Impaired Water Hazard Zones: Mapping Intersecting Environmental Health Vulnerabilities and Polluter Disproportionality
Abstract
:1. Introduction
1.1. Background
1.2. Objectives and Hypotheses
2. Materials and Methods
2.1. Unit of Analysis
2.2. Dependent Variable
2.3. Independent Variables
2.3.1. Intersecting Population Vulnerability Factors
2.3.2. Uneven Development
2.3.3. Contemporary Industrial Pollution Sources
2.3.4. Statistical Techniques
3. Results
3.1. Narrative Description of Surface Water Pollutants
3.1.1. Impaired Water Bodies, 2006
3.1.2. Surface Water CAWMHS, 2000 to 2006
3.2. Block Groups by Containment in Impaired Water Hazard Zones
3.3. Descriptive Statistics for Predictors of Block Group Containment in Impaired Water Hazard Zones
3.4. Global Predictors of Block Group Containment in Impaired Water Hazard Zones
3.5. Local Predictors of Block Group Containment in Impaired Water Hazard Zones
4. Discussion
Funding
Acknowledgments
Conflicts of Interest
References
- Lu, F.; Ocampo-Raeder, C.; Crow, B. Equitable water governance: Future directions in the understanding and analysis of water inequities in the Global South. Water Int. 2014, 39, 129–142. [Google Scholar] [CrossRef]
- Zwarteveen, M.Z.; Boelens, R. Defining, researching, and struggling for water justice: Some conceptual building blocks for research and action. Water Int. 2014, 39, 143–158. [Google Scholar] [CrossRef]
- Liévanos, R.S. Sociospatial dimensions of water injustice: The distribution of surface water toxic releases in California’s Bay-Delta. Sociol. Perspect. 2017, 60, 575–599. [Google Scholar] [CrossRef]
- Shilling, F.M.; London, J.K.; Lievanos, R.S. Marginalization by collaboration: Environmental justice as a third party in and beyond CALFED. Environ. Sci. Policy 2009, 12, 694–709. [Google Scholar] [CrossRef]
- Sze, J.; London, J.; Shilling, F.; Gambirazzio, G.; Filan, T.; Cadenasso, M. Defining and contesting environmental justice: Socio-natures and the politics of scale in the Delta. Antipode 2009, 41, 807–843. [Google Scholar] [CrossRef]
- Shilling, F.; White, A.; Lippert, L.; Lubell, M. Contaminated fish consumption in California’s Central Valley Delta. Environ. Res. 2010, 110, 334–344. [Google Scholar] [CrossRef] [PubMed]
- Silver, E.; Kaslow, J.; Lee, D.; Lee, S.; Tan, M.L.; Weis, E.; Ujihara, A. Fish consumption and advisory awareness among low-income women in California’s Sacramento-San Joaquin Delta. Environ. Res. 2007, 104, 410–419. [Google Scholar] [CrossRef] [PubMed]
- Downey, L. Assessing environmental inequality: How the conclusions we draw vary according to the definitions we employ. Sociol. Spectr. 2005, 25, 349–369. [Google Scholar] [CrossRef] [PubMed]
- Bolin, B.; Nelson, A.; Hackett, E.J.; Pijawka, K.D.; Smith, C.S.; Sicotte, D.; Sadalla, E.K.; Matranga, E.; O’Donnel, M. The ecology of technological risk in a Sunbelt city. Environ. Plan. A 2002, 34, 317–339. [Google Scholar] [CrossRef]
- Chakraborty, J.; Maantay, J.A.; Brender, J.D. Disproportionate proximity to environmental health hazards: Methods, models, and measurement. Am. J. Public Health 2011, 101, S27–S36. [Google Scholar] [CrossRef] [PubMed]
- Mohai, P.; Saha, R. Racial inequality in the distribution of hazardous waste: A national-level reassessment. Soc. Probl. 2007, 54, 343–370. [Google Scholar] [CrossRef]
- Sicotte, D.; Swanson, S. Whose risk in Philadelphia? Proximity to unequally hazardous industrial facilities. Soc. Sci. Q. 2007, 88, 515–534. [Google Scholar] [CrossRef]
- Harner, J.; Warner, K.; Pierce, J.; Huber, T. Urban environmental justice indices. Prof. Geogr. 2002, 54, 318–331. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. User’s Manual for RSEI Version 2.3.0; U.S. Environmental Protection Agency Office of Pollution Prevention and Toxics: Washington, DC, USA, 2010.
