Cortisol Directly Stimulates Spermatogonial Differentiation, Meiosis, and Spermiogenesis in Zebrafish (Danio rerio) Testicular Explants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Testis Tissue Culture
2.3. Short-Term (18 h) Incubation
2.4. In Vitro 11-Ketotestosterone (11-KT) Release
2.5. Gene Expression Analysis by Real-Time, Quantitative PCR (qPCR)
2.6. Long-Term (7 Days) Incubation
2.7. Histomorphometrical Analysis
2.8. Germ Cell Proliferation—BrdU Incorporation
2.9. Glucocorticoid Receptor Antagonist (RU-486)
2.10. In Silico Analysis
2.11. In Situ Hybridization
2.12. Differential Platting
2.13. Statistical Analysis
3. Results
3.1. Cortisol Does Not Modulate Basal Androgen Release but Influences Transcript Levels of a Selected Number of Genes
3.2. Effects of Cortisol on Zebrafish Spermatogenesis: Stimulatory Roles on Spermatogonial Differentiation, Meiosis, and Spermiogenesis
3.3. Several Putative Glucocorticoid Response Elements (GREs) were Found Upstream of Zebrafish Sycp3l
3.4. Glucocorticoid Receptors are Expressed in Somatic (Sertoli and Leydig Cells) and Germ Cells of Zebrafish Testis
4. Discussion
5. Conclusion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Data Availability
References
- Schreck, C.B.; Tort, L. The Concept of Stress in Fish. In Biology of Stress in Fish: Fish Physiology, 1st ed.; Schreck, C.B., Tort, L., Farrell, A., Braunner, C., Eds.; Academic Press: San Diego, CA, USA, 2016; Volume 35, pp. 1–34. [Google Scholar]
- Milla, S.; Wang, N.; Mandiki, S.N.M.; Kestemont, P. Corticosteroids: Friends or foes of teleost fish reproduction? Comp. Biochem. Physiol.-A Mol. Integr. Physiol. 2009, 153, 242–251. [Google Scholar] [CrossRef] [PubMed]
- Faught, E.; Vijayan, M.M. Maternal stress and fish reproduction: The role of cortisol revisited. Fish Fish. 2018, 19, 1016–1030. [Google Scholar] [CrossRef]
- Schreck, C.B. Stress and compensation in teleostean fishes: Response to social and physical factors. In Stress and fish, 1st ed.; Pickering, A.D., Ed.; Academic Press: London, UK, 1981; pp. 295–321. [Google Scholar]
- Wendelaar Bonga, S.E. The stress response in fish. Physiol. Rev. 1997, 77, 591–625. [Google Scholar] [CrossRef] [PubMed]
- Barton, B.A. Stress in Fishes: A Diversity of Responses with Particular Reference to Changes in Circulating Corticosteroids. Integr. Comp. Biol. 2002, 42, 517–525. [Google Scholar] [CrossRef] [PubMed]
- Ramsay, J.M.; Feist, G.W.; Varga, Z.M.; Westerfield, M.; Kent, M.L.; Schreck, C.B. Whole-body cortisol is an indicator of crowding stress in adult zebrafish, Danio rerio. Aquaculture 2006, 258, 565–574. [Google Scholar] [CrossRef]
- Mommsen, T.P.; Vijayan, M.M.; Moon, T.W. Cortisol in teleosts: Dynamics, mechanisms of action, and metabolic regulation. Rev. Fish Biol. Fish. 1999, 9, 211–268. [Google Scholar] [CrossRef]
- Dores, R.M.; Garcia, Y. Views on the co-evolution of the melanocortin-2 receptor, MRAPs, and the hypothalamus/pituitary/adrenal-interrenal axis. Mol. Cell. Endocrinol. 2015, 408, 12–22. [Google Scholar] [CrossRef]
- Pankhurst, N.W.; Van der Kraak, G. Evidence that acute stress inhibits ovarian steroidogenesis in rainbow trout In Vivo, through the action of cortisol. Gen. Comp. Endocrinol. 2000, 117, 225–237. [Google Scholar] [CrossRef]
- Pankhurst, N.W. Reproduction and Development. In Biology of Stress in Fish: Fish Physiology, 1st ed.; Schreck, C.B., Tort, L., Farrell, A., Brauner, C., Eds.; Academic Press: San Diego, CA, USA, 2016; Volume 35, pp. 295–331. [Google Scholar]
- Schreck, C.B.; Contreras-Sanchez, W.; Fitzpatrick, M.S. Effects of stress on fish reproduction, gamete quality, and progeny. Aquaculture 2001, 197, 3–24. [Google Scholar] [CrossRef]
