Disease Resistant Bouquet Vine Varieties: Assessment of the Phenolic, Aromatic, and Sensory Potential of Their Wines
Abstract
:1. Introduction
2. Materials and Methods
2.1. Crossing and Hybrid Grape Production
2.2. Red Wine Vinification
2.3. Chromatic Parameters in Wines
2.4. Total Phenolics, Proanthocyanidins, and Anthocyanins Analyses
2.5. HPLC Analysis of Monomeric and Oligomeric Flavan-3-Ols
2.6. HPLC Analysis of Anthocyanins
2.7. Evaluation of the Total Antioxidant Capacity
2.8. Volatile Composition of Wines: Extraction and Gas Chromatography Analysis
2.9. Sensory Analysis
2.10. Statistical Analysis
3. Results and Discussion
3.1. Oenological and Chromatic Parameters in Wines
3.2. Total Phenolic, Proanthocyanidin and Anthocyanin Content
3.3. Flavan-3-ol Composition of Wines
3.4. Anthocyanin Composition of Wines
3.5. Total Antioxidant Capacity
3.6. Fruity Volatile Composition of Wines
3.7. Sensory Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Van Leeuwen, C.; Destrac-Irvine, A. Modified grape composition under climate change conditions requires adaptations in the vineyard. Oeno One 2017, 51, 147–154. [Google Scholar] [CrossRef]
- De Orduña, R.M. Climate change associated effects on grape and wine quality and production. Food Res. Int. 2010, 43, 1844–1855. [Google Scholar] [CrossRef]
- Montaigne, E.; Coelho, A.; Khefifi, L. Economic issues and perspectives on innovation in new resistant grapevine varieties in France. Wine Econ. Policy 2016, 5, 73–77. [Google Scholar] [CrossRef]
- Lloreda, M.D. Use of hybrids in viticulture. A challenge for the OIV. Oeno One 2018, 52, 231–234. [Google Scholar] [CrossRef]
- Merdinoglu, D.; Schneider, C.; Prado, E.; Wiedemann-Merdinoglu, S.; Mestre, P. Breeding for durable resistance to downy and powdery mildew in grapevine. Oeno One 2018, 52, 203–209. [Google Scholar] [CrossRef]
- Teissedre, P.L. Composition of grape and wine from resistant vine varieties. Oeno One 2018, 52, 211–217. [Google Scholar] [CrossRef]
- Salmon, J.M.; Ojeda, H.; Escudier, J.L. Disease resistant grapevine varieties and quality: The case of Bouquet varieties. Oeno One 2018, 52, 225–230. [Google Scholar] [CrossRef]
- Santos-Buelga, C.; de Freitas, V. Influence of phenolics on wine organoleptic properties. In Wine Chemistry and Biochemistry; Moreno-Arribas, M.V., Polo, M.C., Eds.; Springer Science and Business Media: New York, NY, USA, 2009; pp. 529–570. [Google Scholar]
- González-Centeno, M.R.; Jourdes, M.; Femenia, A.; Simal, S.; Rosselló, C.; Teissedre, P.-L. Proanthocyanidin composition and antioxidant potential of the stem winemaking byproducts from 10 different grape varieties (Vitis vinifera L.). J. Agric. Food Chem. 2012, 60, 11850–11858. [Google Scholar] [CrossRef]
- Ragusa, A.; Centonze, C.; Grasso, M.E.; Latronico, M.F.; Mastrangelo, P.F.; Sparascio, F.; Fanizzi, F.P.; Maffia, M. A comparative study of phenols in Apulian Italian wines. Foods 2017, 6, 24. [Google Scholar] [CrossRef]