- Hill Collins, P. Intersectionality’s definitional dilemmas. Annu. Rev. Sociol. 2015, 41, 1–20. [Google Scholar] [CrossRef]
- McCall, L. The complexity of intersectionality. Signs 2005, 30, 1771–1800. [Google Scholar] [CrossRef]
- Collins, T.W.; Grineski, S.E.; Chakraborty, J.; McDonald, Y.J. Understanding environmental health inequalities through comparative intracategorical analysis: Racial/ethnic disparities in cancer risks from air toxics in El Paso County, Texas. Health Place 2011, 17, 335–344. [Google Scholar] [CrossRef] [PubMed]
- Grineski, S.E.; Collins, T.W.; Chakraborty, J. Hispanic heterogeneity and environmental injustice: Intra-ethnic patterns of exposure to cancer risks from traffic-related air pollution in Miami. Popul. Environ. 2013, 35, 26–44. [Google Scholar] [CrossRef] [PubMed]
- Downey, L.; Hawkins, B. Race, income, and environmental inequality in the United States. Sociol. Perspect. 2008, 51, 759–781. [Google Scholar] [CrossRef] [PubMed]
- Liévanos, R.S. Race, deprivation, and immigrant isolation: The spatial demography of air-toxic clusters in the continental United States. Soc. Sci. Res. 2015, 54, 50–67. [Google Scholar] [CrossRef] [PubMed]
- Pastor, M.; Morello-Frosch, R.; Sadd, J.L. The air is always cleaner on the other side: Race, space, and ambient air toxics exposures in California. J. Urban Aff. 2005, 27, 127–148. [Google Scholar] [CrossRef]
- Gottdiener, M.; Hutchison, R.; Ryan, M.T. The New Urban Sociology, 5th ed.; Westview Press: Boulder, CO, USA, 2006; ISBN 978-0-8133-4956-5. [Google Scholar]
- McClintock, N. A critical physical geography of urban soil contamination. Geoforum 2015, 65, 69–85. [Google Scholar] [CrossRef] [Green Version]
- Alamdari, N.; Sample, D.J.; Steinberg, P.; Ross, A.C.; Easton, Z.M. Assessing the effects of climate change on water quantity and quality in an urban watershed using a calibrated stormwater model. Water 2017, 9, 464. [Google Scholar] [CrossRef]
- Keisman, J.; Shenk, G. Total maximum daily load criteria assessment using monitoring and modeling data. J. Am. Water Resour. Assoc. 2013, 49, 1134–1149. [Google Scholar] [CrossRef]
- Ortolani, V. Land use and its effects on water quality using the BASINS model. Environ. Earth Sci. 2014, 71, 2059–2063. [Google Scholar] [CrossRef]
- Park, Y.S.; Engel, B.A.; Harbor, J. A web-based model to estimate the impact of best management practices. Water 2014, 6, 455–471. [Google Scholar] [CrossRef]
- Puri, D.; Borel, K.; Vance, C.; Karthikeyan, R. Optimization of a water quality monitoring network using a spatially referenced water quality model and a genetic algorithm. Water 2017, 9, 704. [Google Scholar] [CrossRef]
- Zhou, F.; Dong, Y.; Wu, J.; Zheng, J.; Zhao, Y. An indirect simulation-optimization model for determining optimal TMDL allocation under uncertainty. Water 2015, 7, 6634–6650. [Google Scholar] [CrossRef]
- Roos-Collins, R. Bankside San Jose. In Rivertown: Rethinking Urban Rivers; Kibel, P.S., Ed.; MIT Press: Cambridge, MA, USA, 2007; pp. 111–141. ISBN 978-0-262-61219-7. [Google Scholar]
- Hoornbeek, J.; Hansen, E.; Ringquist, E.; Carlson, R. Implementing water pollution policy in the United States: Total maximum daily loads and collaborative watershed management. Soc. Nat. Resour. 2013, 26, 420–436. [Google Scholar] [CrossRef]
- Barcelos, C. Culture, contraception, and colorblindness: Youth sexual health promotion as a gendered racial project. Gend. Soc. 2018, 32, 252–273. [Google Scholar] [CrossRef]
- Freudenburg, W.R. Privileged access, privileged accounts: Toward a socially structured theory of resources and discourses. Soc. Forces 2005, 84, 89–114. [Google Scholar] [CrossRef]
- Collins, M.B. Risk-based targeting: Identifying disproportionalities in the sources and effects of industrial pollution. Am. J. Public Health 2011, 101, S231–S237. [Google Scholar] [CrossRef] [PubMed]
- Collins, M.B.; Munoz, I.; JaJa, J. Linking ‘toxic outliers’ to environmental justice communities. Environ. Res. Lett. 2016, 11, 015004. [Google Scholar] [CrossRef]
- Prechel, H.; Istvan, A. Disproportionality of corporations’ environmental pollution in the electrical energy industry. Sociol. Perspect. 2016, 59, 505–527. [Google Scholar] [CrossRef]
- Galli Robertson, A.M.; Collins, M.B. Super emitters in the United States coal-fired electric utility industry: Comparing disproportionate emissions across facilities and parent companies. Environ. Sociol. 2018. [Google Scholar] [CrossRef]
- Moore, S. To Place Our Deeds: The African American Community in Richmond, California; University of California Press: Berkeley, CA, USA, 2011; ISBN 978-0-520-22920-4. [Google Scholar]
- Shah, B.V. Laotian Daughters: Working Toward Community, Belonging, and Environmental Justice; Temple University Press: Philadelphia, PA, USA, 2014; ISBN 978-1-4399-0813-6. [Google Scholar]
- Cruden, J.C.; Oakes, M.R. The enduring nature of the Chevron doctrine. Harv. Environ. Law Rev. 2016, 40, 189–209. [Google Scholar]
- Auyero, J.; Swistun, D.A. Flammable: Environmental Suffering in an Argentine Shantytown; Oxford University Press: New York, NY, USA, 2009; ISBN 978-0-19-537294-6. [Google Scholar]
- Clausen, R.; Clark, B. The metabolic rift and marine ecology: An analysis of the ocean crisis within capitalist production. Organ. Environ. 2005, 18, 422–444. [Google Scholar] [CrossRef]
- McAteer, E.; Pulver, S. The corporate boomerang: Shareholder transnational advocacy networks targeting oil companies in the Ecuadorian Amazon. Glob. Environ. Polit. 2009, 9, 1–30. [Google Scholar] [CrossRef]
- North, J. Ecuador’s Battle for Environmental Justice against Chevron. Nation. 2 June 2015. Available online: https://www.thenation.com/article/ecuadors-battle-environmental-justice-against-chevron/ (accessed on 5 October 2008).