- Carragher, J.F.; Sumpter, J.P.; Pottinger, T.G.; Pickering, A.D. The deleterious effects of cortisol implantation on reproductive function in two species of trout, Salmo trutta L. and Salmo gairdneri Richardson. Gen. Comp. Endocrinol. 1989, 76, 310–321. [Google Scholar] [CrossRef]
- Carragher, J.F.; Sumpter, J.P. The effect of cortisol on the secretion of sex steroids from cultured ovarian follicles of rainbow trout. Gen. Comp. Endocrinol. 1990, 77, 403–407. [Google Scholar] [CrossRef]
- Pickering, A.D.; Pottinger, T.G.; Carragher, J.; Sumpter, J.P. The effects of acute and chronic stress on the levels of reproductive hormones in the plasma of mature male brown trout, Salmo trutta L. Gen. Comp. Endocrinol. 1987, 68, 249–259. [Google Scholar] [CrossRef]
- Campbell, P.M.; Pottinger, T.G.; Sumpter, J.P. Stress Reduces the Quality of Gametes Produced by Rainbow Trout. Biol. Reprod. 1992, 47, 1140–1150. [Google Scholar] [CrossRef] [PubMed]
- Consten, D.; Lambert, J.G.D.; Goos, H.J.T. Cortisol affects testicular development in male common carp, Cyprinus carpio L., but not via an effect on LH secretion. Comp. Biochem. Physiol.-B Biochem. Mol. Biol. 2001, 129, 671–677. [Google Scholar] [CrossRef]
- Consten, D.; Keuning, E.D.; Terlou, M.; Lambert, J.G.D.; Goos, H.J.T. Cortisol effects on the testicular androgen synthesizing capacity in common carp, Cyprinus carpio L. Fish Physiol. Biochem. 2001, 25, 91–98. [Google Scholar] [CrossRef]
- Goos, H.J.T.; Consten, D. Stress adaptation, cortisol and pubertal development in the male common carp, Cyprinus carpio. Mol. Cell. Endocrinol. 2002, 197, 105–116. [Google Scholar] [CrossRef]
- Shankar, D.S.; Kulkarni, R.S. Effect of cortisol on testis of freshwater fish Notopterus notopterus (Pallas). Indian J. Exp. Biol. 2000, 38, 1230. [Google Scholar]
- Ozaki, Y.; Higuchi, M.; Miura, C.; Yamaguchi, S.; Tozawa, Y.; Miura, T. Roles of 11β-Hydroxysteroid Dehydrogenase in Fish Spermatogenesis. Endocrinology 2006, 147, 5139–5146. [Google Scholar] [CrossRef] [Green Version]
- Hirose, K. Biological Study on Ovulation in vitro of Fish-VI Effects of Metopirone (su-4885) on Salmon Gonadotropin- and Cortisol-induced in Vitro Ovulation in Oryzias Latipes. Bull. Japanese Soc. Sci. Fish. 1973, 39, 765–769. [Google Scholar] [CrossRef]
- Jalabert, B.; Fostier, A.; Marcuzzi, O.; Heydorff, M. The modulatory effect in vitro of oestradiol-17β, testosterone or cortisol on the output of 17α-hydroxy-20β-dihydroprogesterone by rainbow trout (Salmo gairdneri) ovarian follicles stimulated by the maturational gonadotropin s-GtH. Reprod. Nutr. Développement 1984, 24, 127–136. [Google Scholar] [CrossRef] [Green Version]
- Barry, T.P.; Riebe, J.D.; Parrish, J.J.; Malison, J.A. Effects of 17α,20β-dihydroxy-4-pregnen-3-one on cortisol production by rainbow trout interrenal tissue in vitro. Gen. Comp. Endocrinol. 1997, 107, 172–181. [Google Scholar] [CrossRef]
- Milla, S.; Jalabert, B.; Rime, H.; Prunet, P.; Bobe, J. Hydration of rainbow trout oocyte during meiotic maturation and in vitro regulation by 17,20β-dihydroxy-4-pregnen-3-one and cortisol. J. Exp. Biol. 2006, 209, 1147–1156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colombo, L.; Bern, H.A.; Pieprzyk, J.; Johnson, D.W. Biosynthesis of 11-deoxycorticosteroids by teleost ovaries and discussion of their possible role in oocyte maturation and ovulation. Gen. Comp. Endocrinol. 1973, 21, 168–178. [Google Scholar] [CrossRef]
