Saccharomyces cerevisiae and Clostridium butyricum Could Improve B-Vitamin Production in the Rumen and Growth Performance of Heat-Stressed Goats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Goats, Diet, and Management
2.2. Modeling of Heat-Stressed Goats
2.3. Probiotic Feeding Trials
2.4. Measurement
2.5. Statistical Analysis
3. Results
3.1. Successfully Modeling Heat-Stressed Goats
3.2. Heat Stress Caused a Significant Decrease in Rumen B-Vitamin Concentration
3.3. Heat Stress Caused a Significant Decrease in Growth Performance
3.4. SC and CB Improved B-Vitamin Production in the Rumen of Heat-Stressed Goats
3.5. SC and CB Improved Growth Performance of Heat-Stressed Goats
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tajima, K.; Nonaka, I.; Higuchi, K.; Takusari, N.; Kurihara, M.; Takenaka, A.; Mitsumori, M.; Kajikawa, H.; Aminov, R.I. Influence of high temperature and humidity on rumen bacterial diversity in Holstein heifers. Anaerobe 2007, 2, 57–64. [Google Scholar] [CrossRef]
- Cai, L.Y.; Yu, J.K.; Hartanto, R.; Zhang, J.; Yang, A.; Qi, D.S. Effects of heat challenge on growth performance, ruminal, blood and physiological parameters of Chinese crossbred goats. Small Rumin. Res. 2019, 174, 125–130. [Google Scholar] [CrossRef]
- Nonaka, I.; Takusari, N.; Tajima, K.; Suzuki, T.; Higuchi, K.; Kurihara, M. Effects of high environmental temperatures on physiological and nutritional status of prepubertal Holstein heifers. Livest. Sci. 2008, 1, 14–23. [Google Scholar] [CrossRef]
- Uyeno, Y.; Sekiguchi, Y.; Tajima, K.; Takenaka, A.; Kurihara, M.; Kamagata, Y. An rRNA-based analysis for evaluating the effect of heat stress on the rumen microbial composition of Holstein heifers. Anaerobe 2010, 1, 27–33. [Google Scholar] [CrossRef]
- Yadav, B. Impact of heat stress on rumen functions. Vet. World 2013, 6, 992–996. [Google Scholar] [CrossRef] [Green Version]
- Li, N.; Li, M.Y.; Peng, Q.H. Research Progress of Vitamin B in Ruminant Nutrition. Chin. J. Anim. Nutr. 2021, 9, 4909–4919. [Google Scholar] [CrossRef]
- Chen, B.; Wang, C.; Wang, Y.M.; Liu, J.X. Effect of biotin on milk performance of dairy cattle: A meta-analysis. J. Dairy Sci. 2011, 94, 3537–3546. [Google Scholar] [CrossRef]
- Girard, C.L.; Matter, J.J. Folic acid and vitamin B12 requirement of dairy cows: A concept to be revised. Livest. Prod. Sci. 2005, 98, 123–133. [Google Scholar] [CrossRef]
- Fremah, A.S.K.; Ekwemalo, E.K.; Asiamah, H.; Ismail, S.; Ibrahim, H.; Worku, M. Effect of probiotic supplementation on growth and global gene expression in dairy cows. J. Appl. Anim. Res. 2017, 3, 257–263. [Google Scholar] [CrossRef]
- Zapata, O.; Cervantes, A.; Barreras, A.; Monge-Navarro, F.; González-Vizcarra, V.M.; Estrada-Angulo, A.; Urías-Estrada, J.D.; Coronac, L.; Zinn, R.A.; Martínez- Alvareze, I.G.; et al. Effects of single or combined supplementation of probiotics and prebiotics on ruminal fermentation, ruminal bacteria and total tract digestion in lambs. Small Rumin. Res. 2021, 204, 106538. [Google Scholar] [CrossRef]
- Wang, X.; Xie, H.J.; Liu, F. Production performance, immunity, and heat stress resistance in Jersey cattle fed a concentrate fermented with probiotics in the presence of a Chinese herbal combination. Anim. Feed Sci. Technol. 2017, 228, 59–65. [Google Scholar] [CrossRef]
- Cai, L.Y.; Yu, J.K.; Zhang, J.; Qi, D.S. The effects of slatted floors and manure scraper systems on the concentrations and emission rates of ammonia, methane and carbon dioxide in goat buildings. Small Rumin. Res. 2015, 132, 103–110. [Google Scholar] [CrossRef]
- LPHSI. Livestock and Poultry Heat Stress Indices Agriculture Engineering Technology Guide; Clemson University: Clemson, SC, USA, 1990.