- Ofrias, L. Invisible harms, invisible profits: A theory of the incentive to contaminate. Cult. Theory Crit. 2017, 58, 435–456. [Google Scholar] [CrossRef]
- Paddock, R.C. Chevron Cleared in Nigeria Shootings. LA Times, 20 December 2008. [Google Scholar]
- Pulver, S. Making sense of corporate environmentalism: An environmental contestation approach to analyzing the causes and consequences of the climate change policy split in the oil industry. Organ. Environ. 2007, 20, 44–83. [Google Scholar] [CrossRef]
- Turner, T.E.; Brownhill, L.S. Why women are at war with Chevron: Nigerian subsistence struggles against the international oil industry. J. Asian Afr. Stud. 2004, 39, 63–93. [Google Scholar] [CrossRef]
- Widener, P. Oil conflict in Ecuador: A photographic essay. Organ. Environ. 2007, 20, 84–105. [Google Scholar] [CrossRef]
- Lave, R.; Wilson, M.W.; Barron, E.S.; Biermann, C.; Carey, M.A.; Duvall, C.S.; Johnson, L.; Lane, K.M.; McClintock, N.; Munroe, D.; et al. Intervention: Critical physical geography. Can. Geogr. 2014, 58, 1–10. [Google Scholar] [CrossRef]
- Lave, R.; Biermann, C.; Lane, S.N. Introducing critical physical geography. In The Palgrave Handbook of Critical Physical Geography; Lave, R., Biermann, C., Lane, S., Eds.; Palgrave Macmillan: Cham, Switzerland, 2018; pp. 3–20. ISBN 978-3-319-71460-8. [Google Scholar]
- McClintock, N. Assessing soil lead contamination at multiple scales in Oakland, California: Implications for urban agriculture and environmental justice. Appl. Geogr. 2012, 35, 460–473. [Google Scholar] [CrossRef]
- Wang, J.; Lee, K.; Kwan, M.-P. Environmental influences on leisure-time physical inactivity in the U.S.: An exploration of spatial non-stationarity. ISPRS Int. J. Geo-Inf. 2018, 7, 143. [Google Scholar] [CrossRef]
- Brunsdon, C.; Fotheringham, A.S.; Charlton, M.E. Geographically weighted regression: A method for exploring spatial nonstationarity. Geogr. Anal. 1996, 28, 281–298. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Charlton, M.; Brunsdon, C. The geography of parameter space: An investigation into spatial non-stationarity. Int. J. Geogr. Inf. Syst. 1996, 10, 605–627. [Google Scholar] [CrossRef]
- Atkinson, P.M.; German, S.E.; Sear, D.A.; Clark, M.J. Exploring the relations between riverbank erosion and geomorphological controls using geographically weighted logistic regression. Geogr. Anal. 2003, 35, 58–82. [Google Scholar] [CrossRef]
- Benjamin Neelon, S.E.; Burgoine, T.; Gallis, J.A.; Monsivais, P. Spatial analysis of food insecurity and obesity by area-level deprivation in children in early years settings in England. Spat. Spatio Temporal Epidemiol. 2017, 23, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Feuillet, T.; Coquin, J.; Mercier, D.; Cossart, E.; Decaulne, A.; Jónsson, H.P.; Sæmundsson, Þ. Focusing on the spatial non-stationarity of landslide predisposing factors in northern Iceland: Do paraglacial factors vary over space? Prog. Phys. Geogr. 2014, 38, 354–377. [Google Scholar] [CrossRef]
- Feuillet, T.; Commenges, H.; Menai, M.; Salze, P.; Perchoux, C.; Reuillon, R.; Kesse-Guyot, E.; Enaux, C.; Nazare, J.-A.; Hercberg, S.; et al. A massive geographically weighted regression model of walking-environment relationships. J. Transp. Geogr. 2018, 68, 118–129. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Brunsdon, C.; Charlton, M. Geographically Weighted Regression: The Analysis of Spatially Varying Relationships; John Wiley & Sons: Hoboken, NJ, USA, 2002; ISBN 978-0-471-49616-8. [Google Scholar]
- Goovaerts, P.; Xiao, H.; Adunlin, G.; Ali, A.; Tan, F.; Gwede, C.K.; Huang, Y. Geographically-weighted regression analysis of percentage of late-stage prostate cancer diagnosis in Florida. Appl. Geogr. 2015, 62, 191–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodrigues, M.; de la Riva, J.; Fotheringham, S. Modeling the spatial variation of the explanatory factors of human-caused wildfires in Spain using geographically weighted logistic regression. Appl. Geogr. 2014, 48, 52–63. [Google Scholar] [CrossRef]