- Goswami, S.V.; Lamba, V.J.; Sundararaj, B.I. Gonadotrophin-induced oocyte maturation in the catfish, Heteropneustes fossilis (Bloch), requires steroidogenesis in both interrenal and ovary. Gen. Comp. Endocrinol. 1985, 57, 53–63. [Google Scholar] [CrossRef]
- Canario, A.V.M.; Scott, A.P. Identification of, and development of radioimmunoassays for 17α,21-dihydroxy-4-pregnene-3,20-dione and 3α,17α,21-trihydroxy-5β-pregnan-20-one in the ovaries of mature plaice (Pleuronectes platessa). Gen. Comp. Endocrinol. 1990, 78, 273–285. [Google Scholar] [CrossRef]
- Scott, A.P.; Sherwood, N.M.; Canario, A.V.M.; Warby, C.M. Identification of free and conjugated steroids, including cortisol and 17α,20β-dihydroxy-4-pregnen-3-one, in the milt of Pacific herring, Clupea harengus pallasi. Can. J. Zool. 1991, 69, 104–110. [Google Scholar] [CrossRef]
- Scott, A.P.; Canario, A.V.M.; Sherwood, N.M.; Warby, C.M. Levels of steroids, including cortisol and 17α,20β-dihydroxy-4-pregnen-3-one, in plasma, seminal fluid, and urine of Pacific herring (Clupea harengus pallasi) and North Sea plaice (Pleuronectes platessa L.). Can. J. Zool. 1991, 69, 111–116. [Google Scholar] [CrossRef]
- Kime, D.E.; Scott, A.P.; Canario, A.V. In vitro biosynthesis of steroids, including 11-deoxycortisol and 5 alpha-pregnane-3 beta,7 alpha,17,20 beta-tetrol, by ovaries of the goldfish Carassius auratus during the stage of oocyte final maturation. Gen. Comp. Endocrinol. 1992, 87, 384. [Google Scholar] [CrossRef]
- Alsop, D.; Ings, J.S.; Vijayan, M.M. Adrenocorticotropic hormone suppresses gonadotropin-stimulated estradiol release from zebrafish ovarian follicles. PLoS ONE 2009, 4, e6463. [Google Scholar] [CrossRef]
- Faught, E.; Best, C.; Vijayan, M.M. Maternal stress-associated cortisol stimulation may protect embryos from cortisol excess in zebrafish. R. Soc. Open Sci. 2016, 3, 160032. [Google Scholar] [CrossRef] [Green Version]
- Leal, M.C.; de Waal, P.P.; García-López, Á.; Chen, S.X.; Bogerd, J.; Schulz, R.W. Zebrafish primary testis tissue culture: An approach to study testis function ex vivo. Gen. Comp. Endocrinol. 2009, 162, 134–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nóbrega, R.H.; Greebe, C.D.; van de Kant, H.; Bogerd, J.; França, L.R.; Schulz, R.W. Spermatogonial Stem Cell Niche and Spermatogonial Stem Cell Transplantation in Zebrafish. PLoS ONE 2010, 5, e12808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morais, R.D.V.S.; Nóbrega, R.H.; Gómez-González, N.E.; Schmidt, R.; Bogerd, J.; França, L.R.; Schulz, R.W. Thyroid hormone stimulates the proliferation of sertoli cells and single type A spermatogonia in adult zebrafish (Danio rerio) testis. Endocrinology 2013, 154, 4365–4376. [Google Scholar] [CrossRef] [PubMed]
- Tokarz, J.; Norton, W.; Möller, G.; de Angelis, M.H.; Adamski, J. Zebrafish 20β-Hydroxysteroid Dehydrogenase Type 2 Is Important for Glucocorticoid Catabolism in Stress Response. PLoS ONE 2013, 8, e54851. [Google Scholar] [CrossRef] [PubMed]
- Manuel, R.; Gorissen, M.; Roca, C.P.; Zethof, J.; van de Vis, H.; Flik, G.; van den Bos, R. Inhibitory avoidance learning in zebrafish (Danio Rerio): Effects of shock intensity and unraveling differences in task performance. Zebrafish 2014, 11, 341–352. [Google Scholar] [CrossRef] [Green Version]
- García-López, A.; de Jonge, H.; Nóbrega, R.H.; de Waal, P.P.; van Dijk, W.; Hemrika, W.; Taranger, G.L.; Bogerd, J.; Schulz, R.W. Studies in Zebrafish Reveal Unusual Cellular Expression Patterns of Gonadotropin Receptor Messenger Ribonucleic Acids in the Testis and Unexpected Functional Differentiation of the Gonadotropins. Endocrinology 2010, 151, 2349–2360. [Google Scholar] [CrossRef] [Green Version]
