Screening of Carbofuran-Degrading Bacteria Chryseobacterium sp. BSC2-3 and Unveiling the Change in Metabolome during Carbofuran Degradation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Isolation of Carbofuran-Degrading Bacteria from the Enrichment Culture
2.2. Confirmation of the Carbofuran-Biodegrading Ability of BSC2-3
2.3. Identification of Carbofuran-Degrading Bacteria
2.4. Extracellular Changes after Carbofuran Exposure
2.5. Intracellular Metabolite Profiles of Chryseobacterium sp. BSC2-3
2.6. Altered Intracellular Metabolism in Response to Carbofuran
2.7. Identification of Metabolites Related to Aminobenzoate and Benzoic Acid Catabolism
2.8. Identification of Biomolecules for Growth Promotion and Disease Control
3. Materials and Methods
3.1. Chemicals
3.2. Enrichment and Isolation of Carbofuran-Degrading Strains
3.3. Identification of Carbofuran-Degrading Bacteria
3.4. Confirmation of Carbofuran Degradation Using TLC Analysis
3.4.1. Culture Conditions
3.4.2. QuEChERS Extraction
3.4.3. TLC Analysis
3.5. Extra/Intracellular Metabolite Profiling of the BSC2-3 Strain
3.5.1. Culture Conditions
3.5.2. Preparation of Samples for Metabolite Profiling
3.5.3. LC–MS Analysis
3.6. Metabolite Data Processing
3.7. Statistical Analysis
3.8. Whole-Genome Sequencing
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Popp, J.; Pető, K.; Nagy, J. Pesticide productivity and food security. A review. Agron. Sustain. Dev. 2013, 33, 243–255. [Google Scholar] [CrossRef]
- Alexandratos, N.; Bruinsma, J. World Agriculture towards 2030/2050: The 2012 Revision; FAO: Rome, Italy, 2012. [Google Scholar]
- Carvalho, F.P. Pesticides, environment, and food safety. Food Energy Secur. 2017, 6, 48–60. [Google Scholar] [CrossRef]
- Zhang, W.; Jiang, F.; Ou, J. Global pesticide consumption and pollution: With China as a focus. Proc. Int. Acad. Ecol. Environ. Sci. 2011, 1, 125–144. [Google Scholar]
- Ma, Y.S.; Sung, C.F.; Lin, J.G. Degradation of carbofuran in aqueous solution by ultrasound and Fenton processes: Effect of system parameters and kinetic study. J. Hazard. Mater. 2010, 178, 320–325. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Chen, S.; Hu, M.; Hao, W.; Geng, P.; Zhang, Y. Biodegradation of carbofuran by Pichia anomala strain HQ-C-01 and its application for bioremediation of contaminated soils. Biol. Fertil. Soils 2011, 47, 917–923. [Google Scholar] [CrossRef]
- Gupta, R.C. Carbofuran toxicity. J. Toxicol. Environ. Health 1994, 43, 383–418. [Google Scholar] [CrossRef]
- Madhubabu, S.; Kumar, M.; Philip, L.; Venkobachar, C. Treatment of carbofuran-bearing synthetic wastewater using UASB process. J. Environ. Sci. Health B 2007, 42, 189–199. [Google Scholar] [CrossRef] [PubMed]
- Vishnuganth, M.A.; Remya, N.; Kumar, M.; Selvaraju, N. Carbofuran removal in continuous-photocatalytic reactor: Reactor optimization, rate-constant determination and carbofuran degradation pathway analysis. J. Environ. Sci. Health B 2017, 52, 353–360. [Google Scholar] [CrossRef]
- Kalia, A.; Gosal, S.K. Effect of pesticide application on soil microorganisms. Arch. Agron. Soil Sci. 2011, 57, 569–596. [Google Scholar] [CrossRef]