- González-Centeno, M.R.; Chira, K.; Teissedre, P.-L. Ellagitannin content, volatile composition and sensory profile of wines from different countries matured in oak barrels subjected to different toasting methods. Food Chem. 2016, 210, 500–511. [Google Scholar] [CrossRef]
- Ribereau-Gayon, P.; Stonestreet, E. Dosage des tanins du vin rouge et détermination de leur structure. Chim. Anal. 1966, 48, 188–196. [Google Scholar]
- Ribereau-Gayon, P.; Stonestreet, E. Le dosage des anthocyanes dans le vin rouge. Bull. Société Chim. Fr. 1965, 9, 2649–2652. [Google Scholar]
- González-Centeno, M.R.; Chira, K.; Teissedre, P.-L. Comparison between malolactic fermentation container and barrel toasting effects on phenolic, volatile, and sensory profiles of red wines. J. Agric. Food Chem. 2017, 65, 3320–3329. [Google Scholar] [CrossRef] [PubMed]
- Antalick, G.; Perello, M.-C.; de Revel, G. Development, validation and application of a specific method for the quantitative determination of wine esters by headspace-solid-phase microextraction-gas chromatography-mass spectrometry. Food Chem. 2010, 121, 1236–1245. [Google Scholar] [CrossRef]
- The International Organization for Standardization. Sensory Analysis—General Guidance for the Design of Test Rooms; ISO-8589; International Organization for Standardization: Genève, Switzerland, 1988. [Google Scholar]
- The International Organization for Standardization. Sensory Analysis. Apparatus Wine-Tasting Glass; ISO-3591; International Organization for Standardization: Genève, Switzerland, 1997. [Google Scholar]
- Cáceres-Mella, A.; Peña-Neira, A.; Avilés-Gálvez, P.; Medel-Maraboli, M.; del Barrio-Galán, R.; López-Solís, R.; Canals, J.M. Phenolic composition and mouthfeel characteristics resulting from blending Chilean red wines. J. Sci. Food Agric. 2014, 94, 666–676. [Google Scholar] [CrossRef]
- Chira, K.; Pacella, N.; Jourdes, M.; Teissedre, P.L. Chemical and sensory evaluation of Bordeaux wines (Cabernet-Sauvignon and Merlot) and correlation with wine age. Food Chem. 2011, 126, 1971–1977. [Google Scholar] [CrossRef]
- Fanzone, M.; Zamora, F.; Jofre, V.; Assof, M.; Gómez-Cordovés, C.; Peña-Neira, A. Phenolic characterisation of red wines from different grape varieties cultivated in Mendoza province (Argentina). J. Sci. Food Agric. 2012, 92, 704–718. [Google Scholar] [CrossRef]
- Li, Z.; Pan, Q.H.; Jin, Z.M.; Mu, L.; Duan, C.Q. Comparison on phenolic compounds in Vitis vinifera cv. Cabernet Sauvignon wines from five wine-growing regions in China. Food Chem. 2011, 125, 77–83. [Google Scholar] [CrossRef]
- Lingua, M.S.; Fabani, M.P.; Wunderlin, D.A.; Baroni, M.V. From grape to wine: Changes in phenolic composition and its influence on antioxidant activity. Food Chem. 2016, 208, 228–238. [Google Scholar] [CrossRef]
- Ma, T.T.; Sun, X.Y.; Gao, G.T.; Wang, X.Y.; Liu, X.Y.; Du, G.R.; Zhan, J.C. Phenolic characterisation and antioxidant capacity of young wines made from different grape varieties grown in Helanshan Donglu wine zone (China). S. Afr. J. Enol. Vitic. 2014, 35, 321–331. [Google Scholar] [CrossRef]