- Leal, M.C.; Cardoso, E.R.; Nóbrega, R.H.; Batlouni, S.R.; Bogerd, J.; França, L.R.; Schulz, R.W. Histological and Stereological Evaluation of Zebrafish (Danio rerio) Spermatogenesis with an Emphasis on Spermatogonial Generations. Biol. Reprod. 2009, 81, 177–187. [Google Scholar] [CrossRef] [Green Version]
- Griffin, A.; Parajes, S.; Weger, M.; Zaucker, A.; Taylor, A.E.; O’Neil, D.M.; Müller, F.; Krone, N. Ferredoxin 1b (Fdx1b) Is the Essential Mitochondrial Redox Partner for Cortisol Biosynthesis in Zebrafish. Endocrinology 2016, 157, 1122–1134. [Google Scholar] [CrossRef] [Green Version]
- Sreenivasan, R.; Jiang, J.; Wang, X.; Bártfai, R.; Kwan, H.Y.; Christoffels, A.; Orbán, L. Gonad differentiation in zebrafish is regulated by the canonical Wnt signaling pathway. Biol. Reprod. 2014, 90, 45. [Google Scholar] [CrossRef]
- Fallah, H.P.; Tovo-Neto, A.; Yeung, E.C.; Nóbrega, R.H.; Habibi, H.R. Paracrine/autocrine control of spermatogenesis by gonadotropin-inhibitory hormone. Mol. Cell. Endocrinol. 2019, 492, 110440. [Google Scholar] [CrossRef]
- Nóbrega, R.H.; Morais, R.D.V.S.; Crespo, D.; de Waal, P.P.; França, L.R.; Schulz, R.W.; Bogerd, J. Fsh stimulates spermatogonial proliferation and differentiation in zebrafish via Igf3. Endocrinology 2015, 156, 3804–3817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Danesch, U.; Gloss, B.; Schmid, W.; Schütz, G.; Schüle, R.; Renkawitz, R. Glucocorticoid induction of the rat tryptophan oxygenase gene is mediated by two widely separated glucocorticoid-responsive elements. EMBO J. 1987, 6, 625–630. [Google Scholar] [CrossRef] [PubMed]
- Cornett, L.E.; Hiller, F.C.; Jacobi, S.E.; Cao, W.; McGraw, D.W. Identification of a glucocorticoid response element in the rat β2- adrenergic receptor gene. Mol. Pharmacol. 1998, 54, 1016–1023. [Google Scholar] [CrossRef] [PubMed]
- Ma, P.; Reddy, K.P.; Chan, W.K.; Lam, T.J. Hormonal influence on amylase gene expression during Seabass (Lates calcarifer) larval development. Gen. Comp. Endocrinol. 2004, 138, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Thisse, C.; Thisse, B. High-resolution in situ hybridization to whole-mount zebrafish embryos. Nat. Protoc. 2008, 3, 59–69. [Google Scholar] [CrossRef] [PubMed]
- Hinfray, N.; Nóbrega, R.H.; Caulier, M.; Baudiffier, D.; Maillot-Maréchal, E.; Chadili, E.; Palluel, O.; Porcher, J.M.; Schulz, R.; Brion, F. Cyp17a1 and cyp19a1 in the zebrafish testis are differentially affected by oestradiol. J. Endocrinol. 2013, 216, 375–388. [Google Scholar] [CrossRef] [Green Version]
- Tea, J.; Alderman, S.L.; Gilmour, K.M. Social stress increases plasma cortisol and reduces forebrain cell proliferation in subordinate male zebrafish (Danio rerio). J. Exp. Biol. 2019, 222. [Google Scholar] [CrossRef] [Green Version]
- Milla, S.; Terrien, X.; Sturm, A.; Ibrahim, F.; Giton, F.; Fiet, J.; Prunet, P.; Le Gac, F. Plasma 11-deoxycorticosterone (DOC) and mineralocorticoid receptor testicular expression during rainbow trout Oncorhynchus mykiss spermiation: Implication with 17alpha, 20beta-dihydroxyprogesterone on the milt fluidity? Reprod. Biol. Endocrinol. 2008, 6, 19. [Google Scholar] [CrossRef] [Green Version]
- Fetter, E.; Smetanová, S.; Baldauf, L.; Lidzba, A.; Altenburger, R.; Schüttler, A.; Scholz, S. Identification and Characterization of Androgen-Responsive Genes in Zebrafish Embryos. Environ. Sci. Technol. 2015, 49, 11789–11798. [Google Scholar] [CrossRef]
- Oakes, J.A.; Li, N.; Wistow, B.R.C.; Griffin, A.; Barnard, L.; Storbeck, K.-H.; Cunliffe, V.T.; Krone, N.P. Ferredoxin 1b Deficiency Leads to Testis Disorganization, Impaired Spermatogenesis, and Feminization in Zebrafish. Endocrinology 2019, 160, 2401–2416. [Google Scholar] [CrossRef]