- Dong, C.-J.; Wang, L.-L.; Li, Q.; Shang, Q.-M. Bacterial communities in the rhizosphere, phyllosphere and endosphere of tomato plants. PLoS ONE 2019, 14, e0223847. [Google Scholar] [CrossRef]
- Gray, E.J.; Smith, D.L. Intracellular and extracellular PGPR: Commonalities and distinctions in the plant–bacterium signaling processes. Soil Biol. Biochem. 2005, 37, 395–412. [Google Scholar] [CrossRef]
- Gravel, V.; Antoun, H.; Tweddell, R. Growth stimulation and fruit yield improvement of greenhouse tomato plants by inoculation with Pseudomonas putida or Trichoderma atroviride: Possible role of indole acetic acid (IAA). Soil Biol. Biochem. 2007, 39, 1968–1977. [Google Scholar] [CrossRef]
- Govindasamy, V.; Senthilkumar, M.; Magheshwaran, V.; Kumar, U.; Bose, P.; Sharma, V.; Annapurna, K. Bacillus and Paenibacillus spp.: Potential PGPR for sustainable agriculture. In Plant Growth and Health Promoting Bacteria; Maheshwari, D.K., Ed.; Springer: Berlin, Germany, 2011; pp. 333–364. [Google Scholar] [CrossRef]
- Shinozawa, Y.; Heggo, D.; Ookawara, S.; Yoshikawa, S. Photo-fenton degradation of carbofuran in helical tube microreactor and kinetic modeling. Ind. Eng. Chem. Res. 2020, 59, 3811–3819. [Google Scholar] [CrossRef]
- Ibrahim, K.E.A.; Elbashir, A.A.; Ahmed, M.M.O.; Şolpan, D. Radiolytic degradation of carbofuran by using gamma and gamma/hydrogen peroxide processes. Radiat. Phys. Chem. 2018, 153, 251–257. [Google Scholar] [CrossRef]
- Mohanta, D.; Ahmaruzzaman, M. Facile fabrication of novel Fe3O4-SnO2-gC3N4 ternary nanocomposites and their photocatalytic properties towards the degradation of carbofuran. Chemosphere 2021, 285, 131395. [Google Scholar] [CrossRef]
- Sun, Y.; Kumar, M.; Wang, L.; Gupta, J.; Tsang, D.C.W. Biotechnology for soil decontamination: Opportunity, challenges, and prospects for pesticide biodegradation. In Bio-Based Materials and Biotechnologies for Eco-Efficient Construction; Pacheco-Torgal, F., Ivanov, V., Tsang, D.C.W., Eds.; Woodhead Publishing: Cambridge, MA, USA, 2020; pp. 261–283. [Google Scholar]
- Nie, J.; Sun, Y.; Zhou, Y.; Kumar, M.; Usman, M.; Li, J.; Shao, J.; Wang, L.; Tsang, D.C.W. Bioremediation of water containing pesticides by microalgae: Mechanisms, methods, and prospects for future research. Sci. Total Environ. 2020, 707, 136080. [Google Scholar] [CrossRef]
- Huang, Y.; Xiao, L.; Li, F.; Xiao, M.; Lin, D.; Long, X.; Wu, Z. Microbial degradation of pesticide residues and an emphasis on the degradation of cypermethrin and 3-phenoxy benzoic acid: A review. Molecules 2018, 23, 2313. [Google Scholar] [CrossRef] [Green Version]
- Bano, N.; Musarrat, J. Characterization of a novel carbofuran degrading Pseudomonas sp. with collateral biocontrol and plant growth promoting potential. FEMS Microbiol. Lett. 2004, 231, 13–17. [Google Scholar] [CrossRef] [Green Version]
- Tomasek, P.H.; Karns, J.S. Cloning of a carbofuran hydrolase gene from Achromobacter sp. strain WM111 and its expression in gram-negative bacteria. J. Bacteriol. 1989, 171, 4038–4044. [Google Scholar] [CrossRef] [Green Version]
- Ito, K.; Kawashima, F.; Takagi, K.; Kataoka, R.; Kotake, M.; Kiyota, H.; Yamazaki, K.; Sakakibara, F.; Okada, S. Isolation of endosulfan sulfate-degrading Rhodococcus koreensis strain S1-1 from endosulfan contaminated soil and identification of a novel metabolite, endosulfan diol monosulfate. Biochem. Biophys. Res. Commun. 2016, 473, 1094–1099. [Google Scholar] [CrossRef]
