N-Beats as an EHG Signal Forecasting Method for Labour Prediction in Full Term Pregnancy
Abstract
:1. Introduction
2. Previous Work Using Machine and Deep Learning
3. Used Dataset
4. Materials and Methods
4.1. Dataset Pre-Processing
4.2. Feature Extraction and Selection
4.3. The Deep Learning Method for EHG Signal Forecasting
4.4. Classification Method
5. Results
5.1. Labelling and Classification Method Choice Results
5.2. Forecasting Results
- : the exact or current value;
- : the forecast value.
5.3. Classification Results
- If , then , which means that we obtain a small number of contractions during this period;
- If , then , which means that we have a large number of contractions during this period.
6. Discussion
7. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
N° | Acronym | Name | Formula |
---|---|---|---|
Linear features | |||
Time domain | |||
1 | IEMG | Integrated EHG | |
2 | LOG | Log detector | |
3 | MAV | Mean absolute value | |
4 | WL | Wavelength | |
5 | MAV1 | First modified mean absolute value | |
6 | MAV2 | Second modified mean absolute value | |
7 | AAC | Average amplitude change | |
8 | DASDV | Difference absolute standard deviation value | |
9 | SSI | Simple square integral | |
10 | MYOP | Myopulse percentage | |
11 | RMS | Root mean square | |
12 | ZC | Zero crossing | |
13 | VAR | EHG variance | |
14 | WAMP | Wilson amplitude | |
15 | TM3, TM4, TM5 | 3rd, 4th, 5th time moment absolute value | |
18 | SSC | Slope scale change | |
Frequency domain | |||
19 | MNF | Mean frequency | |
20 | MF | Median frequency | |
21 | MNP | Mean power | |
22 | PKF | Peak frequency | |
23 | TTP | Total power | |
24 | SM1, SM2, SM3 | 1st, 2nd, 3rd spectral moment | |
27 | VCF | Variance of centre frequency | |
Nonlinear features (time domain) | |||
28 | ApEn | Approximate entropy | |
29 | SampEn (SE) | Sample entropy | |
30 | Tr | Time reversibility |
References
- Di Pietro, L.; Piaggio, D.; Oronti, I.; Maccaro, A.; Houessouvo, R.C.; Medenou, D.; De Maria, C.; Pecchia, L.; Ahluwalia, A. A Framework for Assessing Healthcare Facilities in Low-Resource Settings: Field Studies in Benin and Uganda. J. Med. Biol. Eng. 2020, 40, 526–534. [Google Scholar] [CrossRef]
- Calvello, E.J.; Skog, A.P.; Tenner, A.G.; Wallis, L.A. Applying the lessons of maternal mortality reduction to global emergency health. Bull. World Health Organ. 2015, 93, 417–423. [Google Scholar] [CrossRef] [PubMed]
- Jezewski, J.; Horoba, K.; Matonia, A.; Wrobel, J. Quantitative analysis of contraction patterns in electrical activity signal of pregnant uterus as an alternative to mechanical approach. Physiol. Meas. 2005, 26, 753–767. [Google Scholar] [CrossRef] [PubMed]
- Leman, H.; Marque, C.; Gondry, J. Use of electrohysterogram signal for characterization of contractions during pregnancy. IEEE Trans. Biomed. Eng. 1999, 46, 1222–1229. [Google Scholar] [CrossRef]
- Maul, H.; Maner, W.; Olson, G.; Saade, G.; Garfield, R. Non-invasive transabdominal uterine electromyography correlates with the strength of intrauterine pressure and is predictive of labor and delivery. J. Matern. Fetal Neonatal Med. 2004, 15, 297–301. [Google Scholar] [CrossRef]
- Lucovnik, M.; Maner, W.L.; Chambliss, L.R.; Blumrick, R.; Balducci, J.; Novak-Antolic, Z.; Garfield, R.E. Noninvasive uterine electromyography for prediction of preterm delivery. Am. J. Obstet. Gynecol. 2011, 204, 228.e1–228.e10. [Google Scholar] [CrossRef] [Green Version]
- Euliano, T.Y.; Nguyen, M.T.; Darmanjian, S.; McGorray, S.P.; Euliano, N.; Onkala, A.; Gregg, A.R. Monitoring uterine activity during labor: A comparison of 3 methods. Am. J. Obstet. Gynecol. 2013, 208, 66.e1–66.e6. [Google Scholar] [CrossRef] [Green Version]
- Kandil, M.; Emarh, M.; Ellakwa, H. Abdominal electromyography in laboring and non-laboring pregnant women at term and its clinical implications. Arch. Gynecol. Obstet. 2013, 288, 293–297. [Google Scholar] [CrossRef]
- Buhimschi, C.; Boyle, M.B.; Garfield, R.E. Electrical activity of human uterus during pregnancy as recorded from the abdominal surface. Obstet. Gynecol. 1997, 90, 102–111. [Google Scholar] [CrossRef]