- Fernandino, J.I.; Hattori, R.S.; Kishii, A.; Strüssmann, C.A.; Somoza, G.M. The Cortisol and Androgen Pathways Cross Talk in High Temperature-Induced Masculinization: The 11β-Hydroxysteroid Dehydrogenase as a Key Enzyme. Endocrinology 2012, 153, 6003–6011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandino, J.I.; Hattori, R.S.; Acosta, O.D.M.; Strüssmann, C.A.; Somoza, G.M. Environmental stress-induced testis differentiation: Androgen as a by-product of cortisol inactivation. Gen. Comp. Endocrinol. 2013, 192, 36–44. [Google Scholar] [CrossRef] [PubMed]
- Burnstein, K.L.; Maiorino, C.A.; Dai, J.L.; Cameron, D.J. Androgen and glucocorticoid regulation of androgen receptor cDNA expression. Mol. Cell. Endocrinol. 1995, 115, 177–186. [Google Scholar] [CrossRef]
- de Waal, P.P.; Wang, D.S.; Nijenhuis, W.A.; Schulz, R.W.; Bogerd, J. Functional characterization and expression analysis of the androgen receptor in zebrafish (Danio rerio) testis. Reproduction 2008, 136, 225–234. [Google Scholar] [CrossRef] [Green Version]
- Eachus, H.; Zaucker, A.; Oakes, J.A.; Griffin, A.; Weger, M.; Güran, T.; Taylor, A.; Harris, A.; Greenfield, A.; Quanson, J.L.; et al. Genetic Disruption of 21-Hydroxylase in Zebrafish Causes Interrenal Hyperplasia. Endocrinology 2017, 158, 4165–4173. [Google Scholar] [CrossRef] [Green Version]
- Hollenberg, S.M.; Weinberger, C.; Ong, E.S.; Cerelli, G.; Oro, A.; Lebo, R.; Brad Thompson, E.; Rosenfeld, M.G.; Evans, R.M. Primary structure and expression of a functional human glucocorticoid receptor cDNA. Nature 1985, 318, 635–641. [Google Scholar] [CrossRef]
- Encío, I.J.; Detera-Wadleigh, S.D. The genomic structure of the human glucocorticoid receptor. J. Biol. Chem. 1991, 266, 7188. [Google Scholar]
- Schaaf, M.J.M.; Champagne, D.; van Laanen, I.H.C.; van Wijk, D.C.W.A.; Meijer, A.H.; Meijer, O.C.; Spaink, H.P.; Richardson, M.K. Discovery of a Functional Glucocorticoid Receptor β-Isoform in Zebrafish. Endocrinology 2008, 149, 1591–1599. [Google Scholar] [CrossRef] [Green Version]
- Alsop, D.; Vijayan, M. The zebrafish stress axis: Molecular fallout from the teleost-specific genome duplication event. Gen. Comp. Endocrinol. 2009, 161, 62–66. [Google Scholar] [CrossRef]
- Oakleyt, R.H.; Jewell, C.M.; Yudt, M.R.; Bofetiado, D.M.; Cidlowski, J.A. The dominant negative activity of the human glucocorticoid receptor β isoform. Specificity and mechanisms of action. J. Biol. Chem. 1999, 274, 27857–27866. [Google Scholar] [CrossRef] [Green Version]
- Chatzopoulou, A.; Roy, U.; Meijer, A.H.; Alia, A.; Spaink, H.P.; Schaaf, M.J.M. Transcriptional and metabolic effects of glucocorticoid receptor α and β signaling in zebrafish. Endocrinology 2015, 156, 1757–1769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Webster, K.A.; Schach, U.; Ordaz, A.; Steinfeld, J.S.; Draper, B.W.; Siegfried, K.R. Dmrt1 is necessary for male sexual development in zebrafish. Dev. Biol. 2017, 422, 33–46. [Google Scholar] [CrossRef] [PubMed]
- Lin, Q.; Mei, J.; Li, Z.; Zhang, X.; Zhou, L.; Gui, J.F. Distinct and cooperative roles of amh and dmrt1 in self-renewal and differentiation of male germ cells in zebrafish. Genetics 2017, 207, 1007–1022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hemming, F.J.; Aubert, M.L.; Dubois, P.M. Differentiation of Fetal Rat Somatotropes in vitro: Effects of Cortisol, 3,5,3′-Triiodothyronine, and Glucagon, a Light Microscopic and Radioimmunological Study. Endocrinology 1988, 123, 1230–1236. [Google Scholar] [CrossRef]