- Schultz, C.; Alegría, A.C.; Cornelis, J.; Sahli, H. Comparison of spatial and aspatial logistic regression models for landmine risk mapping. Appl. Geogr. 2016, 66, 52–63. [Google Scholar] [CrossRef]
- Tu, J.; Tu, W. How the relationships between preterm birth and ambient air pollution vary over space: A case study in Georgia, USA using geographically weighted logistic regression. Appl. Geogr. 2018, 92, 31–40. [Google Scholar] [CrossRef]
- Wu, L.; Deng, F.; Xie, Z.; Hu, S.; Shen, S.; Shi, J.; Liu, D. Spatial analysis of severe fever with thrombocytopenia syndrome virus in China using a geographically weighted logistic regression model. Int. J. Environ. Res. Public Health 2016, 13, 1125. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Zhang, L. Comparison of spatial and non-spatial logistic regression models for modeling the occurrence of cloud cover in north-eastern Puerto Rico. Appl. Geogr. 2013, 37, 52–62. [Google Scholar] [CrossRef]
- Yang, C.-T.; Matthews, S.A. Understanding the non-stationary associations between distrust of the health care system, health conditions, and self-rated health in the elderly: A geographically weighted regression approach. Health Place 2012, 18, 576–585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhen, Z.; Fengri, L.; Liu, Z.; Liu, C.; Zhao, Y.; Ma, Z.; Zhang, L. Geographically local modeling of occurrence, count, and volume of downwood in Northeast China. Appl. Geogr. 2013, 37, 114–126. [Google Scholar] [CrossRef]
- Mennis, J.L.; Jordan, L. The distribution of environmental equity: Exploring spatial nonstationarity in multivariate models of air toxic releases. Ann. Assoc. Am. Geogr. 2005, 95, 249–268. [Google Scholar] [CrossRef]
- Gilbert, A.; Chakraborty, J. Using geographically weighted regression for environmental justice analysis: Cumulative cancer risks from air toxics in Florida. Soc. Sci. Res. 2011, 40, 273–286. [Google Scholar] [CrossRef]
- Dawson, T.; Onésimo Sandoval, J.S.; Sagan, V.; Crawford, T. A spatial analysis of the relationship between vegetation and poverty. ISPRS Int. J. Geo-Inf. 2018, 7, 83. [Google Scholar] [CrossRef]
- Jephcote, C.; Chen, H.B. Environmental injustices of children’s exposure to air pollution from road-transport within the model British multicultural city of Leicester: 2000–2009. Sci. Total Environ. 2012, 414, 140–151. [Google Scholar] [CrossRef] [PubMed]
- Grineski, S.E.; Collins, T.W.; Olvera, H.A. Local variability in the impacts of residential particulate matter and pest exposure on children’s wheezing severity: A geographically weighted regression analysis of environmental health justice. Popul. Environ. 2015, 37, 22–43. [Google Scholar] [CrossRef] [PubMed]
- Downey, L.; Van Willigen, M. Environmental stressors: The mental and health impacts of living near industrial activity. J. Health Soc. Behav. 2005, 46, 289–305. [Google Scholar] [CrossRef] [PubMed]
- Heaney, C.D.; Wing, S.; Wilson, S.M.; Campbell, R.L.; Caldwell, D.; Hopkins, B.; O’Shea, S.; Yeatts, K. Public infrastructure disparities and the microbiological and chemical safety of drinking and surface water supplies in a community bordering a landfill. J. Environ. Health 2013, 75, 24–36. [Google Scholar] [PubMed]
- Pastor, M.; Sadd, J.L.; Morello-Frosch, R. Waiting to inhale: The demographics of toxic air release facilities in 21st-century California. Soc. Sci. Quart. 2004, 85, 420–440. [Google Scholar] [CrossRef]
- State Water Resources Control Board (SWRCB). List of Water Quality Limited Segments—All Portions; State Water Resources Control Board: Sacramento, CA, USA, 2008. Available online: www.waterboards.ca.gov/water_issues/programs/tmdl/docs/303dlists2006/gis/state_06_303d_combined_wcat_rev.xls (accessed on 10 September 2008).
