Effects of Elevated Temperature on Root System Development of Two Lupine Species
Abstract
:1. Introduction
2. Results
2.1. The Initial Root Growth at 25 °C and 30 °C
2.1.1. Angle of Curvature of Initial Roots at 25 °C and 30 °C
2.1.2. Gravitropic Response of Initial Roots to 90° Reorientation
2.1.3. Growth of Primary Roots of 7-Day-Old Seedlings at 25 °C and 30 °C
2.1.4. Root Apex Development at 25 °C and 30 °C
2.2. The Development of 30-Day-Old Lupine Roots at 25 °C and 30 °C
3. Discussion
4. Materials and Methods
4.1. The Initial Root Growth at 25 °C and 30 °C
4.2. The Measurement of the Angle of Root Curvature
4.3. Determination of Gravitropic Response of Roots to 90° Reorientation
4.4. Morphometrical Tests
4.5. Anatomical-Cytometrical Analysis of Primary Root Development
4.5.1. Cytometrical Investigations
4.5.2. Determination of Mitotic Index
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alexander, J.M.; Diez, J.M.; Levine, J.M. Novel competitors shape species’ responses to climate change. Nature 2015, 525, 515–518. [Google Scholar] [CrossRef]
- Luo, H.; Xu, H.; Chu, C.; He, F.; Fang, S. High temperature can change root system architecture and intensify root interactions of plant seedlings. Front. Plant Sci. 2020, 11, 160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lynch, J. Root architecture and plant productivity. Plant Phys. 1995, 109, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Rubinigg, M.; Wenisch, J.; Elzenga, J.T.M.; Stulen, I. NaCI salinity affects lateral root development in Plantago maritima. Func. Plant Biol. 2004, 3, 775–780. [Google Scholar] [CrossRef] [PubMed]
- Radville, L.; McCormack, M.L.; Post, E.; Eissenstat, D.M. Root phenology in a changing climate. J. Exp. Bot. 2016, 67, 3617–3628. [Google Scholar] [CrossRef] [Green Version]
- Hayes, S.; Schachtschabel, J.; Mishkind, M.; Munnik, T.; Arisz, S.A. Hot topic: Thermosensing in plants. Plant Cell Environ. 2020, 44, 2018–2033. [Google Scholar] [CrossRef]
- Ma, Z.; Chang, S.X.; Bork, E.W.; Steinaker, D.F.; Wilson, S.D.; White, S.R. Climate change and defoliation interact to affect root length across northern temperate grasslands. Funct. Ecol. 2020, 34, 2611–2621. [Google Scholar] [CrossRef]
- Koevoets, I.T.; Venema, J.H.; Elzenga, J.T.M.; Testerink, C. Roots withstanding their environment: Exploiting root system architecture responses to abiotic stress to improve crop tolerance. Front. Plant Sci. 2016, 7, 1335. [Google Scholar] [CrossRef] [Green Version]
- De Lima, C.F.F.; Kleine-Vehn, J.; de Smet, I.; Feraru, E. Getting to the root of belowground high temperature responses in plants. J. Exp. Bot. 2021, 72, 7404–7413. [Google Scholar]
- Ribeiro, P.R.; Fernandez, L.G.; de Castro, R.D.; Ligterink, W.; Hilhorst, H.W. Physiological and biochemical responses of Ricinus communis seedlings to different temperatures: A metabolomics approach. BMC Plant Biol. 2014, 14, 223. [Google Scholar] [CrossRef] [Green Version]
- Hund, A.; Fracheboud, Y.; Soldati, A.; Stamp, P. Cold tolerance of maize seedlings as determined by root morphology and photosynthetic traits. Eur. J. Agron. 2008, 28, 178–185. [Google Scholar] [CrossRef]
- Calleja-Cabrera, J.; Boter, M.; Oñate-Sánchez, L.; Pernas, M. Root growth adaptation to climate change in crops. Front. Plant Sci. 2020, 11, 544. [Google Scholar] [CrossRef] [PubMed]