- Gupta, J.; Rathour, R.; Singh, R.; Thakur, I.S. Production and characterization of extracellular polymeric substances (EPS) generated by a carbofuran degrading strain Cupriavidus sp. ISTL7. Bioresour. Technol. 2019, 282, 417–424. [Google Scholar] [CrossRef] [PubMed]
- Mustapha, M.U.; Halimoon, N.; Johari, W.L.W.; Shokur, M.Y.A. Optimization of carbofuran insecticide degradation by Enterobacter sp. using response surface methodology (RSM). J. King Saud Univ. Sci. 2020, 32, 2254–2262. [Google Scholar] [CrossRef]
- Yan, X.; Jin, W.; Wu, G.; Jiang, W.; Yang, Z.; Ji, J.; Qiu, J.; He, J.; Jiang, J.; Hong, Q. Hydrolase CehA and monooxygenase CfdC are responsible for carbofuran degradation in Sphingomonas sp. Strain CDS-1. Appl. Environ. Microbiol. 2018, 84, e00805–e00818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mir-Tutusaus, J.A.; Masis-Mora, M.; Corcellas, C.; Eljarrat, E.; Barcelo, D.; Sarra, M.; Caminal, G.; Vicent, T.; Rodriguez-Rodriguez, C.E. Degradation of selected agrochemicals by the white rot fungus Trametes versicolor. Sci. Total Environ. 2014, 500–501, 235–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.E.; Kim, Y.; Kim, K.H.; Lee, D.Y.; Lee, Y. Contribution of drosophila TRPA1 to metabolism. PLoS ONE 2016, 11, e0152935. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Huang, X.; Laserna, A.K.C.; Li, S.F.Y. Untargeted metabolomics reveals transformation pathways and metabolic response of the earthworm Perionyx excavatus after exposure to triphenyl phosphate. Sci. Rep. 2018, 8, 16440. [Google Scholar] [CrossRef]
- Huang, Y.; Lin, Z.; Zhang, W.; Pang, S.; Bhatt, P.; Rene, E.R.; Kumar, A.J.; Chen, S. New insights into the microbial degradation of D-cyphenothrin in contaminated water/soil environments. Microorganisms 2020, 8, 473. [Google Scholar] [CrossRef] [Green Version]
- Jiang, W.; Gao, Q.; Zhang, L.; Wang, H.; Zhang, M.; Liu, X.; Zhou, Y.; Ke, Z.; Wu, C.; Qiu, J.; et al. Identification of the key amino acid sites of the carbofuran hydrolase CehA from a newly isolated carbofuran-degrading strain Sphingbium sp. CFD-1. Ecotoxicol. Environ. Saf. 2020, 189, 109938. [Google Scholar] [CrossRef]
- Salama, A.K. Metabolism of carbofuran by Aspergillus niger and Fusarium graminearum. J. Environ. Sci. Health B 1998, 33, 253–266. [Google Scholar] [CrossRef]
- Silambarasan, S.; Abraham, J. Biodegradation of carbendazim by a potent novel Chryseobacterium sp. JAS14 and plant growth promoting Aeromonas caviae JAS15 with subsequent toxicity analysis. 3 Biotech 2020, 10, 326. [Google Scholar] [CrossRef]
- Jadhav, S.S.; David, M. Biodegradation of flubendiamide by a newly isolated Chryseobacterium sp. strain SSJ1. 3 Biotech 2016, 6, 31. [Google Scholar] [CrossRef] [Green Version]
- Qu, J.; Xu, Y.; Ai, G.-M.; Liu, Y.; Liu, Z.-P. Novel Chryseobacterium sp. PYR2 degrades various organochlorine pesticides (OCPs) and achieves enhancing removal and complete degradation of DDT in highly contaminated soil. J. Environ. Manag. 2015, 161, 350–357. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Xu, J.; Dong, F.; Liu, X.; Wu, Y.; Wu, X.; Zheng, Y. Characterization of a novel oxyfluorfen-degrading bacterial strain Chryseobacterium aquifrigidense and its biochemical degradation pathway. Appl. Microbiol. Biotechnol. 2016, 100, 6837–6845. [Google Scholar] [CrossRef] [PubMed]