- Monagas, M.; Gómez-Cordovés, C.; Bartolomé, B.; Laureano, O.; Ricardo-Da-Silva, J.M. Monomeric, oligomeric, and polymeric flavan-3-ol composition of wines and grapes from Vitis vinifera L. cv. Graciano, Tempranillo, and Cabernet Sauvignon. J. Agric. Food Chem. 2003, 51, 6475–6481. [Google Scholar] [CrossRef] [PubMed]
- Pajovic-Scepanovic, R.; Wendelin, S.; Eder, R. Phenolic composition and varietal discrimination of Montenegrin red wines (Vitis vinifera var. Vranac, Kratosija, and Cabernet Sauvignon). Eur. Food Res. Technol. 2018, 244, 2243–2254. [Google Scholar] [CrossRef]
- Jiang, B.; Zhang, Z.-W. Comparison on phenolic compounds and antioxidant properties of Cabernet Sauvignon and Merlot wines from four wine grape-growing regions in China. Molecules 2012, 17, 8804–8821. [Google Scholar] [CrossRef] [PubMed]
- Landrault, N.; Poucheret, P.; Ravel, P.; Gasc, F.; Cros, G.; Teissedre, P.-L. Antioxidant capacities and phenolics levels of French wines from different varieties and vintages. J. Agric. Food Chem. 2001, 49, 3341–3348. [Google Scholar] [CrossRef] [PubMed]
- Kallithraka, S.; Tsoutsouras, E.; Tzourou, E.; Lanaridis, P. Principal phenolic compounds in Greek red wines. Food Chem. 2006, 99, 784–793. [Google Scholar] [CrossRef]
- Cadahía, E.; Fernández de Simón, B.G.; Sanza, M.; Poveda, P.; Colio, J. Chemical and chromatic characteristics of Tempranillo, Cabernet Sauvignon and Merlot wines from DO Navarra aged in Spanish and French oak barrels. Food Chem. 2009, 115, 639–649. [Google Scholar] [CrossRef]
- Di Majo, D.; La Guardia, M.; Giammanco, S.; La Neve, L.; Giammanco, M. The antioxidant capacity of red wine in relationship with its polyphenolic constituents. Food Chem. 2008, 111, 45–49. [Google Scholar] [CrossRef]
- Ginjom, I.R.; D’Arcy, B.R.; Caffin, N.A.; Gidley, M.J. Phenolic contents and antioxidant activities of major Australian red wines throughout the winemaking process. J. Agric. Food Chem. 2010, 58, 10133–10142. [Google Scholar] [CrossRef]
- Girelli, A.; Mele, C.; Salvagni, L.; Tarola, A. Polyphenol Content and Antioxidant Activity of Merlot and Shiraz Wine. Anal. Lett. 2015, 48, 1865–1880. [Google Scholar] [CrossRef]
- González-Neves, G.; Charamelo, D.; Balado, J.; Barreiro, L.; Bochicchio, R.; Gatto, G.; Gil, G.; Tessore, A.; Carbonneau, A.; Moutounet, M. Phenolic potential of Tannat, Cabernet-Sauvignon and Merlot grapes and their correspondence with wine composition. Anal. Chim. Acta 2004, 513, 191–196. [Google Scholar] [CrossRef]
- González-Neves, G.; Franco, J.; Barreiro, L.; Gil, G.; Moutounet, M.; Carbonneau, A. Varietal differentiation of Tannat, Cabernet-Sauvignon and Merlot grapes and wines according to their anthocyanic composition. Eur. Food Res. Technol. 2007, 225, 111–117. [Google Scholar] [CrossRef]
- Nistor, E.; Dobrei, A.; Dobrei, A.; Camen, D.; Mălăescu, M.; Prundeanu, H. Anthocyanins and phenolics in Cabernet Sauvignon and Pinot noir wines. J. Hortic. For. Biotechnol. 2015, 19, 226–229. [Google Scholar]