- Sattelmacher, B.; Marschner, H.; Kühne, R. Effects of the temperature of the rooting zone on the growth and development of roots of potato (Solanum tuberosum). Ann. Bot. 1990, 65, 27–36. [Google Scholar] [CrossRef]
- Joshi, M.; Fogelman, E.; Belausov, E.; Ginzberg, I. Potato root system development and factors that determine its architecture. J. Plant Physiol. 2016, 205, 113–123. [Google Scholar] [CrossRef]
- Pardales, J.R.; Kono, Y.; Yamauchi, A. Epidermal cell elongation in sorghum seminal roots exposed to high root-zone temperature. Plant Sci. 1992, 81, 143–146. [Google Scholar] [CrossRef]
- Rogers, E.D.; Benfey, P.N. Regulation of plant root system architecture: Implications for crop advancement. Curr. Opin. Biotechnol. 2015, 32, 93–98. [Google Scholar] [CrossRef]
- Gray, S.B.; Brady, S.M. Plant developmental responses to climate change. Dev. Biol. 2016, 419, 64–77. [Google Scholar] [CrossRef] [Green Version]
- Forbes, P.; Black, K.; Hooker, J. Temperature-induced alteration to root longevity in Lolium perenne. Plant Soil. 1997, 190, 87–90. [Google Scholar] [CrossRef]
- Seiler, G.J. Influence of temperature on primary and lateral root growth of sunflower seedlings. Environ. Exp. Bot. 1998, 40, 135–146. [Google Scholar] [CrossRef]
- Bardgett, R.D.; Mommer, L.; de Vries, F.T. Going underground: Root traits as drivers of ecosystem processes. Trends Ecol. Evol. 2014, 29, 692–699. [Google Scholar] [CrossRef]
- Nagel, K.A.; Kastenholz, B.; Jahnke, S.; van Dusschoten, D.; Aach, T.; Mühlich, M.; Truhn, D.; Scharr, H.; Terjung, S.; Walter, A.; et al. Temperature responses of roots: Impact on growth, root system architecture and implications for phenotyping. Funct. Plant Biol. 2009, 36, 947. [Google Scholar] [CrossRef]
- Aidoo, M.K.; Bdolach, E.; Fait, A.; Lazarovitch, N.; Rachmilevitch, S. Tolerance to high soil temperature in foxtail millet (Setaria italica L.) is related to shoot and root growth and metabolism. Plant Physiol. Biochem. 2016, 106, 73–81. [Google Scholar] [CrossRef]
- Wani, S.H.; Kumar, V.; Saroj, V.S.; Sah, K. Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. Crop J. 2016, 4, 162–176. [Google Scholar] [CrossRef] [Green Version]
- Lucas, M.; Godin, C.; Jay-Allemand, C.; Laplaze, L. Auxin fluxes in the root apex co-regulate gravitropism and lateral root initiation. J. Exp. Bot. 2008, 59, 55–66. [Google Scholar] [CrossRef] [Green Version]
- Miyazawa, Y.; Takahashi, H. Molecular mechanisms mediating root hydrotropism: What we have observed since the rediscovery of hydrotropism. J. Plant Res. 2020, 133, 3–14. [Google Scholar] [CrossRef]
- Morita, M.T. Directional gravity sensing in gravitropism. Annu. Rev. Plant Biol. 2010, 61, 705–720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muthert, L.W.F.; Izzo, L.G.; van Zanten, M.; Aronne, G. Root tropisms: Investigations on Earth and in space to unravel plant growth direction. Front. Plant Sci. 2020, 10, 1807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moulia, B.; Fournier, M. The power and control of gravitropic movements in plants: A biomechanical and systems biology view. J. Exp. Bot. 2009, 60, 461–486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taniguchi, M.; Furutani, M.; Nishimura, T.; Nakamura, M.; Fushita, T.; Iijima, K.; Baba, K.; Tanaka, H.; Toyota, M.; Tasaka, M.; et al. The Arabidopsis LAZY1 family plays a key role in gravity signalling within statocytes and in branch angle control of roots and shoots. Plant Cell 2017, 29, 1984–1999. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morita, M.T.; Tasaka, M. Gravity sensing and signaling. Curr. Opin. Plant Biol. 2004, 7, 712–718. [Google Scholar] [CrossRef]