- Alberola-Rubio, J.; Prats-Boluda, G.; Ye-Lin, Y.; Valero, J.; Perales, A.; Garcia-Casaso, J. Comparison of non-invasive electrohysterographic recording techniques for monitoring uterine dynamics. Med. Eng. Phys. 2013, 35, 1736–1743. [Google Scholar] [CrossRef]
- Alexandersson, A.; Steimgrimsdottir, T.; Terrien, J.; Marque, C.; Karlsson, B. The icelandic 16-electrode electrohysterogram database. Sci. Data 2015, 2, 150017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jossou, T.R.; Et-tahir, A.; Tahori, Z.; El Ouadi, A.; Medenou, D.; Bybi, A.; Fagbemi, L.; Sbihi, M.; Piaggio, D. Electrodes in external electrohysterography: A systematic literature review. Biophys. Rev. 2021, 13, 405–415. [Google Scholar] [CrossRef] [PubMed]
- Jossou, T.R.; ET-Tahir, A.; Medenou, D.; Bybi, A.; Fagbemi, L.; Sbihi, M.; Piaggio, D. Methods to distinguish labour and pregnancy contractions: A systematic literature review. Health Technol. 2021, 11, 745–757. [Google Scholar] [CrossRef]
- Jager, F.; Libenšek, S.; Geršak, K. Characterization and automatic classification of preterm and term uterine records. PLoS ONE 2018, 13, e0202125. [Google Scholar] [CrossRef] [Green Version]
- Acharya, U.R.; Sudarshan, V.K.; Rong, S.Q.; Tan, Z.; Lim, C.M.; Koh, J.E.; Nayak, S.; Bhandary, S.V. Automated detection of premature delivery using empirical mode and wavelet packet decomposition techniques with uterine electromyogram signals. Comput. Biol. Med. 2017, 85, 33–42. [Google Scholar] [CrossRef]
- Allahem, H.; Sampalli, S. Automated labour detection framework to monitor pregnant women with a high risk of premature labour using machine learning and deep learning. Inform. Med. Unlocked 2022, 28, 100771. [Google Scholar] [CrossRef]
- Hao, D.; Peng, J.; Wang, Y.; Liu, J.; Zhou, X.; Zheng, D. Evaluation of convolutional neural network for recognizing uterine contractions with electrohysterogram. Comput. Biol. Med. 2019, 113, 103394. [Google Scholar] [CrossRef]
- Namadurai, P.; Padmanabhan, V.; Swaminathan, R. Multifractal Analysis of Uterine Electromyography Signals for the Assessment of Progression of Pregnancy in Term Conditions. IEEE J. Biomed. Health Inform. 2019, 23, 1972–1979. [Google Scholar] [CrossRef]
- Punitha, N.; Ramakrishnan, S. Multifractal analysis of uterine electromyography signals to differentiate term and preterm conditions. Proc. Inst. Mech. Eng. 2019, 233, 362–371. [Google Scholar] [CrossRef]
- Torres, J.F.; Hadjout, D.; Sebaa, A.; Martínez-Álvarez, F.; Troncoso, A. Deep Learning for Time Series Forecasting: A Survey. Big Data 2021, 9, 3–21. [Google Scholar] [CrossRef]
- Karasu, S.; Altan, A.; Bekiros, S.; Ahmad, W. A new forecasting model with wrapper-based feature selection approach using multi-objective optimization technique for chaotic crude oil time series. Energy 2020, 212, 118750. [Google Scholar] [CrossRef]
- Karasu, S.; Altan, A. Crude oil time series prediction model based on LSTM network with chaotic Henry gas solubility optimization. Energy 2022, 242, 122964. [Google Scholar] [CrossRef]
- Altan, A.; Karasu, S. Recognition of COVID-19 disease from X-ray images by hybrid model consisting of 2D curvelet transform, chaotic salp swarm algorithm and deep learning technique. Chaos Solitons Fractals 2020, 140, 110071. [Google Scholar] [CrossRef] [PubMed]
- Toledo-Pérez, D.C.; Rodríguez-Reséndiz, J.; Gómez-Loenzo, R.A.; Jauregui-Correa, J.C. Support Vector Machine-Based EMG Signal Classification Techniques: A Review. Appl. Sci. 2019, 9, 4402. [Google Scholar] [CrossRef] [Green Version]
- Peng, J.; Hao, D.; Yang, L.; Du, M.; Song, X.; Jiang, H.; Zhang, Y.; Zheng, D. Evaluation of electrohysterogram measured from different gestational weeks for recognizing preterm delivery: A preliminary study using random Forest. Biocybern. Biomed. Eng. 2020, 40, 352–362. [Google Scholar] [CrossRef]
- Almeida, M.; Mourino, H.; Batista, A.G.; Russo, S.; Esgalhado, F.; Palma dos Reis, C.R.; Serrano, F.; Ortigueira, M. Electrohysterography extracted features dependency on anthropometric and pregnancy factors. Biomed. Signal Process. Control 2022, 75, 103556. [Google Scholar] [CrossRef]
- Oreshkin, B.N.; Carpov, D.; Chapados, N.; Bengio, Y. N-BEATS: Neural basis expansion analysis for interpretable time series forecasting. arXiv 2020, arXiv:1905.10437. Available online: http://arxiv.org/abs/1905.10437 (accessed on 3 November 2021).