- State Water Resources Control Board (SWRCB). Geographic Information System (GIS) Shapefiles for 2006 303(d) List of Water Quality Limited Segments; State Water Resources Control Board: Sacramento, CA, USA, 2008. Available online: www.waterboards.ca.gov/water_ issues/programs/tmdl/docs/303dlists2006/gis/all303d_06_stwde.zip (accessed on 10 September 2008).
- U.S. Census Bureau. Technical Documentation: Census 2000 Summary File 3; U.S. Census Bureau: Washington, DC, USA, 2002.
- Nakaya, T. GWR4 User Manual: GWR4 Windows Application for Geographically Weighted Regression Modelling; Ritsumiekan University: Kyoto, Japan, 2012. [Google Scholar]
- Wheeler, D.; Tiefelsdorf, M. Multicollinearity and correlation among local regression coefficients in geographically weighted regression. J. Geogr. Syst. 2005, 7, 161–187. [Google Scholar] [CrossRef]
- Caldas de Castro, M.; Singer, B.H. Controlling the false discovery rate: A new application to account for multiple and dependent tests in local statistics of spatial association. Geogr. Anal. 2006, 38, 180–208. [Google Scholar] [CrossRef]
- Environmental Justice Coalition for Water (EJCW). Thirsty for Justice: A People’s Blueprint for California Water; The Environmental Justice Coalition for Water: Oakland, CA, USA, 2005. [Google Scholar]
- Gee, G.C.; Payne-Sturges, D.C. Environmental health disparities: A framework integrating psychosocial and environmental concepts. Environ. Health Perspect. 2004, 112, 1645–1653. [Google Scholar] [CrossRef] [PubMed]
- Gerring, J. Case Study Research: Principles and Practices; Cambridge University Press: New York, NY, USA, 2007; ISBN 978-0-521-67656-4. [Google Scholar]
- Hedin, M. Firm cited for corroded vats of toxic chemicals. East Bay Times. 5 May 2017. Available online: https://www.eastbaytimes.com/2017/05/05/7-agency-probe-orders-jack-london-square-firm-to-clean-up-its-toxic-mess/ (accessed on 12 October 2008).
- Gafni, M. Oakland company laundered campaign donations to mayoral, council candidates. The Mercury News. 11 July 2016. Available online: https://www.mercurynews.com/2016/07/11/oakland-company-laundered-campaign-donations-to-mayoral-council-candidates/ (accessed on 5 October 2008).
- Fimrite, P. 2 Bay Area Plants Top Toxic Releasers. SF Gate. 16 January 2013. Available online: https://www.sfgate.com/science/article/2-Bay-Area-plants-top-toxic-releasers-4200917.php (accessed on 5 October 2008).
- San Francisco Estuary Institute (SFEI). San Francisco Bay Seafood Consumption Study; San Francisco Estuary Institute: Richmond, CA, USA, 2000. [Google Scholar]
- Davis, J.A.; Greenfield, B.K.; Ichikawa, G.; Stephenson, M. Mercury in sport fish from the Sacramento-San Joaquin Delta Region, California, USA. Sci. Total Environ. 2008, 391, 66–75. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.A.; Yee, D.; Collins, J.N.; Schwarzbach, S.E.; Luoma, S.N. Potential for increased mercury accumulation in the estuary food web. San Franc. Estuary Watershed Sci. 2003, 1. Available online: https://escholarship.org/uc/item/9fm1z1zb (accessed on 4 September 2008). [CrossRef]
- Lydy, M.J.; Austin, K.R. Toxicity assessment of pesticide mixtures typical of the Sacramento-San Joaquin Delta using chironomus tentans. Arch. Environ. Contam. Toxicol. 2004, 48, 49–55. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, K. Rivers by Design: State Power and the Origins of U.S. Flood Control; Duke University Press: Durham, NC, USA, 2006; ISBN 978-0-8223-3773-7. [Google Scholar]
- Lund, J.; Hanak, E.; Fleenor, W.; Howitt, R.; Mount, J.; Moyle, P. Envisioning Futures for the Sacramento-San Joaquin Delta; Public Policy Institute of California: San Francisco, CA, USA, 2007. [Google Scholar]