- Leitz, G.; Kang, B.H.; Schoenwaelder, M.E.; Staehelin, L.A. Statolith sedimentation kinetics and force transduction to the cortical endoplasmic reticulum in gravity-sensing Arabidopsis columella cells. Plant Cell 2009, 21, 843–860. [Google Scholar] [CrossRef] [Green Version]
- Strohm, A.K.; Baldwin, K.L.; Masson, P.H. Molecular mechanisms of root gravity sensing and signal transduction. Wiley Interdiscip. Rev. Dev. Biol. 2012, 1, 276–285. [Google Scholar] [CrossRef]
- Sato, E.M.; Hijazi, H.; Bennett, M.J.; Vissenberg, K.; Swarup, R. New insights into root gravitropic signalling. J. Exp. Bot. 2015, 66, 2155–2165. [Google Scholar] [CrossRef] [PubMed]
- Masson, P.H.; Tasaka, M.; Morita, M.T.; Guan, C.; Chen, R.; Boonsirichai, K. Arabidopsis thaliana: A model for the study of root and shoot gravitropism. Arab. Book 2002, 1, e0043. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, M.; Nishimura, T.; Morita, M.T. Gravity sensing and signal conversion in plant gravitropism. J. Exp. Bot. 2019, 70, 3495–3506. [Google Scholar] [CrossRef]
- Friml, J.; Wisniewska, J.; Benkova, E.; Mendgen, K.; Palme, K. Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature 2002, 415, 806–809. [Google Scholar] [CrossRef] [Green Version]
- Ma, Z.; Hasenstein, K.H. The onset of gravisensitivity in the embryonic root of flax. Plant Physiol. 2006, 140, 159–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Domisch, T.; Finér, L.; Lehto, T.; Smolander, A. Effect of soil temperature on nutrient allocation and mycorrhizas in Scots pine seedlings. Plant Soil 2002, 239, 173–185. [Google Scholar] [CrossRef]
- Martins, S.; Montiel-Jorda, A.; Cayrel, A.; Huguet, S.; Roux, C.P.; Ljung, K.; Vert, G. Brassinosteroid 720 signaling-dependent root responses to prolonged elevated ambient temperature. Nat. Commun. 2017, 8, 309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merkys, A.I. Geotropic Reaction of Plants, 1st ed.; Mintis: Vilnius, Lithuania, 1973; p. 264. (In Russian) [Google Scholar]
- Su, S.H.; Gibbs, N.M.; Jancewicz, A.L.; Masson, P.H. Molecular mechanisms of root gravitropism. Curr. Biol. 2017, 27, R964–R972. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leyser, O. Auxin signaling. Plant Physiol. 2018, 176, 465–479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Küpers, J.J.; Oskam, L.; Pierik, R. Photoreceptors regulate plant developmental plasticity through auxin. Plants 2020, 9, 940. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xiao, G.; Wang, X.; Zhang, X.; Friml, J. Evolution of fast root gravitropism in seed plants. Nat. Commun. 2019, 10, 3480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pilet, P.E. Importance of the cap cells in maize root gravireaction. Planta 1982, 156, 95–96. [Google Scholar] [CrossRef]
