Comprehensive Comparative Analysis of Local False Discovery Rate Control Methods
Abstract
:1. Introduction
2. Results
2.1. Simulation Study
2.1.1. Basic Scenario
- One-sided alternative In the mixture model, we set and about 600 rows have different group means. That is, random sample for group 1 (G1) come from and random sample for group 2 (G2) from . The estimated fdr1ds are provided in Figure 1: the estimated fdr1d by classic t (left) and modified t-statistic (right).
- Two-sided alternative In the mixture model, we set where . Again, about 600 rows have different group means. To be more specific, about 300 random sample for G1 come from and another 300 from , respectively. Just like the one-sided alternative, we follow the exactly same procedure with the new .
2.1.2. Mean Shift
- Two-sided alternative The scheme to generate random sample is similar to the basic scenario. Only difference is that 10 percent of r.s. for G1 come from and another 10 percent from . Three mean values are considered. Just like basic scenario, we follow the exactly same procedure with the new . When , Figure 5 and Figure 6 include the estimated fdr1d and the estimated fdr2d, respectively.
2.1.3. Scale Change
- Two-sided alternative In the mixture model, we set where . 10 percent of random sample come form and another 10 percent from . Three different are considered. Just like basic scenario, we follow the exact same procedure with the new . When , Figure 9 and Figure 10 include the estimated fdr1d and the estimated fdr2d, respectively.
2.2. Real Data Analysis
2.2.1. Omija Data
2.2.2. Lymphoma Data
3. Discussion
4. Materials and Methods
4.1. Terminologies
4.2. Efron’s Approach
4.3. Ploner’s Approach
4.4. Kim’s Approach
4.5. Estimation of
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BH | Bejamini and Hochberg |
FDR | False discovery rate |
FWER | Familywise error rate |
2d-fdr | Two-dimensional false discovery rate |
References
- Alishahi, K.; Ehyaei, A.R.; Shojaie, A. A generalized Benjamini-Hochberg procedure for multivariate hypothesis testing. arXiv 2016, arXiv:1606.02386. [Google Scholar]
- Hochberg, Y. A sharper Bonferroni procedure for multiple tests of significance. Biometrika 1988, 75, 800–803. [Google Scholar] [CrossRef]
- Hochberg, Y.; Benjamini, Y. More powerful procedures for multiple significance testing. Stat. Med. 1990, 9, 811–818. [Google Scholar] [CrossRef] [PubMed]
- Holm, S. A simple sequentially rejective multiple test procedure. Scand. J. Stat. 1979, 6, 65–70. [Google Scholar]
- Hommel, G. A stagewise rejective multiple test procedure based on a modified Bonferroni test. Biometrika 1988, 75, 383–386. [Google Scholar] [CrossRef]
- Rom, D.M. A sequentially rejective test procedure based on a modified Bonferroni inequality. Biometrika 1990, 77, 663–665. [Google Scholar] [CrossRef]
- Saville, D.J. Multiple comparison procedures: The practical solution. Am. Stat. 1990, 44, 174–180. [Google Scholar]
- Simes, R.J. An improved Bonferroni procedure for multiple tests of significance. Biometrika 1986, 73, 751–754. [Google Scholar] [CrossRef]