- Degbedzui, D.K.; Yüksel, M.E. Accurate diagnosis of term–preterm births by spectral analysis of electrohysterography signals. Comput. Biol. Med. 2020, 119, 103677. [Google Scholar] [CrossRef]
- Fergus, P.; Cheung, P.; Hussain, A.; Al-Jumeily, D.; Dobbins, C.; Iram, S. Prediction of Preterm Deliveries from EHG Signals Using Machine Learning. PLoS ONE 2013, 8, e77154. [Google Scholar] [CrossRef]
- Fergus, P.; Idowu, I.; Hussain, A.; Dobbins, C. Advanced artificial neural network classification for detecting preterm births using EHG records. Neurocomputing 2016, 188, 42–49. [Google Scholar] [CrossRef] [Green Version]
- Hoseinzadeh, S.; Amirani, M.C. Use of Electro Hysterogram (EHG) Signal to Diagnose Preterm Birth. In Proceedings of the Electrical Engineering (ICEE), Iranian Conference, Mashhad, Iran, 8–10 May 2018; pp. 1477–1481. [Google Scholar]
- Idowu, I.O.; Fergus, P.; Hussain, A.; Dobbins, C.; Khalaf, M.; Casana Eslava, R.V.; Keight, R. Artificial Intelligence for Detecting Preterm Uterine Activity in Gynecology and Obstetric Care. In Proceedings of the 2015 IEEE International Conference on Computer and Information Technology; Ubiquitous Computing and Communications; Dependable, Autonomic and Secure Computing, Pervasive Intelligence and Computing. Liverpool, UK, 26–28 October 2015; pp. 215–220. [Google Scholar]
- Sheryl, O.A.; Ashwantika, U.; Aswitha, R. Labor Prediction in pregnant woman based on ElectroMyoGram and Electro-HysteroGram using Machine Learning Techniques. In Proceedings of the 4th International Conference on Inventive Systems and Control (ICISC 2020), Coimbatore, India, 8–10 January 2020; Available online: https://ieeexplore.ieee.org/servlet/opac?punumber=9165557 (accessed on 6 January 2022).
- Naeem, S.M.; Seddik, A.F.; Eldosoky, M.A. New technique based on uterine electromyography nonlinearity for preterm delivery detection. J. Eng. Technol. Res. 2014, 6, 107–114. [Google Scholar] [CrossRef]
- Ren, P.; Yao, S.; Li, J.; Valdes-Sosa, P.A.; Kendrick, K.M. Improved Prediction of Preterm Delivery Using Empirical Mode Decomposition Analysis of Uterine Electromyography Signals. PLoS ONE 2015, 10, e0132116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shahbakhti, M.; Beiramvand, M.; Bavi, M.R.; Mohammadi Far, S. A New Efficient Algorithm for Prediction of Preterm Labor. In Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; pp. 4669–4672. [Google Scholar]
- Chen, L.; Hao, Y.; Hu, X. Detection of preterm birth in electrohysterogram signals based on wavelet transform and stacked sparse autoencoder. PLoS ONE 2019, 4, e0214712. [Google Scholar] [CrossRef] [PubMed]
- Alberola-Rubio, J.; Garcia-Casado, J.; Prats-Boluda, G.; Ye-Lin, Y.; Desantes, D.; Valero, J.; Perales, A. Prediction of labor onset type: Spontaneous vs induced; role of electrohysterography? Comput. Methods Programs Biomed. 2017, 144, 127–133. [Google Scholar] [CrossRef]
- Altini, M.; Rossetti, E.; Rooijakkers, M.; Penders, J.; Lanssens, D.; Grieten, L.; Gyselaers, W. Combining electrohysterography and heart rate data to detect labour. In Proceedings of the 2017 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI), Orland, FL, USA, 16–19 February 2017; pp. 149–152. [Google Scholar]
- Altini, M.; Rossetti, E.; Rooijakkers, M.J.; Penders, J. Towards Non-invasive Labour Detection: A Free-Living Evaluation. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 18–21 July 2018; pp. 2841–2844. [Google Scholar]