- Ransom, J.S.; Moore, R. Geoperception in primary and lateral roots of Phaseolus vulgaris (Fabaceae). I. Structure of columella cells. Am. J. Bot. 1983, 70, 1048–1056. [Google Scholar] [CrossRef] [PubMed]
- Kawata, S.; Katano, M.; Yamazaki, K. The growing directions and the geotropic responses of rice crown roots. Jpn. J. Crop Sci. 1980, 49, 301–310. [Google Scholar] [CrossRef] [Green Version]
- Verbelen, J.P.; De Cnodder, T.; Le, J.; Vissenberg, K.; Baluška, F. The root apex of Arabidopsis thaliana consists of four distinct zones of cellular activities: Meristematic zone, transition zone, fast elongation zone, and growth terminating zone. Plant Signal. Behav. 2006, 1, 296–304. [Google Scholar] [CrossRef] [Green Version]
- Casimiro, I.; Marohant, A.; Bhalero, R.P.; Beeckmann, T.; Dhoope, S.; Swarup, R.; Graham, N.; Inze, D.; Sandberg, G.; Casero, P.J.; et al. Auxin transport promotes Arabidopsis lateral root initiation. Plant Cell 2001, 13, 843–852. [Google Scholar] [CrossRef] [Green Version]
- Overvoorde, P.; Fukaki, H.; Beeckman, T. Auxin control of root development. Cold Spring Harb. Perspect. Biol. 2010, 2, a001537. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.; Pagès, L.; Wu, J. Relationships between root diameter, root length and root branching along lateral roots in adult, field-grown maize. Ann. Bot. 2016, 117, 379–390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- CABI’s Invasive Species Compendium. Available online: https://www.cabi.org/isc/datasheet/31710 (accessed on 5 January 2022).
- Wang, R.L.; Zeng, R.S.; Peng, S.L.; Chen, B.M.; Liang, X.T.; Xin, X.W. Elevated temperature may accelerate invasive expansion of the liana plant Ipomoea cairica. Weed Res. 2011, 51, 574–580. [Google Scholar] [CrossRef]
- Paulauskas, A.; Slopšytė, G.; Morkūnas, V. Methods and Practicals of General Genetic Investigations, 1st ed.; Infrorastras: Vilnius, Lithuaniai, 2003; pp. 23–30. (In Lithuania) [Google Scholar]
Plant Species | Lupinus polyphyllus | Lupinus luteus | ||
---|---|---|---|---|
Temperature | 25 °C | 30 °C | 25 °C | 30 °C |
Angle of curvature, degrees | 6.2 ± 0.53 a | 20.8 ± 0.95 b | 14.2 ± 1.21 c | 6.8 ± 0.43 a |
Plant Species | Lupinus polyphyllus | Lupinus luteus | ||
---|---|---|---|---|
Temperature | 25 °C | 30 °C | 25 °C | 30 °C |
Root-to-shoot ratio | 0.182 ± 0.03 a | 0.063 ± 0.01 b | 0.217 ± 0.03 a | 0.169 ± 0.01 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gavelienė, V.; Jurkonienė, S.; Jankovska-Bortkevič, E.; Švegždienė, D. Effects of Elevated Temperature on Root System Development of Two Lupine Species. Plants 2022, 11, 192. https://doi.org/10.3390/plants11020192
Gavelienė V, Jurkonienė S, Jankovska-Bortkevič E, Švegždienė D. Effects of Elevated Temperature on Root System Development of Two Lupine Species. Plants. 2022; 11(2):192. https://doi.org/10.3390/plants11020192
Chicago/Turabian StyleGavelienė, Virgilija, Sigita Jurkonienė, Elžbieta Jankovska-Bortkevič, and Danguolė Švegždienė. 2022. "Effects of Elevated Temperature on Root System Development of Two Lupine Species" Plants 11, no. 2: 192. https://doi.org/10.3390/plants11020192
APA StyleGavelienė, V., Jurkonienė, S., Jankovska-Bortkevič, E., & Švegždienė, D. (2022). Effects of Elevated Temperature on Root System Development of Two Lupine Species. Plants, 11(2), 192. https://doi.org/10.3390/plants11020192