- Lund, J.; Hanak, E.; Fleenor, W.; Bennett, W.; Howitt, R.; Mount, J.; Moyle, P. Comparing Futures for the Sacramento-San Joaquin Delta; Public Policy Institute of California: San Francisco, CA, USA, 2008. [Google Scholar]
- London, J.K.; Sze, J.; Liévanos, R.S. Problems, promise, progress, and perils: Critical reflections on environmental justice policy implementation in California. UCLA J. Environ. Law Policy 2008, 26, 255–289. [Google Scholar]
- Vanderwarker, A. Water, environmental justice, and land use planning: Richmond, California. Progress Plan. 2006, 169, 26–29. [Google Scholar]
- Liévanos, R.S. Retooling CalEnviroScreen: Cumulative pollution burden and race-based environmental health vulnerabilities in California. Int. J. Environ. Res. Public Health 2018, 15, 762. [Google Scholar] [CrossRef] [PubMed]
- Faust, J.; August, L.; Alexeeff, G.; Bangia, K.; Cendak, R.; Cheung-Sutton, E.; Cushing, L.; Galaviz, V.; Kadir, T.; Leichty, J.; et al. California Communities Environmental Health Screening Tool, Version 2.0 (CalEnviroScreen 2.0): Guidance and Screening Tool; Office of Environmental Health Hazard Assessment: Sacramento, CA, USA, 2014. [Google Scholar]
- Greenfield, B.K.; Rajan, J.; McKone, T.E. A multivariate analysis of CalEnviroScreen: Comparing environmental and socioeconomic stressors versus chronic disease. Environ. Health 2017, 16, 131. [Google Scholar] [CrossRef] [PubMed]
Variables | Factor Loadings | |
---|---|---|
Black Disadvantage | Isolated Latinx Disadvantage | |
Percent racial group: | ||
Poor | 0.951 | 0.882 |
No H.S. diploma | 0.951 | 0.946 |
Percent linguistically isolated households: | ||
Spanish speaking | 0.922 | |
Cronbach’s alpha | 0.892 | 0.862 |
Eigenevalue | 1.809 | 2.522 |
% of total variance explained | 90.458 | 84.082 |
N | 3064 | 3061 |
Source Category | Impairments | Proposed/U.S. EPA-Approved Completion Date | N Unique Pollutants 1 | ||
---|---|---|---|---|---|
N | % TMDL Required | N | Mean | ||
Agriculture | 107 | 83.2 | 38 | 2013.6 | 22 |
Urban runoff | 92 | 63 | 21 | 2015.3 | 16 |
Unknown sources | 87 | 88.5 | 44 | 2011.7 | 33 |
Unspecified NPS 2 | 63 | 100 | 62 | 2012.7 | 7 |
Resource extraction | 42 | 95.2 | 18 | 2013.1 | 4 |
Industrial wastewater | 36 | 100 | 34 | 2009.6 | 14 |
Atmospheric deposition | 34 | 100 | 33 | 2013.6 | 3 |
Municipal wastewater | 26 | 96.2 | 26 | 2011.3 | 13 |
Miscellaneous | 19 | 100 | 19 | 2012.8 | 3 |
Natural sources | 17 | 100 | 17 | 2011.5 | 2 |
Unspecified point source | 9 | 100 | 9 | 2013.1 | 6 |
Construction/Land Development | 8 | 100 | 0 | — | 3 |
Hydromodification/Groundwater | 7 | 100 | 1 | 2010 | 6 |
Non-boating recreational/tourism activity runoff | 7 | 100 | 1 | 2006 | 1 |
Total | 554 | 88.3 | 323 | 2012.4 | 59 |
Two-Digit Standard Industry Classification | N Facilities | RSEI [14] Modeled Hazard Score of Toxic Releases | Most Hazardous Organization—City (Percent (%) Total Industry RSEI [14] Modeled Hazard Score) | |
---|---|---|---|---|
Total | Per facility | |||
Petroleum Refining and Coal Products | 6 | 207,140,792.54 | 34,523,465.42 | Chevron Co. Refinery— Richmond (89.53%) |
Transportation Equipment | 3 | 26,703,872.31 | 8,901,290.77 | John Boyd Enterprises/JB Radiator Specialties, Inc.—Sacramento (96.79%) |
Wholesale Trade—Nondurable Goods | 6 | 17,653,062.30 | 2,942,177.05 | Chevron Co. Avon Terminal—Martinez (38.97%) |
Primary Metal Industries | 5 | 3,043,414.14 | 608,682.83 | McWane, Inc./AB&I Foundry—Oakland (44.36%) |
Rubber and Miscellaneous Plastics Products | 1 | 2,213,128.40 | 2,213,128.40 | Tyco Electronics Corp.— Menlo Park (100.00%) |