- Granato, D.; Katayama, F.; Castro, I. Assessing the association between phenolic compounds and the antioxidant activity of Brazilian red wines using chemometrics. Lwt Food Sci. Technol. 2010, 43, 1542–1549. [Google Scholar] [CrossRef]
- Granato, D.; Katayama, F.; de Castro, I. Phenolic composition of South American red wines classified according to their antioxidant activity, retail price and sensory quality. Food Chem. 2011, 129, 366–373. [Google Scholar] [CrossRef]
- Hermosín-Gutiérrez, I.; Sánchez-Palomo Lorenzo, E.; Vicario Espinosa, A. Phenolic composition and magnitude of copigmentation in young and shortly aged red wines made from the cultivars, Cabernet Sauvignon, Cencibel, and Syrah. Food Chem. 2005, 92, 269–283. [Google Scholar] [CrossRef]
- Hosu, A.; Cristea, V.; Cimpoiu, C. Analysis of total phenolic, flavonoids, anthocyanins and tannins content in Romanian red wines: Prediction of antioxidant activities and classification of wines using artificial neural networks. Food Chem. 2014, 150, 113–118. [Google Scholar] [CrossRef]
- Ivanova-Petropulos, V.; Hermosín-Gutiérrez, I.; Boros, B.; Stefova, M.; Stafilov, T.; Vojnoski, B.; Doernyei, A.; Kilar, F. Phenolic compounds and antioxidant activity of Macedonian red wines. J. Food Compos. Anal. 2015, 41, 1–14. [Google Scholar] [CrossRef]
- Kondrashov, A.; Sevcik, R.; Benakova, H.; Kostirova, M.; Stipek, S. The key role of grape variety for antioxidant capacity of red wines. e-SPEN Eur. e-J. Clin. Nutr. Metab. 2009, 4, e41–e46. [Google Scholar] [CrossRef] [Green Version]
- Mercurio, M.D.; Dambergs, R.G.; Cozzolino, D.; Herderich, M.J.; Smith, P.A. Relationship between red wine grades and phenolics. 1. Tannin and total phenolics concentrations. J. Agric. Food Chem. 2010, 58, 12313–12319. [Google Scholar] [CrossRef]
- Pantelic, M.; Zagorac, D.D.; Gasic, U.; Jovic, S.; Beslic, Z.; Todic, S.; Natic, M. Phenolic profiles of Serbian autochthonous variety ‘Prokupac’ and monovarietal international wines from the Central Serbia wine region. Nat. Prod. Res. 2018, 32, 2356–2359. [Google Scholar] [CrossRef]
- Rastija, V.; Srecnik, G.; Marica-Medic-Saric. Polyphenolic composition of Croatian wines with different geographical origins. Food Chem. 2009, 115, 54–60. [Google Scholar] [CrossRef]
- Rupasinghe, H.P.V.; Clegg, S. Total antioxidant capacity, total phenolic content, mineral elements, and histamine concentrations in wines of different fruit sources. J. Food Compos. Anal. 2007, 20, 133–137. [Google Scholar] [CrossRef]
- Stavridou, K.; Soufleros, E.H.; Bouloumpasi, E.; Dagkli, V. The phenolic potential of wines from French grape varieties Cabernet Sauvignon, Merlot and Syrah cultivated in the region of Thessaloniki (Northern Greece) and its evolution during aging. Food Nutr. Sci. 2016, 7, 122–137. [Google Scholar] [CrossRef] [Green Version]
- Lytra, G.; Tempère, S.; Le Floch, A.; de Revel, G.; Barbe, J.-C. Study of sensory interactions among red wine fruity esters in a model solution. J. Agric. Food Chem. 2013, 61, 8504–8513. [Google Scholar] [CrossRef] [PubMed]
