History, Phylogeny, Biodiversity, and New Computer-Based Tools for Efficient Micropropagation and Conservation of Pistachio (Pistacia spp.) Germplasm
Abstract
:1. Introduction
2. Pistachio History
Pistacia Etymology, Origin and Domestication
3. Pistachio Taxonomy and Phylogeny
3.1. Pistacia Taxonomy
- An uncommonly high proportion of dioecy (86% of the genera).
- Small trees and shrubs (5–15 m), and woody vines
- Leaves are usually compound, deciduous or evergreen, alternate and composed of leaflets in several arrangements.
- The small flowers are formed in branched clusters (panicles) and may be bisexual or unisexual. Main feature of the flower is a prominent nectar disk and a pistil of fused carpels forming a seed cavity in which an ovule develops.
- Fruits are usually drupes.
- (i)
- Lentiscella Zoh. (P. mexicana Humn., Bonpl. and Kunth and P. texana Swingle).
- (ii)
- Eu-Lentiscus Zoh. (P. lentiscus L., P. saportae Burnat. and P. weinmannifolia Poisson)
- (iii)
- Butmela Zoh. (P. atlántica Desf.)
- (iv)
- Eu-Terebinthus Zoh. (P. chinensis Bge. P. khlinjuk Stocks, P. palestina Boiss., P terebinthus L., and P. vera L.).
3.2. Pistacia Phylogeny
4. Pistachio Characteristics and Production
4.1. Pistachio Characteristics
4.2. Pistachio Production
5. Pistachio Biodiversity: Cultivars and Rootstocks
5.1. Pistachio Germplasm Biodiversity
5.2. Pistachio Cultivars
5.3. Pistachio Rootstocks
6. Pistachio Germplasm Propagation and Conservation
6.1. Conventional Sexual Propagation
6.2. Conventional Asexual Propagation: Cuttings and Grafting
6.2.1. Propagation by Cuttings
6.2.2. Propagation by Grafting
6.2.3. Propagation by Budding
6.3. Unconventional Asexual Propagation
6.3.1. Cryopreservation
6.3.2. Slow-Growth Storage
6.3.3. Synthetic Seed Techniques
6.3.4. Micropropagation
7. Computer-Based Tools for Efficient Micropropagation and Conservation of Pistacia sp. Germplasm
7.1. Design of Experiments (DoE) Tools
7.2. Artificial Neural Networks Tools
8. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kashaninejad, M.; Tabil, L.G. Pistachio (Pistacia vera L.); Woodhead Publishing Ltd.: Sawston, UK, 2011; Volume 4, ISBN 9780857090904. [Google Scholar]
- Khanazarov, A.A.; Chernova, G.M.; Rakhmonov, A.M.; Nikolyi, L.V.; Ablaeva, E.; Zaurov, D.E.; Molnar, T.J.; Eisenman, S.W.; Funk, C.R. Genetic Resources of Pistacia vera L. in Central Asia. Genet. Resour. Crop Evol. 2009, 56, 429–443. [Google Scholar] [CrossRef]
- Mir-Makhamad, B.; Bjørn, R.; Stark, S.; Spengler, R.N. Pistachio (Pistacia vera) Domestication and Dispersal out of Central Asia. Agronomy 2022, 12, 1758. [Google Scholar] [CrossRef]
- Zeng, L.; Tu, X.-L.; Dai, H.; Han, F.-M.; Lu, B.-S.; Wang, M.-S.; Nanaei, H.A.; Tajabadipour, A.; Mansouri, M.; Li, X.-L.; et al. Whole Genomes and Transcriptomes Reveal Adaptation and Domestication of Pistachio. Genome Biol. 2019, 20, 79. [Google Scholar] [CrossRef] [PubMed]
- Vargas, F.; Romero, M.; Batlle, I. Following Pistachio Footprints in Spain. In Following Pistachio Footprints (Pistacia vera L.): Cultivation and Culture, Folklore and History, Traditions and Uses; Avanzato, D., Vassallo, I., Eds.; International Society for Horticultural Science: Leuven, Belgium, 2008; pp. 90–97. [Google Scholar]
- Mandalari, G.; Barreca, D.; Gervasi, T.; Roussell, M.A.; Klein, B.; Feeney, M.J.; Carughi, A. Pistachio Nuts (Pistacia vera L.): Production, Nutrients, Bioactives and Novel Health Effects. Plants 2022, 11, 18. [Google Scholar] [CrossRef]
- Kennedy-Hagan, K.; Painter, J.E.; Honselman, C.; Halvorson, A.; Rhodes, K.; Skwir, K. The Effect of Pistachio Shells as a Visual Cue in Reducing Caloric Consumption. Appetite 2011, 57, 418–420. [Google Scholar] [CrossRef] [PubMed]
- Bulló, M.; Juanola-Falgarona, M.; Hernández-Alonso, P.; Salas-Salvadó, J. Nutrition Attributes and Health Effects of Pistachio Nuts. Br. J. Nutr. 2015, 113, S79–S93. [Google Scholar] [CrossRef] [Green Version]
- Mateos, R.; Salvador, M.D.; Fregapane, G.; Goya, L. Why Should Pistachio Be a Regular Food in Our Diet? Nutrients 2022, 14, 3207. [Google Scholar] [CrossRef]
- Ismail, N.; Chan, K.W.; Mastuki, S.N.; Saad, N.; Abdull Razis, A.F. Biological Activities of Pistachio (Pistacia vera) Oil. In Multiple Biological Activities of Unconventional Seed Oils; Elsevier: Amsterdam, The Netherlands, 2022; pp. 279–293. [Google Scholar]
- Pouris, J.; Stylianou, F. Dioscorides on Pistacia lentiscus L. and Marrubium vulgare L. through Pharmacological Properties of Today. Herb. Med. J. 2021, 6. [Google Scholar] [CrossRef]
- Faostat. Food and Agriculture Organization of the United Nations, 2020. Production: Crops. Available online: http://faostat.fao.org (accessed on 19 November 2022).