- Soric, B. Statistical “discoveries” and effect-size estimation. J. Am. Stat. Assoc. 1989, 84, 608–610. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. B 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Efron, B.; Tibshirani, R.; Storey, J.; Tusher, V. Empirical Bayes analysis of a microarray experiment. J. Am. Stat. Assoc. 2001, 96, 1151–1160. [Google Scholar] [CrossRef]
- Efron, B.; Tibshirani, R. Empirical Bayes Method and False Discovery Rates for Microarrays. Genet. Epidemiol. 2002, 23, 70–86. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Lim, J.; Lee, J.S.; Jeong, J. Controlling two-dimensional false discovery rates by combining two univariate multiple testing results with an application to mass spectral data. Chemom. Intell. Lab. Syst. 2018, 182, 149–157. [Google Scholar] [CrossRef]
- Kim, J.; Jeong, J. MetPC: Metabolite pipeline consisting of metabolite identification and biomarker discovery under the control of two-dimensional FDR. Metabolites 2019, 9, 103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ploner, A.; Calza, S.; Gusnanto, A.; Pawitan, Y. Multidimensional local false discovery rate for micorarray studies. Bioinformatics 2006, 22, 556–565. [Google Scholar] [CrossRef] [PubMed]
- Rosenwald, A.; Wright, G.; Chan, W.C.; Connors, J.M.; Campo, E.; Fisher, R.I.; Gascoyne, R.D.; Muller-Hermelink, H.K.; Smel, E.B.; Staudt, L.M. The use of molecular profiling to predict survival after chemotherapy for diffuse Large-B-cell Lymphoma. N. Engl. J. Med. 2002, 346, 1937–1947. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Lee, S.J.; Kim, S.C.; Lim, J.; Kwon, S.W. Classification of spectral data using fused lasso logistic regression. Chemom. lntell. Lab. Syst. 2015, 142, 70–77. [Google Scholar]
- Pawitan, Y. Non-Gaussian smoothing. In All Likelihood: Statistical Modelling and Inference Using Likelihood; Oxford Science Publications: Oxford, UK, 2001; pp. 490–497. [Google Scholar]
- Pawitan, Y. False discovery rate, sensitivity and sample size for microarray studies. Bioinformatics 2005, 21, 3017–3024. [Google Scholar] [CrossRef]
- Pawitan, Y. Bias in the estimation of false discovery rate in micorarray studies. Bioinformatics 2005, 21, 3865–3872. [Google Scholar] [CrossRef] [Green Version]
- Smyth, G.K. Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol. 2004, 3, 3. [Google Scholar] [CrossRef]
- Tusher, V.G.; Tibshirani, R.; Chu, G. Significance analysis of microarrays applied to the ionizing radiation response. Proc. Natl. Acad. Sci. USA 2001, 98, 5116–5121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fraley, C.; Raftery, A.E. Model-based clustering, discriminant analysis, and density estimation. J. Am. Stat. Assoc. 2002, 97, 611–631. [Google Scholar] [CrossRef]
- Scrucca, L.; Fop, M.; Murphy, B.; Raftery, A.E. mclust5: Clustering, classification and density estimation using Gaussian finite mixture models. R J. 2016, 8, 289–317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Methods | Cutoff = 0.05 | Cutoff = 0.1 | Cutoff = 0.2 |
---|---|---|---|
Efron | 0.0003 (0.00007) | 0.0004 (0.00009) | 0.0011 (0.00016) |
Ploner1d | 0.0007 (0.00010) | 0.0014 (0.00015) | 0.0031 (0.00023) |
Ploner1dE | 0.0001 (0.00004) | 0.0004 (0.00008) | 0.0013 (0.00016) |