- Perestrelo, R.; Fernandes, A.; Albuquerque, F.F.; Marques, J.C.; Câmara, J.S. Analytical characterization of the aroma of Tinta Negra Mole red wine: Identification of the main odorants compounds. Anal. Chim. Acta 2006, 563, 154–164. [Google Scholar] [CrossRef] [Green Version]
- Antalick, G.; Perello, M.-C.; de Revel, G. Characterization of fruity aroma modifications in red wines during malolactic fermentation. J. Agric. Food Chem. 2012, 60, 12371–12383. [Google Scholar] [CrossRef]
- Antalick, G.; Suklje, K.; Blackman, J.W.; Meeks, C.; Deloire, A.; Schmidtke, L.M. Influence of grape composition on red wine ester profile: Comparison between Cabernet Sauvignon and Shiraz cultivars from Australian warm climate. J. Agric. Food Chem. 2015, 63, 4664–4672. [Google Scholar] [CrossRef]
- Arcari, S.G.; Caliari, V.; Sganzerla, M.; Godoy, H.T. Volatile composition of Merlot red wine and its contribution to the aroma: Optimization and validation of analytical method. Talanta 2017, 174, 752–766. [Google Scholar] [CrossRef]
- Gammacurta, M.; Lytra, G.; Marchal, A.; Marchand, S.; Barbe, J.C.; Moine, V.; de Revel, G. Influence of lactic acid bacteria strains on ester concentrations in red wines: Specific impact on branched hydroxylated compounds. Food Chem. 2018, 239, 252–259. [Google Scholar] [CrossRef]
Identification in the Present Research | INRA Identification a | Backcross Number | Last Backcross | Estimated % of Vitis vinifera Genome |
---|---|---|---|---|
HG-A | 3184-1-9N (G14) | BC5 | A. Lavallée x 3099-10-57 | 98.7% |
HG-B | 3176-21-11N | BC5 | Grenache x 3084-2-56 | 98.7% |
HG-C | 3328-306N | BC5 | 3082-1-49 x Marselan | 98.7% |
HG-D | 3160-11-3N | BC5 | Fer Servadou x 3090-4-25 | 98.7% |
HG-E | 3160-27-4N | BC5 | Fer Servadou x 3090-4-25 | 98.7% |
HG-F | 3322-339N | BC6 | 3176-21-11N x Cabernet Sauvignon | 99.2% |
HG-G | 3322-343N | BC6 | 3176-21-11N x Cabernet Sauvignon | 99.2% |
HG-H | 3322-178N | BC6 | 3176-21-11N x Cabernet Sauvignon | 99.2% |
HG-I | 3322-226N | BC6 | 3176-21-11N x Cabernet Sauvignon | 99.2% |
Bibliographic Reference | Wine Characteristics | Total Phenolics a | Total Proantho-Cyanidins b | Total Anthocyanins c | Total Flavan-3-ols Quantified by HPLC c | Total Anthocyanins Quantified by HPLC c | |||
---|---|---|---|---|---|---|---|---|---|
Geographical Origin | Vintage | Grape Variety | |||||||
[18] | Maipo Valley (Chile) | 2010 | CS | 894 ± 4 | 1.7 ± 0.2 | 486 ± 2 | 116 ± 9 | 487 | |
Merlot | 795 ± 4 | 1.8 ± 0.2 | 393 ± 4 | 97 ± 4 | 313 | ||||
[19] | Bordeaux (France) | 1978–2005 | CS | 1579–3188 | 1.2–2.2 | 18–97 | |||
1979–2003 | Merlot | 1244–2544 | 1.2–2.1 | 28–91 | |||||
[20] | Mendoza (Argentina) | 2010 | CS | 3378 ± 370 | 3.9 ± 0.4 | 682 ± 101 | 192 ± 10 | 327 | |
Merlot | 3448 ± 372 | 4.4 ± 0.5 | 645 ± 38 | 190 ± 13 | 273 | ||||
Syrah | 1586 ± 51 | 1.9 ± 0.2 | 301 ± 19 | 110 ± 17 | 168 | ||||
[21] | China | 2007 | CS | 97–246 | 253–467 | ||||
[22] | San Juan (Argentina) | 2014 | CS | 169 ± 3 | 101 | ||||