- Borowska, M.; Brzozowska, E.; Kuć, P.; Oczeretko, E.; Mosdorf, R.; Laudański, P. Identification of preterm birth based on RQA analysis of electrohysterograms. Comput. Methods Programs Biomed. 2018, 153, 227–236. [Google Scholar] [CrossRef]
- Maner, W.L.; Garfield, R.E. Identification of Human Term and Preterm Labor using Artificial Neural Networks on Uterine Electromyography Data. Ann. Biomed. Eng. 2007, 35, 465–473. [Google Scholar] [CrossRef]
- Goldberger, A.L.; Amaral, L.A.N.; Glass, L.; Hausdorff, J.M.; Ivanov, P.C.; Mark, R.G.; Mietus, J.E.; Moody, G.B.; Peng, C.-K.; Stanley, H.E. PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic Signals. Circulation 2000, 101, e215–e220. [Google Scholar] [CrossRef] [Green Version]
- Ahmadi, H.; Ekhlasi, A. Types of EMD Algorithms. In Proceedings of the 2019 5th Iranian Conference on Signal Processing and Intelligent Systems (ICSPIS), Shahrood, Iran, 18–19 December 2019; pp. 1–5. [Google Scholar]
- Wold, S.; Esbensen, K.; Geladi, P. Principal Component Analysis. Chemom. Intell. Lab. Syst. 1987, 2, 37–52. [Google Scholar] [CrossRef]
- Mushtaq, R. Testing Time Series Data for Stationarity. Available online: http://ssrn.com/abstract=1911068 (accessed on 2 February 2021).
- Ayub, N.; Irfan, M.; Awais, M.; Ali, U.; Ali, T.; Hamdi, M.; Alghamdi, A.; Muhammad, F. Big dada analytics for short and medium-term electricity load forecasting using AI technique ensembler. Energies 2020, 13, 5193. [Google Scholar] [CrossRef]
- Shen, Y.; Ma, Y.; Deng, S.; Huang, C.-J.; Kuo, P.-H. An ensemble model based on deep learning and data preprocessing for short-term electrical load forecasting. Sustainability 2021, 13, 1694. [Google Scholar] [CrossRef]
- Abduljabbar, R.L.; Dia, H.; Tsai, P.-W.; Liyanage, S. Short-term traffic forecasting: An LSTM network for spatial-temporal speed prediction. Future Transp. 2021, 1, 21–37. [Google Scholar] [CrossRef]
- Mathonsi, T.; van Zyl, T.L. A statistics and deep learning hybrid method for multivariate time series forecasting and mortality modeling. Forecasting 2021, 4, 1–25. [Google Scholar] [CrossRef]
- Alamedine, D.; Khalil, M.; Marque, C. Comparison of Different EHG Feature Selection Methods for the Detection of Preterm Labor. Comput. Math. Methods Med. 2013, 2013, 485684. [Google Scholar] [CrossRef] [PubMed]
- Alamedine, D.; Khalil, M.; Marque, C. Parameters extraction and monitoring in uterine EMG signals. Detection of preterm deliveries. IRBM 2013, 34, 322–325. [Google Scholar] [CrossRef]
- Garcia-Gonzalez, M.T.; Charleston-Villalobos, S.; Vargas-Garcia, C.; Gonzalez-Camarena, R.; Aljama-Corrales, T. Characterization of EHG contractions at term labor by nonlinear analysis. In Proceedings of the 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, 3–7 July 2013; pp. 7432–7435. [Google Scholar]
- Shulgin, V.; Shepel, O. Electrohysterographic signals processing for uterine activity detection and characterization. In Proceedings of the 2014 IEEE 34th International Scientific Conference on Electronics and Nanotechnology (ELNANO), Kyiv, Ukraine, 15–18 April 2014; pp. 269–272. [Google Scholar]
- Liu, Z.; Hao, D.; Zhang, L.; Liu, J.; Zhou, X.; Yang, L.; Yang, Y.; Li, X.; Zhang, S.; Zheng, D. Comparison of electrohysterogram characteristics during uterine contraction and non-contraction during labor. In Proceedings of the 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Seogwipo, Korea, 11–15 July 2017; pp. 2924–2927. [Google Scholar]