- Marai, I.F.M.; EI-Darawany, A.A.; Fadie, A.; Abdel-Hafez, M.A.M. Physiological traits as affected by heat stress in sheep—A review. Small Rumin. Res. 2007, 1, 1–12. [Google Scholar] [CrossRef]
- Wang, Z.X.; Wang, Z.S.; Wang, L.Z.; Liu, J.H.; Xu, L.X. Effects of temperature and humidity index in different seasons on production performance and physiological and biochemical indexes of dairy cows. J. Dairy Sci. 2009, 45, 60–63. [Google Scholar]
- Peng, X.K.; Zhao, T.; Huang, X.Y.; Zhang, Y.; Xing, X.N.; Zahng, E.P. Effects of acute heat stress on blood biochemistry indices and expression of HSP 70 family genes in bloos lymphocytes in goats. Acta Vet. Zootech. Sin. 2019, 50, 1219–1229. [Google Scholar] [CrossRef]
- Cai, L.Y.; Hartanto, R.; Zhang, J.; Qi, D.S. Clostridium Butyricum improves rumen fermentation and growth performance of heat-stressed goats in vitro and in vivo. Animals 2021, 11, 3261. [Google Scholar] [CrossRef]
- Ramakersm, C.; Ruijter, J.M.; Deprez, R.H.; Moorman, A.F. Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci. Lett. 2003, 339, 62–66. [Google Scholar] [CrossRef]
- Ciulu, M.; Solinas, S.; Floris, I.; Panzanelli, P.; Pilo, M.; Piu, P.C.; Spano, N.; Sanna, G. RP-HPLC determination of water-soluble vitamins in honey. Talanta 2011, 83, 924–929. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 18th ed; AOAC International: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Goering, H.K.; Van Soest, P.J. Forage fiber analysis (apparatus, reagents, procedures and some applications). USDA Agr. Handb. 1970, 379. [Google Scholar]
- Russell, J.B.; Rychlik, J.L. Factors that alter rumen microbial ecology. Science 2001, 292, 1119–1122. [Google Scholar] [CrossRef]
- Zhao, G.Y. Ruminant Nutrition; China Agricultural University Press: Beijing, China, 2012. [Google Scholar]
- Pan, X.H.; Xue, F.G.; Nan, X.M.; Tang, Z.W.; Wang, K.; Yves, B.; Jian, J.S.; Xiong, B.H. Illumina sequencing approach to characterize thiamine metabolism related bacteria and the impacts of thiamine supplementation on ruminal microbiota in dairy cows fed high-grain diets. Front. Microbiol. 2017, 8, 18128. [Google Scholar] [CrossRef]
- Pan, X.H.; Yang, L.; Beckers, Y.; Xue, F.G.; Tang, Z.W.; Jiang, L.S.; Xiong, B.H. Thiamine supplementation facilitates thiamine transporter expression in the rumen epithelium and attenuates high-grain-induced inflammation in low-yielding dairy cows. J. Dairy Sci. 2017, 100, 5329–5342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fürll, M.; Deniz, A.; Westphal, B.; Illing, C.; Constable, P.D. Effect of multiple intravenous injections of butaphosphan and cyanocobalamin on the metabolism of periparturient dairy. J. Dairy Sci. 2010, 93, 4155–4164. [Google Scholar] [CrossRef] [PubMed]
- Wrinkle, S.R.; Robinson, P.H.; Garrett, J.E. Niacin delivery to the intestinal absorptive site impacts heat stress and productivity responses of high producing dairy cows during hot conditions. Anim. Feed Sci. Technol. 2012, 175, 33–47. [Google Scholar] [CrossRef]
- Klis, F.M. Review: Cell wall assembly in yeast. Yeast 1994, 7, 851–869. [Google Scholar] [CrossRef] [Green Version]
- Moukadiri, I.; Armero, J.; Abad, A.; Sentandreu, R.; Zueco, R. Dentification of a mannoprotein present in the inner layer of the cell wall of Saccharomyces cerevisiae. J. Bacteriol. 1997, 7, 2154–2162. [Google Scholar] [CrossRef] [Green Version]
- Feng, J.S.; Wang, Q.S.; Liao, B.L.; Yan, X.H. Application of yeast feed in animal husbandry. Feed Industry 2008, 4, 4–6. [Google Scholar] [CrossRef]
- Yi, Z.H. Advances in research and application of probiotic Clostridium butyrate. Feed Res. 2012, 2, 4–17. [Google Scholar] [CrossRef]