- International Nut & Dried Fruit Council. INC Nuts & Dried Fruits Statistical Yearbook; International Nut & Dried Fruit Council: Tarragona, Spain, 2021; Available online: https://www.nutfruit.org/ (accessed on 19 November 2022).
- Al-Saghir, M. Evolutinary Historyof the Genus Pistacia (Anacardiaceae). Int. J. Bot. 2009, 5, 225–257. [Google Scholar] [CrossRef]
- Parfitt, D.E. Development of Pistachio as a Crop in the United States. Annu. Rep. North. Nut Grow. Assoc. 1991, 82, 135–143. [Google Scholar]
- Barone, E.; Caruso, T. Genetic Diversity within Pistacia vera in Italy. In Proceedings of the Taxonomy, Distribution, Conservation and Uses of Pistacia Genetic Resources, Report of a Workshop, Palermo, Italy, 29–30 June 1995; Padulosi, S., Caruso, T., Barone, E., Eds.; International Plant Genetic Resources Institute: Rome, Italy, 1996; pp. 20–29. [Google Scholar]
- Barone, E.; Di Marco, L.; Marra, F.P.; Sidari, M. Isozymes and Canonical Discriminant Analysis to Identify Pistachio (Pistacia vera L.) Germplasm. HortScience 1996, 31, 134–138. [Google Scholar] [CrossRef]
- Padulosi, S.; Hadj-Hassan, A. Project on Underutilized Mediterranean Species. In Pistacia: Towards a Comprehensive Documentation of Distribution and Use of Its Genetic Diversity in Central & West Asia, North Africa and Mediterranean Europe, Proceedings of the Report of the IPGRI Workshop, Irbid, Jordan, 14–17 December 1998; International Plant Genetic Resources Institute: Rome, Italy, 2001. [Google Scholar]
- Ozden-tokatli, Y.; Akdemir, H.; Tilkat, E.; Onay, A. Current Status and Conservation of Pistacia Germplasm. Biotechnol. Adv. 2010, 28, 130–141. [Google Scholar] [CrossRef] [PubMed]
- Akdemir, H.; Süzerer, V.; Tilkat, E.; Yildirim, H.; Onay, A.; Çiftçi, Y.O. In vitro Conservation and Cryopreservation of Mature Pistachio (Pistacia vera L.) Germplasm. J. Plant Biochem. Biotechnol. 2013, 22, 43–51. [Google Scholar] [CrossRef]
- Ogbu, J.U. Genetic Resources and Biodiversity Conservation in Nigeria through Biotechnology Approaches. In Biotechnology and Biodiversity. Sustainable Development and Biodiversity; Springer: Cham, Switzerland, 2014; pp. 271–285. [Google Scholar]
- Pathak, M.R.; Abido, M.S. The Role of Biotechnology in the Conservation of Biodiversity. J. Exp. Biol. 2014, 2, 352–363. [Google Scholar]
- Benmahioul, B.; Kaïd-Harche, M.; Daguin, F. In vitro Regeneration of Pistacia vera L. from Nodal Explants. J. For. Sci. 2016, 62, 198–203. [Google Scholar] [CrossRef] [Green Version]
- Al-Saghir, M.G.; Porter, D.M. Taxonomic Revision of the Genus Pistacia L. (Anacardiaceae). Am. J. Plant Sci. 2012, 3, 12–32. [Google Scholar] [CrossRef] [Green Version]
- Chitzanidis, A. From Asia to Aigina: The Story of the Pistachio Tree. In Proceedings of the XIV GREMPA Meeting on Pistachios and Almonds, Athens, Greece, 31 March–4 April 2008; Zakynthinos, G., Ed.; CIHEAM/FAO/AUA/TEI Kalamatas/NAGREF: Zaragoza, Spain, 2010; Volume 94, pp. 299–302, Options Méditerranéennes: Série A. Sémin. [Google Scholar]
- Zohary, M. A Monographical Study of the Genus Pistacia. Palest. J. Bot. (Jerus. Ser.) 1952, 5, 187–228. [Google Scholar]
- Katsiotis, A.; Hagidimitriou, M.; Drossou, A.; Pontikis, C.; Loukas, M. Genetic Relationships among Species and Cultivars of Pistacia Using RAPDs and AFLPs. Euphytica 2003, 132, 279–286. [Google Scholar] [CrossRef]
- Parfitt, D.E.; Badenes, M.L. Phylogeny of the Genus Pistacia as Determined from Analysis of the Chloroplast Genome. Proc. Natl. Acad. Sci. USA 1997, 94, 7987–7992. [Google Scholar] [CrossRef] [Green Version]
- Lev, E.; Kislev, M.E.; Bar-Yosef, O. Mousterian Vegetal Food in Kebara Cave, Mt. Carmel. J. Archaeol. Sci. 2005, 32, 475–484. [Google Scholar] [CrossRef]
- Monnier, G. Neanderthal Behaviour. Nat. Educ. Knowl. 2012, 3, 11. [Google Scholar]
- Bender, B. Farming in Prehistory: From Hunter-Gatherer to Food Producer; John Baker: London, UK, 1975. [Google Scholar]
- Miller, N.F. Agricultural Development in Western Central Asia in the Chalcolithic and Bronze Ages. Veg. Hist. Archaeobot. 1999, 8, 13–19. [Google Scholar] [CrossRef]
- Bostock, J.; Riley, H.T. Pliny the Elder, the Natural History; Libri XII–XVI. AD 79; Rachham, H., Translator; Harvard University Press: Cambridge, MA, USA, 1945; Volume 4. [Google Scholar]
- Evreinoff, V.A. Le Pistachier. Etude Pomologique. J. Agric. Trop. Bot. Appl. 1955, 2, 387–415. [Google Scholar] [CrossRef]
- Caruso, T.; Iannini, C.; Barone, E.; Marra, F.P.; Sottile, F.; Greco, C.I.; Sabina, M.R.; Martelli, G.; Monastra, F.; Batlle, I.; et al. Genetic and Phenotypic Diversity in Pistachio (P. vera L.) Germplasm Collected in Mediterranean Countries. In Proceedings of the II International Symposium on Pistachios and Almonds 470, Davis, CA, USA, 24 August 1997; pp. 168–180. [Google Scholar]