- McCormick, S.D. Cortisol directly stimulates differentiation of chloride cells in tilapia opercular membrane. Am. J. Physiol. 1990, 259, R857–R863. [Google Scholar] [CrossRef] [PubMed]
- Pereira, R.M.R.; Delany, A.M.; Durant, D.; Canalis, E. Cortisol regulates the expression of notch in osteoblasts. J. Cell. Biochem. 2002, 85, 252–258. [Google Scholar] [CrossRef]
- Sloman, K.A.; Desforges, P.R.; Gilmour, K.M. Evidence for a mineralocorticoid-like receptor linked to branchial chloride cell proliferation in freshwater rainbow trout. J. Exp. Biol. 2001, 204, 3953–3961. [Google Scholar]
- Feng, X.; Reini, S.A.; Richards, E.; Wood, C.E.; Keller-Wood, M. Cortisol stimulates proliferation and apoptosis in the late gestation fetal heart: Differential effects of mineralocorticoid and glucocorticoid receptors. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2013, 305, R343–R350. [Google Scholar] [CrossRef] [Green Version]
- Cruz, S.A.; Chao, P.L.; Hwang, P.P. Cortisol promotes differentiation of epidermal ionocytes through Foxi3 transcription factors in zebrafish (Danio rerio). Comp. Biochem. Physiol.-A Mol. Integr. Physiol. 2013, 164, 249–257. [Google Scholar] [CrossRef]
- Cruz, S.A.; Lin, C.-H.; Chao, P.-L.; Hwang, P.-P. Glucocorticoid Receptor, but Not Mineralocorticoid Receptor, Mediates Cortisol Regulation of Epidermal Ionocyte Development and Ion Transport in Zebrafish (Danio Rerio). PLoS ONE 2013, 8, e77997. [Google Scholar] [CrossRef] [Green Version]
- Li, N.; Oakes, J.A.; Storbeck, K.; Cunliffe, V.T.; Krone, N. The P450 side chain cleavage enzyme Cyp11a2 facilitates steroidogenesis in zebrafish. J. Endocrinol. 2020, 244, 309–321. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.; Chen, Y.; Wang, L.; Yin, Y.; Li, G.; Guo, Y.; Liu, Y.; Lin, H.; Cheng, C.H.K.; Liu, X. Fertility impairment with defective spermatogenesis and steroidogenesis in male zebrafish lacking androgen receptor. Biol. Reprod. 2018, 98, 227–238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Gendt, K.; Swinnen, J.V.; Saunders, P.T.K.; Schoonjans, L.; Dewerchin, M.; Devos, A.; Tan, K.; Atanassova, N.; Claessens, F.; Lécureuil, C.; et al. A Sertoli cell-selective knockout of the androgen receptor causes spermatogenic arrest in meiosis. Proc. Natl. Acad. Sci. USA 2004, 101, 1327–1332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morais, R.D.V.S.; Crespo, D.; Nóbrega, R.H.; Lemos, M.S.; van de Kant, H.J.G.; de França, L.R.; Male, R.; Bogerd, J.; Schulz, R.W. Antagonistic regulation of spermatogonial differentiation in zebrafish (Danio rerio) by Igf3 and Amh. Mol. Cell. Endocrinol. 2017, 454, 112–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Safian, D.; Ryane, N.; Bogerd, J.; Schulz, R.W. Fsh stimulates Leydig cell Wnt5a production, enriching zebrafish type A spermatogonia. J. Endocrinol. 2018, 239, 351–363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Safian, D.; Bogerd, J.; Schulz, R.W. Regulation of spermatogonial development by Fsh: The complementary roles of locally produced Igf and Wnt signaling molecules in adult zebrafish testis. Gen. Comp. Endocrinol. 2019, 284, 113244. [Google Scholar] [CrossRef]
- Adolfi, M.C.; Nakajima, R.T.; Nóbrega, R.H.; Schartl, M. Intersex, Hermaphroditism, and Gonadal Plasticity in Vertebrates: Evolution of the Müllerian Duct and Amh/Amhr2 Signaling. Annu. Rev. Anim. Biosci. 2019, 7, 149–172. [Google Scholar] [CrossRef]
- Skaar, K.S.; Nóbrega, R.H.; Magaraki, A.; Olsen, L.C.; Schulz, R.W.; Male, R. Proteolytically Activated, Recombinant Anti-Müllerian Hormone Inhibits Androgen Secretion, Proliferation, and Differentiation of Spermatogonia in Adult Zebrafish Testis Organ Cultures. Endocrinology 2011, 152, 3527–3540. [Google Scholar] [CrossRef] [Green Version]