- Mustapha, M.; Halimoon, N.; Wan Johari, W.l.; Shakur, M.A. Soil microorganisms and their potential in pesticide biodegradation; A review article. J. Sustain. Agric. Sci. 2018, 44, 39–61. [Google Scholar] [CrossRef]
- Cycon, M.; Mrozik, A.; Piotrowska-Seget, Z. Bioaugmentation as a strategy for the remediation of pesticide-polluted soil: A review. Chemosphere 2017, 172, 52–71. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.; Zhang, W.; Lin, Z.; Pang, S.; Huang, Y.; Bhatt, P.; Chen, S. Carbofuran toxicity and its microbial degradation in contaminated environments. Chemosphere 2020, 259, 127419. [Google Scholar] [CrossRef] [PubMed]
- Ozturk, B.; Ghequire, M.; Nguyen, T.P.; De Mot, R.; Wattiez, R.; Springael, D. Expanded insecticide catabolic activity gained by a single nucleotide substitution in a bacterial carbamate hydrolase gene. Environ. Microbiol. 2016, 18, 4878–4887. [Google Scholar] [CrossRef] [PubMed]
- Castro-Gutierrez, V.; Masis-Mora, M.; Diez, M.C.; Tortella, G.R.; Rodriguez-Rodriguez, C.E. Aging of biomixtures: Effects on carbofuran removal and microbial community structure. Chemosphere 2017, 168, 418–425. [Google Scholar] [CrossRef]
- Ruiz-Hidalgo, K.; Masis-Mora, M.; Barbieri, E.; Carazo-Rojas, E.; Rodriguez-Rodriguez, C.E. Ecotoxicological analysis during the removal of carbofuran in fungal bioaugmented matrices. Chemosphere 2016, 144, 864–871. [Google Scholar] [CrossRef]
- Rodríguez, A.; Castrejón-Godínez, M.L.; Salazar-Bustamante, E.; Gama-Martínez, Y.; Sánchez-Salinas, E.; Mussali-Galante, P.; Tovar-Sánchez, E.; Ortiz-Hernández, M.L. Omics Approaches to Pesticide Biodegradation. Curr. Microbiol. 2020, 77, 545–563. [Google Scholar] [CrossRef]
- Kanehisa, M.; Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef] [PubMed]
- Trygg, J.; Holmes, E.; Lundstedt, T. Chemometrics in Metabonomics. J. Proteome Res. 2007, 6, 469–479. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.H.; Cho, K.; Yun, S.H.; Kim, J.Y.; Kwon, K.H.; Yoo, J.S.; Kim, S.I. Analysis of aromatic catabolic pathways in Pseudomonas putida KT 2440 using a combined proteomic approach: 2-DE/MS and cleavable isotope-coded affinity tag analysis. Proteomics 2006, 6, 1301–1318. [Google Scholar] [CrossRef] [PubMed]
- Dahal, R.H.; Chaudhary, D.K.; Kim, D.-U.; Pandey, R.P.; Kim, J. Chryseobacterium antibioticum sp. nov. with antimicrobial activity against Gram-negative bacteria, isolated from Arctic soil. J. Antibiot. 2021, 74, 115–123. [Google Scholar] [CrossRef]
- Kang, D.; Shoaie, S.; Jacquiod, S.; Sørensen, S.J.; Ledesma-Amaro, R. Comparative Genomics Analysis of Keratin-Degrading Chryseobacterium Species Reveals Their Keratinolytic Potential for Secondary Metabolite Production. Microorganisms 2021, 9, 1042. [Google Scholar] [CrossRef]
- Pinu, F.R.; Villas-Boas, S.G. Extracellular Microbial Metabolomics: The State of the Art. Metabolites 2017, 7, 43. [Google Scholar] [CrossRef]