- Pourian, M.A.; Bakhshi, D.; Hokmabadi, H.; Aalami, A. Pomological Attributes and Chemical Composition of Cultivars and Wild Genotypes of Pistachios (Pistacia vera L.) in Iran. J. Nuts 2019, 10, 163–173. [Google Scholar] [CrossRef]
- Whitehouse, W.E. The Pistachio Nut-a New Crop for the Western United States. Econ. Bot. 1957, 11, 281–321. [Google Scholar] [CrossRef]
- Langgut, D.; Garfinkel, Y. 7000-Year-Old Evidence of Fruit Tree Cultivation in the Jordan Valley, Israel. Sci. Rep. 2022, 12, 7463. [Google Scholar] [CrossRef] [PubMed]
- Pell, S.K. Molecular Systematics of the Cashew Family (Anacardiaceae). Ph.D. Thesis, Louisiana State University and Agricultural & Mechanical College ProQuest Dissertations Publishing, Baton Rouge, LA, USA, 2004. [Google Scholar]
- Christenhusz, M.J.M.; Byng, J.W. The Number of Known Plants Species in the World and Its Annual Increase. Phytotaxa 2016, 261, 201. [Google Scholar] [CrossRef] [Green Version]
- Renner, S.S.; Won, H. Repeated Evolution of Dioecy from Monoecy in Siparunacaeae (Laurales). Syst. Biol. 2001, 50, 700–712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glimn-Lacy, J.; Kaufman, P.B. Botany Illustrated, Introduction to Plants, Major Groups, Flowering Plant Families, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2006; ISBN 9780387288703. [Google Scholar]
- Linnaeus, C. Species Plantarum. Holmiae. Impensis Laurentii Salvii; Laurentius Salvius: Stockholm, Sweden, 1753. [Google Scholar]
- Adanson, M. Familles des Plantes; Vincent: Paris, France, 1763. [Google Scholar]
- Engler, A. Burseraceae et Anacardiaceae. In Monographie Phanerogamarum; De Candolle, A.C., Ed.; Masson & Cie: Paris, France, 1881; Volume 4, pp. 284–293. [Google Scholar]
- Karimi, H.R.; Zamani, Z.; Ebadi, A.; Fatahi, M.R. Morphological Diversity of Pistacia Species in Iran. Genet. Resour. Crop Evol. 2009, 56, 561–571. [Google Scholar] [CrossRef]
- Desborough, S.; Peloquin, S.J. Esterase Isozymes from Solanum Tubers. Phytochemistry 1967, 6, 989–994. [Google Scholar] [CrossRef]
- Desborough, S.; Peloquin, S.J. Potato Variety Identification by Use of Electrophoretic Patterns of Tuber Proteins and Enzymes. Am. Potato J. 1968, 45, 220–229. [Google Scholar] [CrossRef]
- Brewbaker, J.L. Pollen Enzymes and Isoenzymes. In Pollen: Development and Physiology; Elsevier: Amsterdam, The Netherlands, 1971; pp. 156–170. [Google Scholar]
- Ben-Hayyim, G.; Shani, A.; Vardi, A. Evaluation of Isozyme Systems in Citrus to Facilitate Identification of Fusion Products. Theor. Appl. Genet. 1982, 64, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Nieto, A.R.; Sancho, A.C.; Barros, M.V.; Gorge, J.L. Peroxidase Zymograms at Constant and Gradient PH Electrophoresis as an Analytical Test in the Identification of Potato Varieties. J. Agric. Food Chem. 1990, 38, 2148–2153. [Google Scholar] [CrossRef]
- Loukas, M.; Pontikis, C.A. Pollen Isozyme Polymorphism in Types of Pistacia vera and Related Species as an Aid in Taxonomy. J. Hortic. Sci. 1979, 54, 95–102. [Google Scholar] [CrossRef]
- Rovira, M.; Batlle, I.; Romero, M.; Vargas, F.J. Isoenzymic Identification of Pistacia Species. Acta Hortic. 1995, 470, 265–272. [Google Scholar] [CrossRef]
- Rovira, M.; Batlle, I.; Romero, M.; Vargas, F.J. Characterization of pistachio cultivars using isozymes. In X GREMPA Seminar; CIHEAM: Zaragoza, Spain, 1998; pp. 113–120. [Google Scholar]
- Micales, J.A.; Bonde, M.R. Isozymes: Methods and Applications. In Molecular Methods in Plant Pathology; CRC Press: Boca Raton, FL, USA, 1995; pp. 115–130. [Google Scholar]
- Tuvesson, S.D.; Larsson, C.; Ordon, F. Use of Molecular Markers for Doubled Haploid Technology: From Academia to Plant Breeding Companies. In Doubled Haploid Technology; Methods in Molecular Biology; Segui-Simarro, J.M., Ed.; Springer: New York, NY, USA, 2021; Volume 2288, pp. 49–72. ISBN 978-1-0716-1334-4. [Google Scholar]
- Chavhan, R.L.; Sable, S.; Narwade, A.V.; Hinge, V.R.; Kalbande, B.B.; Mukherjee, A.K.; Chakrabarty, P.K.; Kadam, U.S. Multiplex Molecular Marker-Assisted Analysis of Significant Pathogens of Cotton (Gossypium Sp.). Biocatal. Agric. Biotechnol. 2023, 47, 102557. [Google Scholar] [CrossRef]
- Hinge, V.R.; Shaikh, I.M.; Chavhan, R.L.; Deshmukh, A.S.; Shelake, R.M.; Ghuge, S.A.; Dethe, A.M.; Suprasanna, P.; Kadam, U.S. Assessment of Genetic Diversity and Volatile Content of Commercially Grown Banana (Musa Spp.) Cultivars. Sci. Rep. 2022, 12, 7979. [Google Scholar] [CrossRef]