Chemicals and Allied Products | 9 | 1,293,418.39 | 143,713.15 | Criterion Catalysts & Technologies, L.P.—Pittsburg (86.76%) |
Electric, Gas, and Sanitary Services | 6 | 372,455.30 | 62,075.88 | Air Products & Chemicals, Inc./Stockton Cogen CO.— Stockton (77.60%) |
National Security and International Affairs | 2 | 255,605.10 | 127,802.55 | U.S. Dept. of Energy National Laboratory—Livermore (99.29%) |
Food and Kindred Products | 2 | 199,093.23 | 99,546.62 | C&H Sugar CO.—Crockett (99.99%) |
Fabricated Metal Products | 4 | 76,673.00 | 19,168.25 | Shaw Group Inc. / Shaw Pipe Shields Inc.—Vacaville (93.91%) |
Paper and Allied Products | 1 | 47,097.95 | 47,097.95 | Gaylord Container Corp.— Antioch (100.00%) |
Electronic and Other Electric Equipment | 4 | 44,967.00 | 11,241.75 | Viktron California—Stockton (73.39%) |
Engineering & Management Services | 1 | 36,000.00 | 36,000.00 | U.S. Dept. of Energy Lawrence Livermore National Laboratory Experimental Test Site (S300)— Tracy (100.00%) |
Stone, Clay, and Glass Products | 1 | 5400.00 | 5400.00 | National Gypsum Co.— Richmond (100.00%) |
Totals | 51 | 259,084,979.66 | 5,080,097.64 | Chevron Co. Refinery— Richmond (71.58%) |
Facilities by RSEI [14] Modeled Hazard Score Rank for Mercury Releases (City) | Mercury Releases | All Surface Water Toxic Releases | Percent of Overall Modeled Hazard Score Associated with Mercury Releases | ||
---|---|---|---|---|---|
Pounds | RSEI [14] Modeled Hazard Score | Overall Hazard Rank | RSEI [14] Modeled Hazard Score | ||
1. Chevron oil refinery (Richmond) | 3.0000 | 30,000.00 | 1 | 185,456,128.24 | 0.0162 |
2. FPL Energy/POSDEF Power electric power facility (Stockton) | 0.6779 | 6779.00 | 22 | 49,298.00 | 13.7511 |
3. Valero Energy oil refinery (Benicia) | 0.2000 | 2000.00 | 3 | 19,435,900.20 | 0.0103 |
4. Tesoro oil refinery (Martinez) | 1.0000 | 1000.00 | 8 | 1,973,689.00 | 0.0507 |
5. AERC recycling center (Hayward) | 0.0028 | 28.02 | 46 | 28.02 | 100.0000 |
6. Air Products & Chemicals/Stockton CoGen coal-fired power station (Stockton) | 0.0021 | 20.70 | 16 | 289,012.08 | 0.0072 |
7. McWane Inc./AB&I foundry (Oakland) | 0.0004 | 3.77 | 10 | 1,350,003.77 | 0.0003 |
8. Shell oil refinery (Martinez) | 1.3000 | 0.00 | 23 | 48,016.00 | 0.0000 |
9. ConocoPhillips oil refinery (Rodeo) | 1.1300 | 0.00 | 18 | 227,009.60 | 0.0000 |
Variables | Block Group 50 Percent Areal Containment in Impaired Water Hazard Zone | |
---|---|---|
Yes | No | |
Population vulnerability | ||
Black disadvantage, 2000 | 0.14 | −0.16 |
N | 1633 | 1431 |
Isolated Latinx disadvantage, 2000 | 0.14 | −0.16 |
N | 1631 | 1430 |
Uneven development | ||
Relative median housing value, 2000 | 0.95 | 1.08 |
N | 1617 | 1424 |
Contemporary industrial pollution sources | ||
Kilometers to Richmond Chevron refinery | 54.26 | 74.76 |
Surface water CAWMHS, 2000–2006 (100,000 s) | 105.45 | 17.04 |
N | 1637 | 1436 |
Variables | Mean | SD | Min. | Max. | Moran’s I 1 |
---|---|---|---|---|---|
Population vulnerability | |||||
Black disadvantage, 2000 | 0.00 | 0.99 | −0.50 | 8.54 | 0.022 *** |
Isolated Latinx disadvantage, 2000 | 0.00 | 1.00 | −0.72 | 6.91 | 0.003 *** |
Uneven development | |||||
Relative median housing value, 2000 | 1.01 | 0.52 | 0.04 | 7.09 | −0.001 *** |
Contemporary industrial pollution sources | |||||
Kilometers to Richmond Chevron Refinery | 63.83 | 39.96 | 1.26 | 139.20 | 0.636 *** |
Surface water CAWMHS, 2000–2006 (100,000 s) | 64.61 | 291.37 | 0.00 | 1870.25 | 0.014 *** |
Variables | B | S.E. | OR | 95% C.I. for OR |
---|---|---|---|---|
Population vulnerability | ||||
Black disadvantage, 2000 | 0.106 * | 0.049 | 1.111 | 1.009−1.224 |
Isolated Latinx disadvantage, 2000 | 0.309 *** | 0.047 | 1.362 | 1.242−1.494 |