Ploner2d | 0.0005 (0.00010) | 0.0017 (0.00017) | 0.0051 (0.00032) |
Kim(Intersection) | 0.0047 (0.00046) | 0.0133 (0.00097) | 0.0342 (0.00200) |
Sensitivity | Specificity | Accuracy | F1 Score | |
---|---|---|---|---|
Efron | 0.998 | 1 | 0.999 | 0.998 |
Ploner1d | 0.997 | 1 | 0.999 | 0.997 |
Ploner1dE | 0.982 | 1 | 0.996 | 0.990 |
Ploner2d | 0.992 | 0.999 | 0.998 | 0.994 |
Kim(Intersection) | 0.998 | 0.997 | 0.998 | 0.994 |
Methods | 1 | 1.5 | 2 |
---|---|---|---|
Efron | 0.0114 (0.00085) | 0.0086 (0.00051) | 0.0026 (0.00021) |
Ploner1d | 0.0398 (0.00140) | 0.0177 (0.00065) | 0.0059 (0.00034) |
Ploner1dE | 0.0236 (0.00096) | 0.0101 (0.00047) | 0.0027 (0.00020) |
Ploner2d | 0.0110 (0.00065) | 0.0052 (0.00035) | 0.0028 (0.00022) |
Kim(Intersection) | 0.0316 (0.00164) | 0.0220 (0.00140) | 0.0202 (0.00217) |
Sensitivity | Specificity | Accuracy | F1 Score | |
---|---|---|---|---|
Efron | 0.788 | 0.999 | 0.957 | 0.880 |
Ploner1d | 0.800 | 0.999 | 0.959 | 0.887 |
Ploner1dE | 0.683 | 0.998 | 0.935 | 0.808 |
Ploner2d | 0.797 | 0.998 | 0.958 | 0.883 |
Kim(Intersection) | 0.768 | 0.999 | 0.953 | 0.867 |
Methods | 2 | 3 | 4 |
---|---|---|---|
Efron | 0.0014 (0.00018) | 0.0026 (0.00025) | 0.0032 (0.00027) |
Ploner1d | 0.0063 (0.00030) | 0.0137 (0.00055) | 0.0209 (0.00062) |
Ploner1dE | 0.0004 (0.00008) | 0.0003 (0.00008) | 0.0002 (0.00007) |
Ploner2d | 0.0015 (0.00017) | 0.0025 (0.00023) | 0.0034 (0.00030) |
Kim(Intersection) | 0.0050 (0.00033) | 0.0070 (0.00036) | 0.0085 (0.00044) |
Sensitivity | Specificity | Accuracy | F1 | |
---|---|---|---|---|
Efron | 0.910 | 0.999 | 0.981 | 0.950 |
Ploner1d | 0.817 | 1 | 0.963 | 0.899 |
Ploner1dE | 0.628 | 0.995 | 0.921 | 0.762 |
Ploner2d | 0.793 | 0.997 | 0.956 | 0.879 |
Kim(Intersection) | 1 | 0.997 | 0.997 | 0.993 |
1D | 2D | |||||
---|---|---|---|---|---|---|
Cutoff | Efron | Ploner1d | Ploner1dE | Ploner2d | Kim (Union) | Kim (Intersection) |
0.05 | 13 | 1425 | 1290 | 1109 | 636 | 2689 |
0.1 | 49 | 1638 | 1695 | 1355 | 796 | 2797 |
0.2 | 127 | 1906 | 2070 | 1840 | 963 | 2902 |
1D | 2D | |||||
---|---|---|---|---|---|---|
Cutoff | Efron | Ploner1d | Ploner1dE | Ploner2d | Kim (Union) | Kim (Intersection) |
0.1 | 1 | 77 | 16 | 101 | 4 | 2667 |
0.2 | 1 | 298 | 154 | 370 | 4 | 3185 |
0.3 | 1 | 558 | 506 | 690 | 5 | 3569 |
Decision | |||
---|---|---|---|
Null | Alternative | Total | |
True null | V | ||
True alternative | T | ||
R | m |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.J.; Oh, Y.; Jeong, J. Comprehensive Comparative Analysis of Local False Discovery Rate Control Methods. Metabolites 2021, 11, 53. https://doi.org/10.3390/metabo11010053
Kim SJ, Oh Y, Jeong J. Comprehensive Comparative Analysis of Local False Discovery Rate Control Methods. Metabolites. 2021; 11(1):53. https://doi.org/10.3390/metabo11010053
Chicago/Turabian StyleKim, Shin June, Youngjae Oh, and Jaesik Jeong. 2021. "Comprehensive Comparative Analysis of Local False Discovery Rate Control Methods" Metabolites 11, no. 1: 53. https://doi.org/10.3390/metabo11010053
APA StyleKim, S. J., Oh, Y., & Jeong, J. (2021). Comprehensive Comparative Analysis of Local False Discovery Rate Control Methods. Metabolites, 11(1), 53. https://doi.org/10.3390/metabo11010053