- Yasmin, S.; Hafeez, F.Y.; Mirza, M.S.; Rasul, M.; Arshad, H.M.I.; Zubair, M.; Iqbal, M. Biocontrol of Bacterial Leaf Blight of Rice and Profiling of Secondary Metabolites Produced by Rhizospheric Pseudomonas aeruginosa BRp3. Front. Microbiol. 2017, 8, 1895. [Google Scholar] [CrossRef] [Green Version]
- Compant, S.; Brader, G.; Muzammil, S.; Sessitsch, A.; Lebrihi, A.; Mathieu, F. Use of beneficial bacteria and their secondary metabolites to control grapevine pathogen diseases. BioControl 2013, 58, 435–455. [Google Scholar] [CrossRef] [Green Version]
- Bacher, A.; Eberhardt, S.; Fischer, M.; Kis, K.; Richter, G. Biosynthesis of vitamin b2 (riboflavin). Annu. Rev. Nutr. 2000, 20, 153–167. [Google Scholar] [CrossRef] [Green Version]
- Dong, H.; Beer, S.V. Riboflavin induces disease resistance in plants by activating a novel signal transduction pathway. Phytopathology 2000, 90, 801–811. [Google Scholar] [CrossRef] [Green Version]
- Phillips, D.A.; Joseph, C.M.; Yang, G.P.; Martinez-Romero, E.; Sanborn, J.R.; Volpin, H. Identification of lumichrome as a sinorhizobium enhancer of alfalfa root respiration and shoot growth. Proc. Natl. Acad. Sci. USA 1999, 96, 12275–12280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matiru, V.N.; Dakora, F.D. The rhizosphere signal molecule lumichrome alters seedling development in both legumes and cereals. New Phytol. 2005, 166, 439–444. [Google Scholar] [CrossRef] [PubMed]
- Dakora, F.D.; Matiru, V.N.; Kanu, A.S. Rhizosphere ecology of lumichrome and riboflavin, two bacterial signal molecules eliciting developmental changes in plants. Front. Plant Sci. 2015, 6, 700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, X.; Cao, Y.; Huang, L.; Zhao, J.; Xu, C.; Li, X.; Wang, S. Activation of the indole-3-acetic acid-amido synthetase GH3-8 suppresses expansin expression and promotes salicylate- and jasmonate-independent basal immunity in rice. Plant Cell 2008, 20, 228–240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.; Yu, S.M. Chryseobacterium salivictor sp. nov., a plant-growth-promoting bacterium isolated from freshwater. Antonie Leeuwenhoek 2020, 113, 989–995. [Google Scholar] [CrossRef] [PubMed]
- Dardanelli, M.S.; Manyani, H.; González-Barroso, S.; Rodríguez-Carvajal, M.A.; Gil-Serrano, A.M.; Espuny, M.R.; López-Baena, F.J.; Bellogín, R.A.; Megías, M.; Ollero, F.J. Effect of the presence of the plant growth promoting rhizobacterium (PGPR) Chryseobacterium balustinum Aur9 and salt stress in the pattern of flavonoids exuded by soybean roots. Plant Soil 2009, 328, 483–493. [Google Scholar] [CrossRef]
- Bhise, K.K.; Bhagwat, P.K.; Dandge, P.B. Synergistic effect of Chryseobacterium gleum sp. SUK with ACC deaminase activity in alleviation of salt stress and plant growth promotion in Triticum aestivum L. 3 Biotech 2017, 7, 105. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.E.; Lee, S.M.; Jung, J. Integrated omics analysis unraveled the microbiome-mediated effects of Yijin-Tang on hepatosteatosis and insulin resistance in obese mouse. Phytomedicine 2020, 79, 153354. [Google Scholar] [CrossRef] [PubMed]
- Lai, Z.; Tsugawa, H.; Wohlgemuth, G.; Mehta, S.; Mueller, M.; Zheng, Y.; Ogiwara, A.; Meissen, J.; Showalter, M.; Takeuchi, K.; et al. Identifying metabolites by integrating metabolome databases with mass spectrometry cheminformatics. Nat. Methods 2018, 15, 53–56. [Google Scholar] [CrossRef]