Uneven development | ||||
Relative median housing value, 2000 | −0.127 | 0.084 | 0.881 | 0.747−1.038 |
Contemporary industrial pollution sources | ||||
Kilometers to Richmond Chevron refinery | −0.013 *** | 0.001 | 0.987 | 0.985−0.989 |
Surface water CAWMHS, 2000–2006 (100,000 s) | 0.002 *** | 0.001 | 1.002 | 1.001−1.003 |
Intercept | 1.058 *** | 0.117 | 2.881 | |
Model diagnostics | ||||
−2 log likelihood | 3845.220 | |||
Model chi-square | 358.244 *** | |||
Degrees of freedom | 5 | |||
Nagerlkerke R2 | 0.148 |
Model | Deviance | df | Deviance/df | Percent Deviance Explained | AIC | Number of Parameters |
---|---|---|---|---|---|---|
GLR | 3845.22 | 3035 | 1.27 | 0.085 | 3857.22 | 6 |
GWLR | 3475.44 | 3019 | 1.15 | 0.173 | 3513.31 | 18.94 |
Variables | Model Coefficients | Percent of Block Groups by Significance Level of t-Value | |||||||
---|---|---|---|---|---|---|---|---|---|
Min. | Median | Max. | FDR t-Value | t < −FDR t-Value | t < −1.96 | −1.96 < t < 1.96 | t > 1.96 | t > +FDR t-Value | |
Population vulnerability | |||||||||
Black disadvantage, 2000 | −0.251 | 0.224 | 2.340 | 4.18 | 1.41 | 34.30 | 13.84 | 5.23 | 45.22 |
Isolated Latinx disadvantage, 2000 | −0.217 | 0.274 | 0.449 | 4.27 | 0.00 | 0.00 | 22.10 | 63.56 | 14.34 |
Uneven development | |||||||||
Relative median housing value, 2000 | −0.956 | −0.193 | 0.407 | 4.25 | 1.41 | 34.92 | 36.57 | 27.10 | 0.00 |
Contemporary industrial pollution sources | |||||||||
Kilometers to Richmond Chevron Refinery | −0.071 | −0.026 | 0.046 | 4.20 | 81.52 | 4.83 | 8.42 | 3.85 | 1.38 |
Surface water CAWMHS, 2000–2006 (100,000 s) | −0.012 | 0.005 | 0.019 | 4.19 | 10.29 | 1.64 | 30.29 | 55.44 | 2.33 |
Intercept | −2.932 | 1.793 | 4.034 | 4.24 | 1.32 | 0.39 | 17.43 | 20.29 | 60.57 |
Variables | Representative Block Group: Oak Tree Neighborhood in Oakland (ID: 060014062013) | |||||
---|---|---|---|---|---|---|
Value | GWLR Results | |||||
B | S.E. | t-Value | Sig. | OR | ||
Population vulnerability | ||||||
Black disadvantage, 2000 | −0.161 | −0.183 | 0.056 | −3.288 | 0.001 | 0.833 |
Isolated Latinx disadvantage, 2000 | 5.458 | 0.371 | 0.093 | 3.985 | 6.9 × 10−5 | 1.450 |
Uneven development | ||||||
Relative median housing value, 2000 | 0.573 | −0.263 | 0.126 | −2.091 | 0.037 | 0.769 |
Contemporary industrial pollution sources | ||||||
Kilometers to Richmond Chevron Refinery | 21.950 | −0.042 | 0.005 | −9.268 | 3.5 × 10−20 | 0.958 |
Surface water CAWMHS, 2000–2006 (100,000 s) | 1350.166 | 0.008 | 0.002 | 3.297 | 9.9 × 10−4 | 1.008 |
Intercept | 2.041 | 0.216 | 9.459 | 6.0 × 10−21 | 7.695 | |
Model diagnostics | ||||||
Percent local deviance explained | 0.150 |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liévanos, R.S. Impaired Water Hazard Zones: Mapping Intersecting Environmental Health Vulnerabilities and Polluter Disproportionality. ISPRS Int. J. Geo-Inf. 2018, 7, 433. https://doi.org/10.3390/ijgi7110433
Liévanos RS. Impaired Water Hazard Zones: Mapping Intersecting Environmental Health Vulnerabilities and Polluter Disproportionality. ISPRS International Journal of Geo-Information. 2018; 7(11):433. https://doi.org/10.3390/ijgi7110433
Chicago/Turabian StyleLiévanos, Raoul S. 2018. "Impaired Water Hazard Zones: Mapping Intersecting Environmental Health Vulnerabilities and Polluter Disproportionality" ISPRS International Journal of Geo-Information 7, no. 11: 433. https://doi.org/10.3390/ijgi7110433
APA StyleLiévanos, R. S. (2018). Impaired Water Hazard Zones: Mapping Intersecting Environmental Health Vulnerabilities and Polluter Disproportionality. ISPRS International Journal of Geo-Information, 7(11), 433. https://doi.org/10.3390/ijgi7110433