Using Molecular Lines to Determine Carbon and Nitrogen Abundances in the Atmospheres of Cool Stars
Abstract
:1. Introduction
2. Observations and Stellar Atmospheric Parameters
3. Carbon and Nitrogen Abundance Determination
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
NIST | National Institute of Standards and Technology |
VAMDC | Virtual Atomic and Molecular Data Centre |
NLTE | non-local thermodynamic equilibrium |
LLmodels | Line-by-line opacities model atmospheres |
References
- Spina, L.; Sharma, P.; Meléndez, J.; Bedell, M.; Casey, A.R.; Carlos, M.; Franciosini, E.; Vallenari, A. Chemical evidence for planetary ingestion in a quarter of Sun-like stars. Nat. Astron. 2021, 5, 1163–1169. [Google Scholar] [CrossRef]
- Kunitomo, M.; Guillot, T. Imprint of planet formation in the deep interior of the Sun. Astron. Astrophys. 2021, 655, A51. [Google Scholar] [CrossRef]
- Amarsi, A.M.; Nissen, P.E.; Skúladóttir, Á. Carbon, oxygen, and iron abundances in disk and halo stars. Implications of 3D non-LTE spectral line formation. Astron. Astrophys. 2019, 630, A104. [Google Scholar] [CrossRef]
- Amarsi, A.M.; Grevesse, N.; Asplund, M.; Collet, R. The solar carbon, nitrogen, and oxygen abundances from a 3D LTE analysis of molecular lines. Astron. Astrophys. 2021, 656, A113. [Google Scholar] [CrossRef]
- Amarsi, A.M.; Grevesse, N.; Grumer, J.; Asplund, M.; Barklem, P.S.; Collet, R. The 3D non-LTE solar nitrogen abundance from atomic lines. Astron. Astrophys. 2020, 636, A120. [Google Scholar] [CrossRef]
- Alexeeva, S.A.; Mashonkina, L.I. Carbon abundances of reference late-type stars from 1D analysis of atomic C I and molecular CH lines. Mon. Not. R. Astron. Soc. 2015, 453, 1619–1631. [Google Scholar] [CrossRef]
- Amarsi, A.M.; Barklem, P.S.; Collet, R.; Grevesse, N.; Asplund, M. 3D non-LTE line formation of neutral carbon in the Sun. Astron. Astrophys. 2019, 624, A111. [Google Scholar] [CrossRef]
- Donati, J.F. ESPaDOnS: An Echelle SpectroPolarimetric Device for the Observation of Stars at CFHT. In Solar Polarization; Trujillo-Bueno, J., Sanchez Almeida, J., Eds.; Astronomical Society of the Pacific Conference Series; Astronomical Society of the Pacific: San Francisco, CA, USA, 2003; Volume 307, p. 41. [Google Scholar]
- Crabtree, D.; Durand, D.; Fisher, W.; Gaudet, S.; Hill, N.; Justice, G.; Morris, S.; Woodsworth, A. The Canadian Astronomy Data Centre. In Astronomical Data Analysis Software and Systems III; Crabtree, D.R., Hanisch, R.J., Barnes, J., Eds.; Astronomical Society of the Pacific Conference Series; Astronomical Society of the Pacific: San Francisco, CA, USA, 1994; Volume 61, p. 123. [Google Scholar]
- Ryabchikova, T.; Pakhomov, Y.; Mashonkina, L.; Sitnova, T. Detailed abundances of the wide pairs of stars with and without planets: The binary systems 16 Cyg and HD 219542. Mon. Not. R. Astron. Soc. 2022, 514, 4958–4968. [Google Scholar] [CrossRef]
- Kurucz, R.L.; Furenlid, I.; Brault, J.; Testerman, L. Solar Flux Atlas from 296 to 1300 nm; National Solar Observatory: Sunspot, NM, USA, 1984. [Google Scholar]
- Valenti, J.A.; Piskunov, N. Spectroscopy made easy: A new tool for fitting observations with synthetic spectra. Astron. Astrophys. Suppl. Ser. 1996, 118, 595–603. [Google Scholar] [CrossRef]
- Piskunov, N.; Valenti, J.A. Spectroscopy Made Easy: Evolution. Astron. Astrophys. 2017, 597, A16. [Google Scholar] [CrossRef] [Green Version]
- Ryabchikova, T.; Piskunov, N.; Kurucz, R.L.; Stempels, H.C.; Heiter, U.; Pakhomov, Y.; Barklem, P.S. A major upgrade of the VALD database. Phys. Scr. 2015, 90, 054005. [Google Scholar] [CrossRef]
- Dubernet, M.L.; Antony, B.K.; Ba, Y.A.; Babikov, Y.L.; Bartschat, K.; Boudon, V.; Braams, B.J.; Chung, H.K.; Daniel, F.; Delahaye, F.; et al. The virtual atomic and molecular data centre (VAMDC) consortium. J. Phys. At. Mol. Phys. 2016, 49, 074003. [Google Scholar] [CrossRef]
- Albert, D.; Antony, B.K.; Ba, Y.A.; Babikov, Y.L.; Bollard, P.; Boudon, V.; Delahaye, F.; Del Zanna, G.; Dimitrijević, M.S.; Drouin, B.J.; et al. A Decade with VAMDC: Results and Ambitions. Atoms 2020, 8, 76. [Google Scholar] [CrossRef]
- Ralchenko, Y.; Kramida, A.; Reader, J.; NIST ASD Team. NIST Atomic Spectra Database (ver. 4.0.0). Available online: https://www.nist.gov/pml/atomic-spectra-database (accessed on 1 September 2010).