- Zhang, S.T.; Shi, Y.; Zhang, S.L.; Wang, H.K. Progress on the studies and application of Clostridium butyricum. Biotechnol. Bull. 2013, 9, 28–33. [Google Scholar] [CrossRef]
- Soriani, N.; Panella, G.; Calamari, L. Rumination time during the summer season and its relationships with metabolic conditions and milk production. J. Dairy Sci. 2013, 8, 5082–5094. [Google Scholar] [CrossRef] [Green Version]
- Indu, S.; Sejian, V.; Naqvi, S.M.K. Impact of simulated heat stress on growth, physiological adaptability, blood metabolites and endocrine responses in Malpura ewes under semiarid tropical environment. Anim. Prod. Sci. 2014, 55, 1314. [Google Scholar] [CrossRef]
- Pragna, P.; Sejian, V.; Bagath, M.; Krishnan, G.; Archana, P.R.; Soren, N.M.; Beena, V.; Bhatta, R. Comparative assessment of growth performance of three different indigenous goat breeds exposed to summer heat stress. J. Anim. Physiol. Anim. Nutr. 2018, 102, 825–836. [Google Scholar] [CrossRef]
Ingredient | Content | Nutrition Level | Content |
---|---|---|---|
Alfalfa | 562 | Dry matter | 951 |
Ground corn | 264 | Organic matter | 854 |
Soybean meal | 84 | Crude protein | 173 |
Wheat barn | 73 | Neutral detergent fiber (NDF) | 434 |
Ca2HPO4 | 7 | Acid detergent fiber (ADF) | 257 |
Premix * | 10 | Calcium | 5.9 |
Phosphorus | 3.2 |
Gene | Primer Sequence | Product Length | Annealing Temperature | GenBank Accession No. |
---|---|---|---|---|
β-actin | F:TCTGGCACCACACCTTCTAC R: TCTTCTCACGGTTGGGCCTTG | 102 | 60 | XM_018039831.1 |
HSPA 1 | F:CGACCAGGGAAACCGGCAC R:CGGGTCGCCGAACTTGC | 151 | 60 | NM_005677146.3 |
HSPA 6 | F:TCTGCCGCAACAGGATAAA R:CGCCCACGCACGAGTAC | 239 | 60 | NM_001314233.1 |
HSPA 8 | F:ACCTCTATTACCCGTGCCC R:CTCTTATTCAGTTCCTTCCCATT | 203 | 60 | XM_018039831.1 |
Parameters | Periods | SEM | |
---|---|---|---|
Control | HS1 | ||
Skin temperature (°C) | 33.8 a | 36.8 b | 0.23 |
Rectal temperature (°C) | 39.1 a | 39.6 a | 0.17 |
Respiratory rate (breaths/min) | 25.3 a | 33.4 b | 1.12 |
Pulse (beats/min) | 74.6 a | 84.1 b | 3.22 |
Parameters | Periods | SEM | |
---|---|---|---|
Control | HS1 | ||
DMI (kg) | 1.13 a | 0.84 b | 0.04 |
ADG (kg) | 0.13 a | 0.08 b | 0.02 |
DM (%) | 51.28 a | 54.54 b | 3.95 |
NDF (%) | 40.14 a | 47.04 a | 3.13 |
ADF (%) | 39.87 a | 44.28 b | 3.22 |
Parameters | Treatment | SEM | |||
---|---|---|---|---|---|
HS2 | CB | SC | Mix | ||
DMI (kg) | 0.81 a | 0.85 a | 0.82 a | 0.84 a | 0.03 |
ADG (kg) | 0.08 a | 0.17 b | 0.12 c | 0.12 c | 0.01 |
DM (%) | 50.52 a | 66.02 b | 57.23 c | 65.21 b | 4.23 |
NDF (%) | 38.34 a | 54.24 b | 46.24 c | 52.44 a | 3.11 |
ADF (%) | 37.64 a | 50.14 b | 44.32 c | 49.02 b | 3.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, L.; Hartanto, R.; Xu, Q.; Zhang, J.; Qi, D. Saccharomyces cerevisiae and Clostridium butyricum Could Improve B-Vitamin Production in the Rumen and Growth Performance of Heat-Stressed Goats. Metabolites 2022, 12, 766. https://doi.org/10.3390/metabo12080766
Cai L, Hartanto R, Xu Q, Zhang J, Qi D. Saccharomyces cerevisiae and Clostridium butyricum Could Improve B-Vitamin Production in the Rumen and Growth Performance of Heat-Stressed Goats. Metabolites. 2022; 12(8):766. https://doi.org/10.3390/metabo12080766
Chicago/Turabian StyleCai, Liyuan, Rudy Hartanto, Qingbiao Xu, Ji Zhang, and Desheng Qi. 2022. "Saccharomyces cerevisiae and Clostridium butyricum Could Improve B-Vitamin Production in the Rumen and Growth Performance of Heat-Stressed Goats" Metabolites 12, no. 8: 766. https://doi.org/10.3390/metabo12080766
APA StyleCai, L., Hartanto, R., Xu, Q., Zhang, J., & Qi, D. (2022). Saccharomyces cerevisiae and Clostridium butyricum Could Improve B-Vitamin Production in the Rumen and Growth Performance of Heat-Stressed Goats. Metabolites, 12(8), 766. https://doi.org/10.3390/metabo12080766