- Di Carlo, A.; Travia, G.; de Felici, M. The meiotic specific synaptonemal complex protein SCP3 is expressed by female and male primordial germ cells of the mouse embryo. Int. J. Dev. Biol. 2000, 44, 241–244. [Google Scholar]
- Yano, A.; Suzuki, K.; Yoshizaki, G. Flow-Cytometric Isolation of Testicular Germ Cells from Rainbow Trout (Oncorhynchus mykiss) Carrying the Green Fluorescent Protein Gene Driven by Trout vasa Regulatory Regions. Biol. Reprod. 2008, 78, 151–158. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, C.E.; Tanaka, H.; Iguchi, N.; Ventelä, S.; Nojima, H.; Nishimune, Y. Molecular Cloning and Characterization of a Complementary DNA Encoding Sperm Tail Protein SHIPPO 11. Biol. Reprod. 2002, 66, 785–795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goetz, F.W.; Theofan, G. In vitro stimulation of germinal vesicle breakdown and ovulation of yellow perch (Perca flavescens) oocytes. Effects of 17α-hydroxy-20β-dihydroprogesterone and prostaglandins. Gen. Comp. Endocrinol. 1979, 37, 273–285. [Google Scholar] [CrossRef]
- Upadhyaya, N.; Haider, S. Germinal vesicle breakdown in oocytes of catfish, Mystus vittatus (Bloch): Relative in vitro effectiveness of estradiol-17β, androgens, corticosteroids, progesterone, and other pregnene derivatives. Gen. Comp. Endocrinol. 1986, 63, 70–76. [Google Scholar] [CrossRef]
- Colombe, L.; Fostier, A.; Bury, N.; Pakdel, F.; Guiguen, Y. A mineralocorticoid-like receptor in the rainbow trout, Oncorhynchus mykiss: Cloning and characterization of its steroid binding domain. Steroids 2000, 65, 319–328. [Google Scholar] [CrossRef]
- Bury, N.R.; Sturm, A.; Le Rouzic, P.; Lethimonier, C.; Ducouret, B.; Guiguen, Y.; Robinson-Rechavi, M.; Laudet, V.; Rafestin-Oblin, M.E.; Prunet, P. Evidence for two distinct functional glucocorticoid receptors in teleost fish. J. Mol. Endocrinol. 2003, 31, 141–156. [Google Scholar] [CrossRef] [Green Version]
- Prunet, P.; Sturm, A.; Milla, S. Multiple corticosteroid receptors in fish: From old ideas to new concepts. Gen. Comp. Endocrinol. 2006, 147, 17–23. [Google Scholar] [CrossRef]
- Levy, F.O.; Ree, A.H.; Eikvar, L.; Govindan, M.V.; Jahnsen, T.; Hansson, V. Glucocorticoid receptors and glucocorticoid effects in rat sertoli cells. Endocrinology 1989, 124, 430–436. [Google Scholar] [CrossRef]
- Schultz, R.; Isola, J.; Parvinen, M.; Honkaniemi, J.; Wikström, A.C.; Gustafsson, J.A.; Pelto-Huikko, M. Localization of the glucocorticoid receptor in testis and accessory sexual organs of male rat. Mol. Cell. Endocrinol. 1993, 95, 120. [Google Scholar] [CrossRef]
- Biagini, G.; Pich, E.M.; Frasoldati, A.; Agnati, L.F.; Marrama, P. Changes in glucocorticoid receptor immunoreactivity after adrenalectomy and corticosterone treatment in the rat testis. J. Endocrinol. Invest. 1995, 18, 384–390. [Google Scholar] [CrossRef]
- Weber, M.-A.; Groos, S.; Höpfl, U.; Spielmann, M.; Aumüller, G.; Konrad, L. Glucocorticoid receptor distribution in rat testis during postnatal development and effects of dexamethasone on immature peritubular cells in vitro. Andrologia 2000, 32, 23–30. [Google Scholar] [CrossRef]
- Hazra, R.; Upton, D.; Jimenez, M.; Desai, R.; Handelsman, D.J.; Allan, C.M. In Vivo Actions of the Sertoli Cell Glucocorticoid Receptor. Endocrinology 2014, 155, 1120–1130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Consten, D.; Keuning, E.D.; Bogerd, J.; Zandbergen, M.A.; Lambert, J.G.D.; Komen, J.; Goos, H.J.T. Sex Steroids and Their Involvement in the Cortisol-Induced Inhibition of Pubertal Development in Male Common Carp, Cyprinus carpio L. Biol. Reprod. 2002, 67, 465–472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Target | Primer Sequences (5′–3′) | Reference |