- Brooke, J.S.A.; Bernath, P.F.; Schmidt, T.W.; Bacskay, G.B. Line strengths and updated molecular constants for the C2 Swan system. J. Quant. Spectrosc. Radiat. Transf. 2013, 124, 11–20. [Google Scholar] [CrossRef]
- Brooke, J.S.A.; Ram, R.S.; Western, C.M.; Li, G.; Schwenke, D.W.; Bernath, P.F. Einstein A Coefficients and Oscillator Strengths for the A 2Π-X 2Σ+ (Red) and B2Σ+-X2Σ+ (Violet) Systems and Rovibrational Transitions in the X 2Σ+ State of CN. Astrophys. J. Suppl. Ser. 2014, 210, 23. [Google Scholar] [CrossRef]
- Shulyak, D.; Tsymbal, V.; Ryabchikova, T.; Stütz, C.; Weiss, W.W. Line-by-line opacity stellar model atmospheres. Astron. Astrophys. 2004, 428, 993–1000. [Google Scholar] [CrossRef]
- Gustafsson, B.; Edvardsson, B.; Eriksson, K.; Jørgensen, U.G.; Nordlund, Å.; Plez, B. A grid of MARCS model atmospheres for late-type stars. I. Methods and general properties. Astron. Astrophys. 2008, 486, 951–970. [Google Scholar] [CrossRef]
- Tsymbal, V.; Ryabchikova, T.; Sitnova, T. Software for NLTE spectrum fitting. In Physics of Magnetic Stars; Romanyuk, I.I., Yakunin, I.A., Kudryavtsev, D.O., Eds.; Astronomical Society of the Pacific Conference Series; Astronomical Society of the Pacific: San Francisco, CA, USA, 2019; Volume 518, p. 247. [Google Scholar]
- Asplund, M.; Amarsi, A.M.; Grevesse, N. The chemical make-up of the Sun: A 2020 vision. Astron. Astrophys. 2021, 653, A141. [Google Scholar] [CrossRef]
- Caffau, E.; Maiorca, E.; Bonifacio, P.; Faraggiana, R.; Steffen, M.; Ludwig, H.G.; Kamp, I.; Busso, M. The solar photospheric nitrogen abundance. Analysis of atomic transitions with 3D and 1D model atmospheres. Astron. Astrophys. 2009, 498, 877–884. [Google Scholar] [CrossRef] [Green Version]
Parameter | Sun (Atlas) | Sun (Vesta) | 16 Cyg A | 16 Cyg B |
---|---|---|---|---|
, K | 5777 | 5778 | 5829 | 5760 |
, dex | 4.44 | 4.44 | 4.33 | 4.39 |
[M/H] | 0.0 | 0.003 | 0.110 | 0.074 |
, km s | 0.90 | 0.86 | 0.99 | 0.90 |
, km s | 3.50 | 3.59 | 4.21 | 3.32 |
Species | Sun (Atlas) | Sun (Vesta) | 16 Cyg A | 16 Cyg B |
---|---|---|---|---|
C (atom) | −3.596 ± 0.035 | −3.601 ± 0.027 | −3.560 ± 0.037 | −3.564 ± 0.037 |
C (mol) | −3.600 ± 0.010 | −3.617 ± 0.024 | −3.564 ± 0.016 | −3.571 ± 0.013 |
N (atom) | −4.089 ± 0.010 | −4.062 ± 0.033 | −4.063 ± 0.009 | −4.076 ± 0.017 |
N (mol) | −4.072 ± 0.043 | −4.059 ± 0.084 | −4.006 ± 0.070 | −4.038 ± 0.058 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ryabchikova, T.; Piskunov, N.; Pakhomov, Y. Using Molecular Lines to Determine Carbon and Nitrogen Abundances in the Atmospheres of Cool Stars. Atoms 2022, 10, 103. https://doi.org/10.3390/atoms10040103
Ryabchikova T, Piskunov N, Pakhomov Y. Using Molecular Lines to Determine Carbon and Nitrogen Abundances in the Atmospheres of Cool Stars. Atoms. 2022; 10(4):103. https://doi.org/10.3390/atoms10040103
Chicago/Turabian StyleRyabchikova, Tatiana, Nikolai Piskunov, and Yury Pakhomov. 2022. "Using Molecular Lines to Determine Carbon and Nitrogen Abundances in the Atmospheres of Cool Stars" Atoms 10, no. 4: 103. https://doi.org/10.3390/atoms10040103
APA StyleRyabchikova, T., Piskunov, N., & Pakhomov, Y. (2022). Using Molecular Lines to Determine Carbon and Nitrogen Abundances in the Atmospheres of Cool Stars. Atoms, 10(4), 103. https://doi.org/10.3390/atoms10040103