Merlot | 140 ± 4 | 73 | |||||||
Syrah | 102 ± 3 | 161 | |||||||
[23] | China | 2011 | CS | 2631 ± 42 | 1.0 ± 0.1 | 190 | |||
Merlot | 2076 ± 7 | 1.0 ± 0.0 | 185 | ||||||
[24] | Navarra (Spain) | 2000 | CS | 90 ± 2 | |||||
[25] | Montenegro | 2015 | CS | 353 ± 77 | 35–92 | 231–489 | |||
[26] | China | 2010 | CS | 1130–2710 | 262–400 | 30–255 | |||
Merlot | 860–1656 | 158–350 | 42–91 | ||||||
[27] | France | 1993–1999 | CS | 1842–2532 | 151–225 | ||||
1993–1999 | Merlot | 1783–2698 | 115–219 | ||||||
1998–1999 | Syrah | 2200–2590 | 149–255 | ||||||
[28] | Greece | 2002 | CS | 2481 ± 10 | 699 | ||||
Syrah | 1920 ± 19 | 458 | |||||||
[29] | Navarra (Spain) | 2003 | CS | 3610 | |||||
Merlot | 2920 | ||||||||
[30] | Sicily (Italy) | 2002–2004 | CS | 2380–3580 | |||||
Merlot | 2999–3360 | ||||||||
Syrah | 3000–3410 | ||||||||
[31] | Australia | 2003–2005 | CS | 2382 ± 490 | 1.5 ± 0.4 | 190 ± 54 | |||
2003–2005 | Merlot | 2518 ± 506 | 1.3 ± 0.3 | 134 ± 38 | |||||
2002–2005 | Syrah | 2064 ± 258 | 1.3 ± 0.2 | 198 ± 93 | |||||
[32] | Italy (and others) | 2009 | Merlot | 2791 ± 1711 | |||||
Syrah | 1991 ± 234 | ||||||||
[33] | Uruguay | 2001–2002 | CS | 1.7–2.4 | 349–563 | ||||
Merlot | 1.5–2.0 | 227–402 | |||||||
[34] | Uruguay | 2001–2002 | CS | 181–230 | |||||
Merlot | 279–296 | ||||||||
[35] | Romania | 2011–2013 | CS | 1986–2758 | 259–479 | ||||
[36] | Brazil | 2002–2007 | CS | 1260–1894 | |||||
2005–2007 | Merlot | 1318–1844 | |||||||
2005–2007 | Syrah | 1753–1914 | |||||||
[37] | Brazil, Argentina, Chile | 2005–2007 | CS | ||||||
2002–2007 | Merlot | ||||||||
2006–2007 | Syrah | ||||||||
[38] | La Mancha (Spain) | not specified | CS | 206 | |||||
not specified | Syrah | 358 | |||||||
[39] | Romania | 2006–2008 | CS | 1896–4263 | 1.0–2.3 | 84–216 | |||
Merlot | 1913–3863 | 1.2–2.4 | 63–281 | ||||||
[40] | Macedonia | 2006–2008 | CS | 96–351 | |||||
Merlot | 48–194 | ||||||||
[41] | Australia, Chile, France, Spain, USA | 2003–2005 | CS | 1453–2912 | |||||
France, Germany, Italy, Spain | 2004–2005 | Merlot | 1447–2100 | ||||||
[42] | Australia | 2005–2007 | CS | 1.8–2.8 | |||||
Syrah | 1.3–2.9 | ||||||||
[43] | Serbia | 2012 | CS | 1100 | |||||
Merlot | 890 | ||||||||
Syrah | 670 | ||||||||
[44] | Croatia | 2002 | CS | 1400 | |||||
Merlot | 1300 | ||||||||
[45] | Ontario (Canada) | 2002 | CS | 2005 | |||||
[46] | Thessaloniki (Greece) | 2004 | CS | 2.8–4.4 | |||||
Merlot | 1.7–5.1 | ||||||||
Syrah | 1.7–4.7 |
HG-A | HG-B | HG-C | HG-D | HG-E | HG-F | HG-G | HG-H | HG-I | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Flavan-3-ols a | |||||||||||||||||||||||||||
(+)-catechin | 8.4 | ± | 0.3 h | 30.1 | ± | 0.6 f | 37.6 | ± | 0.3 d | 38.2 | ± | 0.2 cd | 31.0 | ± | 0.2 e | 14.4 | ± | 0.1 g | 43.8 | ± | 0.2 b | 38.9 | ± | 0.1 c | 46.1 | ± | 0.3 a |
(−)-epicatechin | 17.1 | ± | 0.4 c | 9.7 | ± | 0.3 e | 13.7 | ± | 0.1 d | 16.7 | ± | 0.1 c | 14.1 | ± | 0.1 d | 4.6 | ± | 0.2 f | 13.9 | ± | 0.1 d | 18.3 | ± | 0.1 b | 37.6 | ± | 0.5 a |