---|---|---|
ef1α | GCCGTCCCACCGACAAG (Fw) CCACACGACCCACAGGTACAG (Rv) | Morais et al. [36] |
b-actin | AGACATCAGGGAGTGATGGT (Fw) CAATACCGTGCTCAATGGGG (Rv) | This paper |
ar | ACGTGCCTGGCGTGAAAA (Fw) CAAACCTGCCATCCGTGAAC (Rv) | Morais et al. [36] |
star | CCTGGAATGCCTGAGCAGAA (Fw) ATCTGCACTTGGTCGCATGAC (Rv) | Morais et al. [36] |
cyp17a1 | GGGAGGCCACGGACTGTTA (Fw) CCATGTGGAACTGTAGTCAGCAA (Rv) | Morais et al. [36] |
hsd11b2 | GGGGGTCAAAGTTTCCACTA (Fw) TGGAAGAGCTCCTTGGTCTC (Rv) | Tokarz et al. [37] |
grα | ACTCCATGCACGACTTGGTG (Fw) GCATTTCGGGAAACTCCACG (Rv) | Manuel et al. [38] |
grβ | GATGAACTACGAATGTCTTA (Fw) GCAACAGACAGCCAGACAGCTCACT (Rv) | Manuel et al. [38] |
sycp3l | AGAAGCTGACCCAAGATCATTCC (Fw) AGCTTCAGTTGCTGGCGAAA (Rv) | García-Lopez et al. [39] |
dazl | AGTGCAGACTTTGCTAACCCTTATGTA (Fw) GTCCACTGCTCCAAGTTGCTCT (Rv) | Morais et al. [36] |
nanog | TGTCCTACAACAAGACTGAGCC (Fw) CAGGAATCTGGCGTGTGGG (Rv) | This paper |
shippo | GATGCCTGGAGACATGACCAA (Fw) CAAAGGAGAAGCTGGGAGCTTT (Rv) | Leal et al. [40] |
igf3 | TGTGCGGAGACAGAGGCTTT (Fw) CGCCGCACTTTCTTGGATT (Rv) | Morais et al. [36] |
pou5f3 | GAGAGATGTAGTGCGTGTAT (Fw) GCTCGTAATACTGTGCTTCA (Rv) | This paper |
amh | CTCTGACCTTGATGAGCCTCATTT (Fw) GGATGTCCCTTAAGAACTTTTGCA (Rv) | García-López et al. [39] |
cyp11a2 | ATACACTGGTGTGCTGGCAA (Fw) TATAGCCGTCGTGTCCACTC (Rv) | This paper |
cyp19a1 | AGATGTCGAGTTAAAGATCCTGCA (Fw) TCTACGTTTTCACCCGGTCG (Rv) | This paper |
cyp2k22 | TGCACTGTCAAACCTACGAG (Fw) CCTCCAAACCTCTCAATTTCCTC (Rv) | This paper |
dmrt1 | TGCCCAGGTGGCGTTACGG (Fw) CGGGTGATGGCGGTCCTGAG (Rv) | Griffin et al. [41] |
fkbp5 | TTCCACACTCGTGTTCGAGA (Fw) ACGATCCCACCATCTTCTGT (Rv) | Griffin et al. [41] |
fdx1b | GAGCAGCGTATTTGTCACAGA (Fw) ACCATTGGCTCCAGTTTGTCA (Rv) | Griffin et al. [41] |
cyp11c1 | CCTCGGGCCCATATACAGAGA (Fw) CGTCCCGTTCTTGAGGAAGA (Rv) | Sreenivasan et al. [42] |
grα | [T7Rpps]-CATTTCGGGAAACTCCACG (Fw) [T3Rpps]-ACTCCATGCACGACTTGGTG (Rv) | This paper |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tovo-Neto, A.; Martinez, E.R.M.; Melo, A.G.; Doretto, L.B.; Butzge, A.J.; Rodrigues, M.S.; Nakajima, R.T.; Habibi, H.R.; Nóbrega, R.H. Cortisol Directly Stimulates Spermatogonial Differentiation, Meiosis, and Spermiogenesis in Zebrafish (Danio rerio) Testicular Explants. Biomolecules 2020, 10, 429. https://doi.org/10.3390/biom10030429
Tovo-Neto A, Martinez ERM, Melo AG, Doretto LB, Butzge AJ, Rodrigues MS, Nakajima RT, Habibi HR, Nóbrega RH. Cortisol Directly Stimulates Spermatogonial Differentiation, Meiosis, and Spermiogenesis in Zebrafish (Danio rerio) Testicular Explants. Biomolecules. 2020; 10(3):429. https://doi.org/10.3390/biom10030429
Chicago/Turabian StyleTovo-Neto, Aldo, Emanuel R. M. Martinez, Aline G. Melo, Lucas B. Doretto, Arno J. Butzge, Maira S. Rodrigues, Rafael T. Nakajima, Hamid R. Habibi, and Rafael H. Nóbrega. 2020. "Cortisol Directly Stimulates Spermatogonial Differentiation, Meiosis, and Spermiogenesis in Zebrafish (Danio rerio) Testicular Explants" Biomolecules 10, no. 3: 429. https://doi.org/10.3390/biom10030429
APA StyleTovo-Neto, A., Martinez, E. R. M., Melo, A. G., Doretto, L. B., Butzge, A. J., Rodrigues, M. S., Nakajima, R. T., Habibi, H. R., & Nóbrega, R. H. (2020). Cortisol Directly Stimulates Spermatogonial Differentiation, Meiosis, and Spermiogenesis in Zebrafish (Danio rerio) Testicular Explants. Biomolecules, 10(3), 429. https://doi.org/10.3390/biom10030429