- Mandal, L. Potential Applications of Molecular Markers in Plant. Curr. Trends Biomed. Eng. Biosci. 2018, 12, 85–87. [Google Scholar] [CrossRef]
- Hormaza, J.I.; Plnney, K.; Polito, V.S. Genetic Diversity of Pistachio (Pistacia vera, Anacardiaceae) Germplasm Based on Randomly Amplified Polymorphic DNA (RAPD) Markers. Econ. Bot. 1998, 52, 78–87. [Google Scholar] [CrossRef]
- Kafkas, S.; Perl-Treves, R. Morphological and Molecular Phylogeny of Pistacia Species in Turkey. TAG Theor. Appl. Genet. 2001, 102, 908–915. [Google Scholar] [CrossRef]
- Mirzaei, S.; Bahar, M.; Sharifnabi, B. A Phylogenetic Study of Iranian Wild Pistachio Species and Some Cultivars Using RAPD Markers. Acta Hortic. 2006, 726, 39–43. [Google Scholar] [CrossRef]
- Golan-Goldhirsh, A.; Barazani, O.; Wang, Z.S.; Khadka, D.K.; Saunders, J.A.; Kostiukovsky, V.; Rowland, L.J. Genetic Relationships among Mediterranean Pistacia Species Evaluated by RAPD and AFLP Markers. Plant Syst. Evol. 2004, 246, 9–18. [Google Scholar] [CrossRef]
- Parfitt, D.E.; Badenes, M.L. Molecular Phylogenetic Analysis of the Genus Pistacia. Acta Hortic. 1998, 470, 143–151. [Google Scholar] [CrossRef]
- Fares, K.; Guasmi, F.; Touil, L.; Triki, T.; Ferchichi, A. Genetic Diversity of Pistachio Tree Using Inter-Simple Sequence Repeat Markers ISSR Supported by Morphological and Chemical Markers. Biotechnology 2009, 8, 24–34. [Google Scholar] [CrossRef] [Green Version]
- Turhan Serttas, P.; Özcan, T. Intraspecific Variations Studied by ISSR and IRAP Markers in Mastic Tree (Pistacia lentiscus L.) from Turkey. Trak. Univ. J. Nat. Sci. 2018, 19, 147–157. [Google Scholar] [CrossRef] [Green Version]
- Guney, M.; Kafkas, S.; Zarifikhosroshahi, M.; Gundesli, M.A.; Ercisli, S.; Holubec, V. Genetic Diversity and Relationships of Terebinth (Pistacia terebinthus L.) Genotypes Growing Wild in Turkey. Agronomy 2021, 11, 671. [Google Scholar] [CrossRef]
- Ziya Motalebipour, E.; Kafkas, S.; Khodaeiaminjan, M.; Çoban, N.; Gözel, H. Genome Survey of Pistachio (Pistacia vera L.) by next Generation Sequencing: Development of Novel SSR Markers and Genetic Diversity in Pistacia Species. BMC Genom. 2016, 17, 998. [Google Scholar] [CrossRef] [Green Version]
- Pourian, M.A.; Bakhshi, D.; Aalami, A.; Hokmabadi, H. Assessment of Genetic Relationships among Cultivated and Wild Pistachios (Pistacia vera L.) Using Molecular Markers. J. Hortic. Res. 2019, 27, 37–46. [Google Scholar] [CrossRef] [Green Version]
- Zarei, A.; Erfani-Moghadam, J. SCoT Markers Provide Insight into the Genetic Diversity, Population Structure and Phylogenetic Relationships among Three Pistacia Species of Iran. Genet. Resour. Crop Evol. 2021, 68, 1625–1643. [Google Scholar] [CrossRef]
- Karcι, H.; Paizila, A.; Topçu, H.; Ilikçioğlu, E.; Kafkas, S. Transcriptome Sequencing and Development of Novel Genic SSR Markers from Pistacia vera L. Front. Genet. 2020, 11, 1102. [Google Scholar] [CrossRef]
- Kafkas, S. Phylogenetic Analysis of the Genus Pistacia by AFLP Markers. Plant Syst. Evol. 2006, 262, 113–124. [Google Scholar] [CrossRef]
- Shanjani, P.S.; Mardi, M.; Pazouki, L.; Hagidimitriou, M.; Avanzato, D.; Pirseyedi, S.M.; Ghaffari, M.R.; Khayam Nekoui, S.M. Analysis of the Molecular Variation between and within Cultivated and Wild Pistacia Species Using AFLPs. Tree Genet. Genomes 2009, 5, 447–458. [Google Scholar] [CrossRef]
- Aliakbarkhani, S.T.; Akbari, M.; Hassankhah, A.; Talaie, A.; Moghadam, M.F. Phenotypic and Genotypic Variation in Iranian Pistachios. J. Genet. Eng. Biotechnol. 2015, 13, 235–241. [Google Scholar] [CrossRef] [Green Version]
- Al-Saghir, M.G. Phylogenetic Analysis of the Genus Pistacia L. (Anacardiaceae) Based on Morphological Data. Asian J. Plant Sci. 2010, 9, 28–35. [Google Scholar] [CrossRef]
- Kafkas, S.; Perl-Treves, R. Inter-Specific Relationships in the Genus Pistacia L. (Anacardiaceae) Based on RAPD Fingerprint. J. Hortic. Sci. Biotechnol. 2002, 37, 168–171. [Google Scholar]
- Yi, T.; Wen, J.; Golan-goldhirsh, A.; Parfitt, D.E. Phylogenetics and Reticulate Evolution in Pistacia (Anacardiaceae). Am. J. Bot. 2008, 95, 241–251. [Google Scholar] [CrossRef]
- Pazouki, L.; Mardi, M.; Shanjani, P.S.; Hagidimitriou, M.; Pirseyedi, S.M.; Naghavi, M.R.; Avanzato, D.; Vendramin, E.; Kafkas, S.; Ghareyazie, B.; et al. Genetic Diversity and Relationships among Pistacia Species and Cultivars. Conserv. Genet. 2010, 11, 311–318. [Google Scholar] [CrossRef]
- Xie, L.; Yang, Z.; Wen, J.; Li, D.; Yi, T. Biogeographic History of Pistacia (Anacardiaceae), Emphasizing the Evolution of the Madrean-Tethyan and the Eastern Asian-Tethyan Disjunctions. Mol. Phylogenet. Evol. 2014, 77, 136–146. [Google Scholar] [CrossRef]