procyanidin dimers B1+B3 | 7.4 | ± | 0.1 g | 17.1 | ± | 0.3 b | 18.3 | ± | 0.1 a | 13.5 | ± | 0.1 d | 12.8 | ± | 0.1 e | 6.1 | ± | 0.1 h | 16.5 | ± | 0.1 c | 18.6 | ± | 0.0 a | 10.0 | ± | 0.2 f |
procyanidin dimer B2 | 5.3 | ± | 0.2 f | 9.2 | ± | 0.3 e | 13.1 | ± | 0.2 b | 10.0 | ± | 0.1 d | 10.2 | ± | 0.2 d | 2.8 | ± | 0.1 g | 8.8 | ± | 0.1 e | 12.1 | ± | 0.0 c | 25.3 | ± | 0.3 a |
procyanidin dimer B4 | 2.7 | ± | 0.1 d | 4.0 | ± | 0.1 b | 5.7 | ± | 0.2 a | 3.5 | ± | 0.1 c | 3.2 | ± | 0.0 c | 1.6 | ± | 0.0 e | 4.3 | ± | 0.1 b | 4.4 | ± | 0.0 b | 2.6 | ± | 0.3 d |
Total flavan-3-ols b | 40.9 | ± | 0.6 | 70.2 | ± | 0.8 | 88.3 | ± | 0.4 | 81.9 | ± | 0.2 | 71.2 | ± | 0.3 | 29.5 | ± | 0.2 | 87.3 | ± | 0.3 | 92.3 | ± | 0.2 | 121.6 | ± | 0.7 |
Anthocyanins c | |||||||||||||||||||||||||||
Dp-3O-glc | 30.3 | ± | 0.0 a | 6.1 | ± | 0.1 f | 9.1 | ± | 0.0 c | 6.3 | ± | 0.0 f | 8.1 | ± | 0.1 d | 7.3 | ± | 0.1 e | 7.5 | ± | 0.0 e | 28.3 | ± | 0.2 b | 3.5 | ± | 0.1 g |
Cy-3O-glc | 5.1 | ± | 0.0 a | 3.7 | ± | 0.0 c | 3.7 | ± | 0.0 c | 3.6 | ± | 0.0 cd | 3.7 | ± | 0.0 c | 3.7 | ± | 0.1 c | 3.5 | ± | 0.0 d | 4.3 | ± | 0.0 b | 0.6 | ± | 0.1 e |
Pt-3O-glc | 37.0 | ± | 0.1 a | 6.9 | ± | 0.1 f | 12.8 | ± | 0.2 c | 8.7 | ± | 0.1 e | 10.6 | ± | 0.0 d | 8.6 | ± | 0.2 e | 11.0 | ± | 0.1 d | 33.2 | ± | 0.2 b | 6.2 | ± | 0.4 g |
Pn-3O-glc | 13.9 | ± | 0.3 a | 7.3 | ± | 0.1 d | 6.5 | ± | 0.0 ef | 9.7 | ± | 0.1 c | 10.1 | ± | 0.2 c | 6.0 | ± | 0.0 f | 6.8 | ± | 0.2 de | 12.7 | ± | 0.3 b | 1.9 | ± | 0.1 g |
Mlv-3O-glc | 125.4 | ± | 1.0 b | 28.1 | ± | 0.2 h | 116.8 | ± | 0.7 c | 98.1 | ± | 0.6 d | 99.8 | ± | 0.2 d | 45.9 | ± | 0.2 f | 92.4 | ± | 1.6 e | 145.0 | ± | 2.1 a | 38.6 | ± | 0.8 g |
Pn-3O-acglc | 4.0 | ± | 0.0 d | 3.7 | ± | 0.1 de | 4.7 | ± | 0.0 b | 4.3 | ± | 0.0 c | 4.4 | ± | 0.0 c | 3.5 | ± | 0.0 e | 4.9 | ± | 0.0 b | 5.9 | ± | 0.2 a | 0.6 | ± | 0.0 f |
Mlv-3O-acglc | 12.0 | ± | 0.1 f | 7.4 | ± | 0.2 g | 64.1 | ± | 0.0 a | 14.1 | ± | 0.0 e | 22.4 | ± | 0.0 d | 7.1 | ± | 0.1 g | 40.3 | ± | 0.2 c | 56.1 | ± | 0.2 b | 14.0 | ± | 0.0 e |
Pn-3O-cmglc | 4.4 | ± | 0.0 b | 3.6 | ± | 0.0 e | 3.8 | ± | 0.0 d | 4.0 | ± | 0.0 d | 4.1 | ± | 0.1 c | 3.4 | ± | 0.0 f | 4.3 | ± | 0.0 b | 4.9 | ± | 0.0 a | 0.3 | ± | 0.0 g |
Mlv-3O-cmglc | 11.1 | ± | 0.1 c | 4.1 | ± | 0.0 f | 12.3 | ± | 0.2 b | 9.6 | ± | 0.1 d | 11.0 | ± | 0.3 c | 4.6 | ± | 0.1 e | 16.4 | ± | 0.0 a | 15.8 | ± | 0.6 a | 2.6 | ± | 0.0 g |
Total anthocyanins d | 243.2 | ± | 1.0 | 70.8 | ± | 0.3 | 233.7 | ± | 0.7 | 158.5 | ± | 0.6 | 174.3 | ± | 0.4 | 90.1 | ± | 0.4 | 187.2 | ± | 1.6 | 306.1 | ± | 2.3 | 68.3 | ± | 0.9 |
Bibliographic Reference | Wine Characteristics | Methodology | Total Antioxidant Capacity a | ||||
---|---|---|---|---|---|---|---|
Geographical Origin | Vintage | Grape Variety | |||||
[22] | San Juan (Argentina) | 2014 | CS | FRAP | 8.2 | ± | 0.4 |
ABTS | 14.1 | ± | 1.0 | ||||
DPPH | 11.9 | ± | 1.0 | ||||
Merlot | FRAP | 9.0 | ± | 0.1 | |||
ABTS | 18.5 | ± | 0.5 | ||||
DPPH | 11.9 | ± | 0.8 | ||||
Syrah | FRAP | 8.5 | ± | 0.2 | |||
ABTS | 17.3 | ± | 0.3 | ||||