- Hao, D.; An, Y.; Qiao, X.; Qiu, Q.; Zhou, X.; Peng, J. Development of Electrohysterogram Recording System for Monitoring Uterine Contraction. J. Healthc. Eng. 2019, 2019, 4230157. [Google Scholar] [CrossRef]
Patient ID | Gestational Week | Accuracy | Recall | F1-Score | ||||||
---|---|---|---|---|---|---|---|---|---|---|
XGB | KNN | SVM | XGB | KNN | SVM | XGB | KNN | SVM | ||
1463 | 33 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
615 | 33 | 0.97 | 0.97 | 0.94 | 0.97 | 0.97 | 0.94 | 0.97 | 0.97 | 0.94 |
1745 | 33 | 1.00 | 1.00 | 0.97 | 1.00 | 1.00 | 0.96 | 1.00 | 1.00 | 0.97 |
1737 | 35 | 1.00 | 0.94 | 1.00 | 1.00 | 0.93 | 1.00 | 1.00 | 0.93 | 1.00 |
Average | 0.99 | 0.98 | 0.98 | 0.99 | 0.98 | 0.98 | 0.99 | 0.98 | 0.98 |
Method | Epoch | Horizon | SMAPE |
---|---|---|---|
N-BEATS | 02 | 1500 (75 s) | 146.8 |
02 | 1800 (90 s) | 146.4 | |
02 | 2400 (120 s) | 149.8 | |
02 | 3000 (150 s) | 147.5 | |
03 | 1500 (75 s) | 147.1 | |
03 | 1800 (90 s) | 147.6 | |
03 | 2400 (120 s) | 147.3 | |
03 | 3000 (150 s) | 146.7 | |
05 | 1500 (75 s) | 154.9 | |
05 | 1800 (90 s) | 156.2 | |
05 | 2400 (120 s) | 147.5 | |
05 | 3000 (150 s) | 144.3 |
Authors | Features | Method/Accuracy (%) |
---|---|---|
[10] | Fractal Dimension (), Fuzzy Entropy (), Interquartile Range (), Mean Absolute, Deviation (), Mean Energy (), Mean Teager–Kaiser Energy (), Sample Entropy (), Standard Deviation () | Support Vector Machine using Radial Basis Function/96.25 |
[32] | Wavelet Transform, Sample Entropy | Stacked Spark Autoencoder/90.00 |
[20] | 31 features from the Time Domain, Frequency Domain, Time–Frequency Domain, and Non-Linear Analysis | Random Forest/93.00 |
[11] | PKF, MNF, MF, Pregnancy Gestational Age, Pregnant Woman’s Age, Parity | ANN/98.00 |
Our study | RMS, MF, TM5, SM3, MYOP, ApEn, Tr, MAV2, TM3, SE, VCF, MNF, LOG, ZC, MAV1 | XG-Boost/99.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jossou, T.R.; Tahori, Z.; Houdji, G.; Medenou, D.; Lasfar, A.; Sanya, F.; Ahouandjinou, M.H.; Pagliara, S.M.; Haleem, M.S.; Et-Tahir, A. N-Beats as an EHG Signal Forecasting Method for Labour Prediction in Full Term Pregnancy. Electronics 2022, 11, 3739. https://doi.org/10.3390/electronics11223739
Jossou TR, Tahori Z, Houdji G, Medenou D, Lasfar A, Sanya F, Ahouandjinou MH, Pagliara SM, Haleem MS, Et-Tahir A. N-Beats as an EHG Signal Forecasting Method for Labour Prediction in Full Term Pregnancy. Electronics. 2022; 11(22):3739. https://doi.org/10.3390/electronics11223739
Chicago/Turabian StyleJossou, Thierry Rock, Zakaria Tahori, Godwin Houdji, Daton Medenou, Abdelali Lasfar, Fréjus Sanya, Mêtowanou Héribert Ahouandjinou, Silvio M. Pagliara, Muhammad Salman Haleem, and Aziz Et-Tahir. 2022. "N-Beats as an EHG Signal Forecasting Method for Labour Prediction in Full Term Pregnancy" Electronics 11, no. 22: 3739. https://doi.org/10.3390/electronics11223739
APA StyleJossou, T. R., Tahori, Z., Houdji, G., Medenou, D., Lasfar, A., Sanya, F., Ahouandjinou, M. H., Pagliara, S. M., Haleem, M. S., & Et-Tahir, A. (2022). N-Beats as an EHG Signal Forecasting Method for Labour Prediction in Full Term Pregnancy. Electronics, 11(22), 3739. https://doi.org/10.3390/electronics11223739