- Loros, J.B. Phylogenetic Niche Conservatism, Phylogenetic Signal and the Relationship between Phylogenetic Relatedness and Ecological Similarity among Species. Ecol. Lett. 2008, 11, 995–1003. [Google Scholar] [CrossRef]
- Wiens, J.J.; Ackerly, D.D.; Allen, A.P.; Anacker, B.L.; Buckley, L.B.; Cornell, H.V.; Damschen, E.I.; Jonathan Davies, T.; Grytnes, J.-A.; Harrison, S.P.; et al. Niche Conservatism as an Emerging Principle in Ecology and Conservation Biology. Ecol. Lett. 2010, 13, 1310–1324. [Google Scholar] [CrossRef]
- Gupta, P.K.; Balyan, H.S.; Sharma, P.C.; Ramesh, B. Microsatellites in Plants: A New Class of Molecular Markers. Curr. Sci. 1996, 70, 45–54. [Google Scholar]
- Upadhyay, A.; Kadam, U.S.; Chacko, P.; Karibasappa, G.S. Microsatellite and RAPD Analysis of Grape (Vitis spp.) Accessions and Identification of Duplicates/Misnomers in Germplasm Collection. Indian J. Hortic. 2010, 67, 8–15. [Google Scholar]
- Upadhyay, A.; Kadam, U.S.; Chacko, P.M.; Aher, L.; Karibasappa, G.S. Microsatellite Analysis to Differentiate Clones of Thompson Seedless Grapevine. Indian J. Hortic. 2010, 67, 260–263. [Google Scholar]
- Kafkas, S. SSR Markers in the Genus Pistacia. In Sustainable Crop Production; IntechOpen: London, UK, 2020. [Google Scholar]
- Topçu, H.; Çoban, N.; Kafkas, S. Novel Microsatellite Markers in Pistacia vera L. and Their Transferability across the Genus Pistacia. Sci. Hortic. 2016, 198, 91–97. [Google Scholar] [CrossRef]
- Fischer, M.C.; Rellstab, C.; Leuzinger, M.; Roumet, M.; Gugerli, F.; Shimizu, K.K.; Holderegger, R.; Widmer, A. Estimating Genomic Diversity and Population Differentiation—An Empirical Comparison of Microsatellite and SNP Variation in Arabidopsis Halleri. BMC Genom. 2017, 18, 69. [Google Scholar] [CrossRef] [Green Version]
- Tsykun, T.; Rellstab, C.; Dutech, C.; Sipos, G.; Prospero, S. Comparative Assessment of SSR and SNP Markers for Inferring the Population Genetic Structure of the Common Fungus Armillaria cepistipes. Heredity 2017, 119, 371–380. [Google Scholar] [CrossRef] [Green Version]
- Zimmerman, S.J.; Aldridge, C.L.; Oyler-McCance, S.J. An Empirical Comparison of Population Genetic Analyses Using Microsatellite and SNP Data for a Species of Conservation Concern. BMC Genom. 2020, 21, 382. [Google Scholar] [CrossRef]
- Parfitt, D.; Kafkas, S.; Batlle, I.; Vargas, F.; Kallsen, C. Pistachio. In Fruit Breeding. Handbook of Plant Breeding; Badenes, M., Byrne, D., Eds.; Springer: Boston, MA, USA, 2012; Volume 8, pp. 803–826. ISBN 9781441907622. [Google Scholar]
- Couceiro, J.F.; Guerrero, J.; Gijón, M.C.; Moriana, A.; Pérez, D.; Rodríguez de Francisco, M. El Cultivo Del Pistacho; Mundi-Pren.: Madrid, Spain, 2013. [Google Scholar]
- Hormaza, J.I.; Wünsch, A. Pistachio. Genome Mapping and Molecular Breeding in Plants. In Fruits and Nuts; Kole, C., Ed.; Springer: Berlin/Heidelberg, Germany, 2007; Volume 4, pp. 243–251. [Google Scholar]
- Hadj-Hassan, A. Characters of Most Important Syrian Pistachio Female Varieties Widely Cultivated in Aleppo; ACSAD: Damascus, Syria, 1988. [Google Scholar]
- Kaska, N.; Caglar, S.; Kafkas, S. Genetic Diversity and Germplasmconservation of Pistacia Species in Turkey. In Proceedings of the Taxonomy, Distribution, Conservation and Uses of Pistacia Genetic Resources, Palermo, Italy, 29–30 June 1995; Report of a Workshop. Padulosi, S., Caruso, T., Barone, E., Eds.; International Plant Genetic Resources Institute: Rome, Italy, 1996; pp. 46–51. [Google Scholar]
- Alakaşli, R.; Aydin, M.H. Root Rot and Wilt Pathogen in Pistachio (Pistacia vera L.): Fusarium spp. In Integrated Alternative Farming Models; Kokten, K., Ozdemir, S., Eds.; Iksad Publications: Ankara, Turkey, 2022; pp. 37–48. [Google Scholar]
- Gusella, G.; Vitale, A.; Polizzi, G. Potential Role of Biocontrol Agents for Sustainable Management of Fungal Pathogens Causing Canker and Fruit Rot of Pistachio in Italy. Pathogens 2022, 11, 829. [Google Scholar] [CrossRef]
- Sheikhi, A.; Arab, M.M.; Brown, P.J.; Ferguson, L.; Akbari, M. Pistachio (Pistacia Spp.) Breeding. In Advances in Plant Breeding Strategies: Nut and Beverage Crops; Springer International Publishing: Cham, Switzerland, 2019; pp. 353–400. [Google Scholar]
- Esmail-pour, A. Distribution, Use and Conservation of Pistachio in Iran. In Pistacia: Towards a Comperhensive Documentation and Use of Pistacia Genetic Diversity in Central and West Asia, North Africa and Europe, Proceedings of the Project on Underutilized Mediterranean Species, Irbid, Jordan, 14–17 December 1998; Report of the IPGRI Workshop; Padulosi, S., Hadj-Hassan, A., Eds.; IPGRI: Maccarese, Italy, 2001; pp. 16–26. [Google Scholar]