DPPH | 12.8 | ± | 1.6 | ||||
[25] | Montenegro | 2015 | CS | ABTS | 16.3 | ± | 5.2 |
[26] | China | 2010 | CS | DPPH | 4.6 | − | 6.2 |
CUPRAC | 10.0 | − | 20.0 | ||||
Merlot | DPPH | 3.9 | − | 5.3 | |||
CUPRAC | 9.0 | − | 17.5 | ||||
[27] | France | 1993–1999 | CS | ABTS | 16.5 | − | 29.9 |
1993–1999 | Merlot | ABTS | 15.3 | − | 22.2 | ||
1998–1999 | Syrah | ABTS | 19.7 | − | 22.1 | ||
[30] | Sicily (Italy) | 2002–2004 | CS | no specified | 1.4 | − | 5.6 |
Merlot | no specified | 2.2 | − | 4.9 | |||
Syrah | no specified | 1.2 | − | 5.8 | |||
[31] | Australia | 2003–2005 | CS | DPPH | 15.9 | ± | 2.3 |
ABTS | 18.9 | ± | 3.0 | ||||
2003–2005 | Merlot | DPPH | 15.2 | ± | 3.1 | ||
ABTS | 17.7 | ± | 4.8 | ||||
2002–2005 | Syrah | DPPH | 13.0 | ± | 2.2 | ||
ABTS | 16.9 | ± | 5.1 | ||||
[32] | Italy (and others) | 2009 | Merlot | ABTS | 17.5 | ± | 8.9 |
Syrah | ABTS | 13.3 | ± | 3.0 | |||
[36] | Brazil | 2002–2007 | CS | ORAC | 20.7 | − | 35.7 |
2005–2007 | Merlot | ORAC | 16.3 | − | 35.4 | ||
2005–2007 | Syrah | ORAC | 28.0 | − | 38.6 | ||
[37] | Brazil. Argentina, Chile | 2005–2007 | CS | ORAC | 28.8 | − | 33.4 |
2002–2007 | Merlot | ORAC | 26.0 | − | 33.7 | ||
2006–2007 | Syrah | ORAC | 29.0 | − | 31.5 | ||
[39] | Romania | 2006–2008 | CS | ABTS | 1.1 | − | 1.3 |
Merlot | ABTS | 1.0 | − | 1.3 | |||
[40] | Macedonia | 2006–2008 | CS | DPPH | 10.3 | − | 11.2 |
Merlot | DPPH | 12.3 | − | 13.3 | |||
[41] | Different countries | 2003–2005 | CS | ABTS | 7.7 | − | 16.6 |
FRAP | 7.0 | − | 15.2 | ||||
2004–2005 | Merlot | ABTS | 7.5 | − | 11.2 | ||
FRAP | 6.9 | − | 9.7 | ||||
[43] | Serbia | 2012 | CS | DPPH | 8.0 | ||
Merlot | DPPH | 6.5 | |||||
Syrah | DPPH | 4.3 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Centeno, M.R.; Chira, K.; Miramont, C.; Escudier, J.-L.; Samson, A.; Salmon, J.-M.; Ojeda, H.; Teissedre, P.-L. Disease Resistant Bouquet Vine Varieties: Assessment of the Phenolic, Aromatic, and Sensory Potential of Their Wines. Biomolecules 2019, 9, 793. https://doi.org/10.3390/biom9120793
González-Centeno MR, Chira K, Miramont C, Escudier J-L, Samson A, Salmon J-M, Ojeda H, Teissedre P-L. Disease Resistant Bouquet Vine Varieties: Assessment of the Phenolic, Aromatic, and Sensory Potential of Their Wines. Biomolecules. 2019; 9(12):793. https://doi.org/10.3390/biom9120793
Chicago/Turabian StyleGonzález-Centeno, M. Reyes, Kleopatra Chira, Clément Miramont, Jean-Louis Escudier, Alain Samson, Jean-Michel Salmon, Hernan Ojeda, and Pierre-Louis Teissedre. 2019. "Disease Resistant Bouquet Vine Varieties: Assessment of the Phenolic, Aromatic, and Sensory Potential of Their Wines" Biomolecules 9, no. 12: 793. https://doi.org/10.3390/biom9120793
APA StyleGonzález-Centeno, M. R., Chira, K., Miramont, C., Escudier, J. -L., Samson, A., Salmon, J. -M., Ojeda, H., & Teissedre, P. -L. (2019). Disease Resistant Bouquet Vine Varieties: Assessment of the Phenolic, Aromatic, and Sensory Potential of Their Wines. Biomolecules, 9(12), 793. https://doi.org/10.3390/biom9120793