Scattering parameters | Phonons | From [49] |
Alloy scattering | From [16] | |
Roughness: r.m.s. value | 0.25nm [42] | |
Roughness: correlation length | 1.5nm [42] | |
Interface charge | 5 × 1012 cm−2 |
Physical Mechanism | Model | Parameters | Value |
---|---|---|---|
Electron Density | Fermi-Dirac Statistics | Default from [11] | |
Band Structure | Multi-valley, Non-parabolic Bands | Default from [11] | |
Geometric Confinement | Bandgap Widening | Default from [11] | |
Quantum Confinement | MLDA | Default from [11] | |
Low-Field Mobility | Constant | µn | 380 cm2/(Vs) |
Ballistic Mobility | µbal = K × LG | K | 30 cm2/(Vs nm) |
High-field Saturation | Canali Model | vsat | 4 × 107 cm/s |
β | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caruso, E.; Esseni, D.; Gnani, E.; Lizzit, D.; Palestri, P.; Pin, A.; Puglisi, F.M.; Selmi, L.; Zagni, N. Modeling Nanoscale III–V Channel MOSFETs with the Self-Consistent Multi-Valley/Multi-Subband Monte Carlo Approach. Electronics 2021, 10, 2472. https://doi.org/10.3390/electronics10202472
Caruso E, Esseni D, Gnani E, Lizzit D, Palestri P, Pin A, Puglisi FM, Selmi L, Zagni N. Modeling Nanoscale III–V Channel MOSFETs with the Self-Consistent Multi-Valley/Multi-Subband Monte Carlo Approach. Electronics. 2021; 10(20):2472. https://doi.org/10.3390/electronics10202472
Chicago/Turabian StyleCaruso, Enrico, David Esseni, Elena Gnani, Daniel Lizzit, Pierpaolo Palestri, Alessandro Pin, Francesco Maria Puglisi, Luca Selmi, and Nicolò Zagni. 2021. "Modeling Nanoscale III–V Channel MOSFETs with the Self-Consistent Multi-Valley/Multi-Subband Monte Carlo Approach" Electronics 10, no. 20: 2472. https://doi.org/10.3390/electronics10202472
APA StyleCaruso, E., Esseni, D., Gnani, E., Lizzit, D., Palestri, P., Pin, A., Puglisi, F. M., Selmi, L., & Zagni, N. (2021). Modeling Nanoscale III–V Channel MOSFETs with the Self-Consistent Multi-Valley/Multi-Subband Monte Carlo Approach. Electronics, 10(20), 2472. https://doi.org/10.3390/electronics10202472