- Kallsen, C.E.; Parfitt, D.E. New Pistachio Varieties Show Promise for California Cultivation. Calif. Agric. 2009, 63, 19–23. [Google Scholar] [CrossRef]
- Ak, B.E.; Açar, I. Pistachio Production and Cultivated Varieties Grown in Turkey. In Pistacia: Towards a Comperhensive Documentation and Use of Pistacia Genetic Diversity in Central and West Asia, North Africa and Europe, Proceedings of the Project on Underutilized Mediterranean Species, Irbid, Jordan, 14–17 December 1998; Report of the IPGRI Workshop; Padulosi, S., Hadj-Hassan, A., Eds.; IPGRI: Maccarese, Italy, 2001; pp. 27–35. [Google Scholar]
- Ak, B.E.; Acar, I.; Sakar, E.; Gursoz, S. The Importance of Pistacia Species for Pistachio Production in Turkey. Acta Hortic. 2016, 1139, 183–188. [Google Scholar] [CrossRef]
- Hadj-Hassan, A. Cultivated Syrian Pistachio Varieties. In Pistacia: Towards a Comperhensive Documentation and Use of Pistacia Genetic Diversity in Central and West Asia, North Africa and Europe, Proceedings of the Project on Underutilized Mediterranean Species, Irbid, Jordan, 14–17 December 1998; Report of the IPGRI Workshop; Padulosi, S., Hadj-Hassan, A., Eds.; IPGRI: Maccarese, Italy, 2001; pp. 1–12. [Google Scholar]
- Tajabadi Pour, A.; Sepaskhah, A.R.; Maftoun, M. Plant Water Relations and Seedling Growth of Three Pistachio Cultivars as Influenced by Irrigation Frequency and Applied Potassium. J. Plant Nutr. 2005, 28, 1413–1425. [Google Scholar] [CrossRef]
- Karimi, S.; Rahemi, M. Growth and Chemical Composition of Pistachio Seedling Rootstock in Response to Exogenous Polyamines under Salinity Stress. Int. J. Nuts Relat. Sci. 2012, 3, 21–29. [Google Scholar]
- Iyer, C.P.A.; Degani, C. Classical Breeding and Genetics. In The Mango: Botany, Production and Uses; Litz, R.E., Ed.; CAB International: Wallingford, UK, 1998; pp. 49–98. [Google Scholar]
- Marín, J.A.; García, E.; Lorente, P.; Andreu, P.; Arbeloa, A. A Novel Approach for Propagation of Recalcitrant Pistachio Cultivars That Sidesteps Rooting by Ex vitro Grafting of Tissue Cultured Shoot Tips. Plant Cell Tissue Organ Cult. 2016, 124, 191–200. [Google Scholar] [CrossRef] [Green Version]
- Michailides, T.J.; Ogawa, J.M.; MacDonald, J.D.; Ferguson, L. Symptoms of Fungal Diseases of Pistachios in California; California Pistachio Industry; Grower’s Leaflet: Los Angeles, CA, USA, 1988; Volume 3. [Google Scholar]
- Atli, H.S.; Arpaci, S.; Kaşka, N.; Ayanoglu, H. Wild Pistacia Species in Turkey. In Pistacia: Towards a Comperhensive Documentation and use of Pistacia Genetic Diversity in Central and West Asia, North Africa and Europe, Proceedings of the Project on Underutilized Mediterranean Species, Irbid, Jordan, 14–17 December 1998; Report of the IPGRI Workshop; Padulosi, S., Hadj-Hassan, A., Eds.; IPGRI: Maccarese, Italy, 2001; pp. 35–40. [Google Scholar]
- Ak, B.E.; Karadag, S.; Sakar, E. Pistachio Production and Industry in Turkey: Current Status and Future Perspective. In Options Méditerranéennes: Series A: Mediterranean Seminars; n. 119; Kodad, O., Lopez-Francos, A., Rovira, M., Socias i Company, R., Eds.; CIHEAM: Zargoza, Spain, 2016; Volume 329, pp. 323–329. [Google Scholar]
- Morgan, D.; Epstein, L. Verticillium Wilt Resistance in Pistachio Rootstock Cultivars: Assays and an Assessment of Two Interspecific Hybrids. Plant Dis. 1992, 76, 310–313. [Google Scholar] [CrossRef]
- Sheibani, A. Pistachio Production in Iran. Acta Hortic. 1995, 419, 165–174. [Google Scholar] [CrossRef]
- Karimi, S.; Rahemi, M.; Maftoun, M.; Tavallali, E.; Tavallali, V. Effects of Long-Term Salinity on Growth and Performance of Two Pistachio (Pistacia L.) Rootstocks. Aust. J. Basic Appl. Sci. 2009, 3, 1630–1639. [Google Scholar]
- Ferguson, L.; Sanden, B.; Grattan, S.; Epstein, L.; Krueger, B. Pistachio Rootstocks. In Pistachio Production Manual; Ferguson, L., Ed.; University of California: Davis, CA, USA, 2005; pp. 67–73. [Google Scholar]
- Vargas, F.J.; Romero, M.A.; Clavé, J. Nursery Behavour of Pistachio Rootstocks. Acta Hortic. 1998, 470, 231–236. [Google Scholar] [CrossRef]
- Ayfer, M. Pistachio Nut Culture and Its Problems with Special Reference to Turkey. Univ. Ank. Fac. Agr. Yearb. 1964, 189–217. [Google Scholar]
- Hormaza, J.I.; Wünsch, A. Pistacia. In Wild Crop Relatives: Genomic and Breeding Resources; Springer: Berlin/Heidelberg, Germany, 2011; pp. 119–128. [Google Scholar]
- IUCN. The IUCN Red List of Threatened Species. Version 2022-1. 2022. Available online: https://www.iucnredlist.org (accessed on 18 December 2020).