- Naoe, S.; Tsugawa, H.; Takahashi, M.; Ikeda, K.; Arita, M. Characterization of Lipid Profiles after Dietary Intake of Polyunsaturated Fatty Acids Using Integrated Untargeted and Targeted Lipidomics. Metabolites 2019, 9, 241. [Google Scholar] [CrossRef] [Green Version]
Pathway Name | Definition | KO ID 1 |
---|---|---|
Aromatic hydrocarbons catabolism | Putative ring-cleaving dioxygenase MhqO | K15975 |
Putative ring-cleaving dioxygenase MhqA | K06999 | |
Putative salicylate 1-monooxygenase | K00480 | |
Riboflavin synthesis | Riboflavin synthase | K00793 |
Riboflavin kinase | K11753 | |
GTP cyclohydrolase II | K01497 | |
3,4-dihydroxy 2-butanone 4-phosphate synthase | K02858 | |
3,4-dihydroxy 2-butanone 4-phosphate synthase and | K14652 | |
GTP cyclohydrolase II | ||
5-amino-6-(5-phosphoribosylamino) uracil reductase | K11752 | |
6,7-dimethyl-8-ribityllumazine synthase | K00794 | |
Plant hormone signal transduction | Auxin responsive GH3 gene family | K14487 |
Class | Metabolites | p-Value | Fold Change |
---|---|---|---|
Carbohydrates and carbohydrate | Gentiobiose | 0.014 | 2.10 |
conjugates | Gluconate | 0.010 | 2.38 |
Glucosamine | 0.016 | 1.76 | |
Glucose | 0.002 | 1.46 | |
Glyceric acid | 0.019 | 1.61 | |
Maltotriose | 0.029 | 3.12 | |
Threonic acid | 0.048 | 1.76 | |
Amino acids and derivatives | Arginine | 0.010 | 1.85 |
Betaine | 0.044 | 1.56 | |
Hydroxyproline | 0.003 | 2.80 | |
Lysine | 0.040 | 1.68 | |
N-Epsilon-acetyllysine | 0.004 | 2.92 | |
N-Formyl-L-methionine | 0.010 | 2.42 | |
O-Acetyl-L-homoserine | 0.011 | 2.11 | |
Pipecolic acid | 0.026 | 2.34 | |
Saccharopine | 0.004 | 5.07 | |
Trans-4-hydroxy-L-proline | 0.048 | 1.49 | |
Purines and pyrimidines | Adenine | 0.001 | 1.78 |
(+derivatives) | Cordycepin | 0.041 | 2.27 |
Cytosine | 0.005 | 1.65 | |
Isonicotinic acid | 0.007 | 2.20 | |
Norharman | 0.049 | 3.12 | |
Thymidine | 0.014 | 1.75 | |
Benzenoids | 4-hydroxybenzoate | 0.048 | 1.52 |
Catechol | 0.033 | 27.95 | |
Salicylic acid | 0.047 | 1.51 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, H.; Seo, S.I.; Lim, J.-H.; Song, J.; Seo, J.-H.; Kim, P.I. Screening of Carbofuran-Degrading Bacteria Chryseobacterium sp. BSC2-3 and Unveiling the Change in Metabolome during Carbofuran Degradation. Metabolites 2022, 12, 219. https://doi.org/10.3390/metabo12030219
Park H, Seo SI, Lim J-H, Song J, Seo J-H, Kim PI. Screening of Carbofuran-Degrading Bacteria Chryseobacterium sp. BSC2-3 and Unveiling the Change in Metabolome during Carbofuran Degradation. Metabolites. 2022; 12(3):219. https://doi.org/10.3390/metabo12030219
Chicago/Turabian StylePark, Haeseong, Sun Il Seo, Ji-Hwan Lim, Jaekyeong Song, Joo-Hyun Seo, and Pyoung Il Kim. 2022. "Screening of Carbofuran-Degrading Bacteria Chryseobacterium sp. BSC2-3 and Unveiling the Change in Metabolome during Carbofuran Degradation" Metabolites 12, no. 3: 219. https://doi.org/10.3390/metabo12030219
APA StylePark, H., Seo, S. I., Lim, J. -H., Song, J., Seo, J. -H., & Kim, P. I. (2022). Screening of Carbofuran-Degrading Bacteria Chryseobacterium sp. BSC2-3 and Unveiling the Change in Metabolome during Carbofuran Degradation. Metabolites, 12(3), 219. https://doi.org/10.3390/metabo12030219