- Akdemir, H.; Onay, A. Biotechnological Approaches for Conservation of the Genus Pistacia. In Biodiversity and Conservation of Woody Plants. Sustainable Development and Biodiversity; Springer: Cham, Switzerland, 2017; pp. 221–244. [Google Scholar]
- Tilkat, E.; Işıkalan, Ç.; Onay, A. In vitro Propagation of Khinjuk Pistachio (Pistacia khinjuk Stocks) through Seedling Apical Shoot Tip Culture. Propag. Ornam. Plants 2005, 5, 124–128. [Google Scholar]
- Mohammed, A.A. Budding of Current Season Seedlings of Pistacia vera L. during Different Times in Late Summer. Turkish J. Agric.-Food Sci. Technol. 2022, 10, 191–193. [Google Scholar] [CrossRef]
- Ouni, S.; Noguera-Artiaga, L.; Carbonell-Barrachina, A.; Ouerghui, I.; Jendoubi, F.; Rhouma, A.; Chelli-Chaabouni, A. Cultivar and Rootstock Effects on Growth, Yield and Nut Quality of Pistachio under Semi-Arid Conditions of South Mediterranean. Horticulturae 2022, 8, 606. [Google Scholar] [CrossRef]
- Pijut, P.M.; Beasley, R.R.; Lawson, S.S.; Palla, K.J.; Stevens, M.E.; Wang, Y. In vitro Propagation of Tropical Hardwood Tree Species—A Review (2001–2011). Propag. Ornam. Plants 2012, 12, 25–51. [Google Scholar]
- Ray, S.S.; Ali, M.N. Factors Affecting Macropropagation of Bamboo with Special Reference to Culm Cuttings: A Review Update. N. Z. J. For. Sci. 2017, 47, 17. [Google Scholar] [CrossRef]
- Dunn, D.E.; Cole, J.C.; Smith, M.W. Position of Cut, Bud Retention and Auxins Influence Rooting of Pistacia chinensis. Sci. Hortic. 1996, 67, 105–110. [Google Scholar] [CrossRef]
- Al Barazi, Z.; Schwabe, W.W. Rooting Softwood Cuttings of Adult Pistacia vera. J. Hortic. Sci. 1982, 57, 247–252. [Google Scholar] [CrossRef]
- Mascarello, C.; Fascella, G.; Zizzo, G.V.; Mantovani, E.; Ruffoni, B. In vivo and In vitro Propagation of Pistacia lentiscus L. Acta Hortic. 2007, 764, 299–306. [Google Scholar] [CrossRef]
- Joley, L.E. Experiences with Propagation of the Genus Pistacia. Proc. Int. Plant Propag. Soc. 1960, 10, 287–292. [Google Scholar]
- Joley, L.E.; Opitz, K.W. Further Experiments with Propagation of Pistacia. Proc. Int. Plant Propag. Soc. 1971, 21, 67–76. [Google Scholar]
- Assaf, R. Nouvelle Méthode de Multiplication Végétative de Rameaux Physiologiquement Adultes, de Pistachier, Noyer et Pacanier. Fruits 1977, 32, 309–319. [Google Scholar]
- Pair, J.C.; Khatamian, H. Propagation and Growing of the Chinese Pistache. Proc. Int. Plant Propag. Soc. 1982, 32, 502. [Google Scholar]
- Abousalim, A. Micropropagation and Micrografting of Pistachio (Pistacia vera and P. atlantica). Ph.D. Thesis, University of London, London, UK, 1990. [Google Scholar]
- Almehdi, A.A.; Parfitt, D.E.; Chan, H. Propagation of Pistachio Rootstock by Rooted Stem Cuttings. Sci. Hortic. 2002, 96, 359–363. [Google Scholar] [CrossRef]
- Zohary, D.; Spiegel-Roy, P. Beginnings of Fruit Growing in the Old World. Science 1975, 187, 319–327. [Google Scholar] [CrossRef]
- Harris, C.; Hong, X.; Gan, Q. Advanced Information Processing: A Neurofuzzy Approach; Jain, L.C., Ed.; Springer: Berlin/Heidelberg, Germany; Hamburg, Germany, 2002; ISBN 9783642083624. [Google Scholar]
- Mudge, K.; Janick, J.; Scofield, S.; Goldschmidt, E.E. A History of Grafting. In Horticultural Reviews; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2009; pp. 437–493. [Google Scholar]
- Pina, A.; Errea, P. A Review of New Advances in Mechanism of Graft Compatibility–Incompatibility. Sci. Hortic. 2005, 106, 1–11. [Google Scholar] [CrossRef]
- Melnyk, C.W.; Meyerowitz, E.M. Plant Grafting. Curr. Biol. 2015, 25, R183–R188. [Google Scholar] [CrossRef] [Green Version]
- Ferguson, L.; Poss, J.A.; Grattan, S.R.; Grieve, C.M.; Wang, D.; Wilson, C.; Donovan, T.J.; Chao, C.-T. Pistachio Rootstocks Influence Scion Growth and Ion Relations under Salinity and Boron Stress. J. Am. Soc. Hortic. Sci. 2002, 127, 194–199. [Google Scholar] [CrossRef] [Green Version]
- Jamshidi Goharrizi, K.; Baghizadeh, A.; Kalantar, M.; Fatehi, F. Combined Effects of Salinity and Drought on Physiological and Biochemical Characteristics of Pistachio Rootstocks. Sci. Hortic. 2020, 261, 108970. [Google Scholar] [CrossRef]
- Arpaci, S.; Aksu, O.; Tekin, H. Determination of the Best Suitable Grafting Method on Different Pistachio Rootstocks. Acta Hortic. 1998, 470, 443–446. [Google Scholar] [CrossRef]
- Onay, A. Micropropagation of Pistachio. In Micropropagation of Woody Trees and Fruits; Jain, S.M., Ishii, K., Eds.; Kluwer Academic Publishers: Amsterdam, The Netherlands, 2003; pp. 565–588. ISBN 1402011350. [Google Scholar]
- Ak, B.E.; Kandemir, M.; Sakar, E. Effect of Different Pistachio Rootstocks on Budding Methods Success and Growth of Scions. Acta Hortic. 2013, 981, 413–418. [Google Scholar] [CrossRef]
- Barghchi, M.; Alderson, P.G. Pistachio (Pistacia vera L.). In Biotechnology in Agriculture and Forestry 5, Trees II; Bajaj, Y.P.S., Ed.; Springer: Berlin/Heidelberg, Germany, 1989; pp. 68–98. ISBN 9783642648625. [Google Scholar]
- Bajaj, Y.P.S. Cryopreservation of Plant Cell, Tissue, and Organ Culture for the Conservation of Germplasm and Biodiversity. In Cryopreservation of Plant Germplasm I. Biotechnology in Agriculture and Forestry; Springer: Berlin/Heidelberg, Germany, 1995; pp. 3–28. [Google Scholar]
- Engelmann, F. Plant Cryopreservation: Progress and Prospects. Vitr. Cell. Dev. Biol.-Plant 2004, 40, 427–433. [Google Scholar] [CrossRef]
- Benelli, C. Plant Cryopreservation: A Look at the Present and the Future. Plants 2021, 10, 2744. [Google Scholar] [CrossRef]
- Sharrock, S. Plant Conservation Report 2020: A Review of Progress in Implementation of the Global Strategy for Plant Conservation 2011–2020; Secretariat of the Convention on Biological Diversity; Montréal, Canada and Botanic Gardens Conservation International: Richmon, BC, Canada, 2020. [Google Scholar]
- Ozden-Tokatli, Y.; Ozudogru, E.A.; Gumusel, F.; Lambardi, M. Cryopreservation of Pistacia spp. Seeds by Dehydration and One-Step Freezing. CryoLetters 2007, 28, 83–94. [Google Scholar]
- Benmahioul, B.; Daguin, F.; Kaïd-Harche, M. Cryopreservation of Pistacia vera Embryonic Axes. J. For. Sci. 2016, 61, 182–187. [Google Scholar] [CrossRef] [Green Version]
- Ozden Tokatli, Y.; Ozudogru, E.A.; Akdemir, H.; Gumusel, F.; De Carlo, A. Application of Cryopreservation for Pistachio Germplasm Conservation. Acta Hortic. 2009, 839, 245–251. [Google Scholar] [CrossRef]
- Arora, K.; Rai, M.K.; Sharma, A.K. Tissue Culture Mediated Biotechnological Interventions in Medicinal Trees: Recent Progress. Plant Cell Tissue Organ Cult. 2022, 150, 267–287. [Google Scholar] [CrossRef]
- Agrawal, A.; Singh, S.; Malhotra, E.V.; Meena, D.P.S.; Tyagi, R.K. In vitro Conservation and Cryopreservation of Clonally Propagated Horticultural Species. In Conservation and Utilization of Horticultural Genetic Resources; Springer Singapore: Singapore, 2019; pp. 529–578. [Google Scholar]
- El-Hawaz, R.F.; Adelberg, J.; Naylor-Adelberg, J.; Eisenreich, R.; Van der Meij, J. The Effect of Slow-Growth Strategy on a Production of Petunia × Hybrida Vilm. Microcuttings. Vitr. Cell. Dev. Biol. Plant 2019, 55, 433–441. [Google Scholar] [CrossRef]
- Hammond Hammond, S.D.; Viehmannova, I.; Zamecnik, J.; Panis, B.; Hlasna Cepkova, P. Efficient Slow-Growth Conservation and Assessment of Clonal Fidelity of Ullucus Tuberosus Caldas Microshoots. Plant Cell Tissue Organ Cult. 2019, 138, 559–570. [Google Scholar] [CrossRef]
- Priyanka, V.; Kumar, R.; Dhaliwal, I.; Kaushik, P. Germplasm Conservation: Instrumental in Agricultural Biodiversity—A Review. Sustainability 2021, 13, 6743. [Google Scholar] [CrossRef]
- Kamińska, M.; Kęsy, J.; Trejgell, A. Abscisic Acid in Preservation of Taraxacum Pieninicum in the Form of Synthetic Seeds in Slow Growth Conditions. Plant Cell Tissue Organ Cult. 2021, 144, 295–312. [Google Scholar] [CrossRef]
- Barghchi, M. In Vitro Storage of Plant Genetic Resources; Plant Physiology Division Biennial Report; Department of Scientific and Industrial Research: Palmerston North, New Zealand, 1986. [Google Scholar]
- Koç, İ.; Akdemir, H.; Onay, A.; Çiftçi, Y.Ö. Cold-Induced Genetic Instability in Micropropagated Pistacia lentiscus L. Plantlets. Acta Physiol. Plant. 2014, 36, 2373–2384. [Google Scholar] [CrossRef]
- Chauhan, R.; Singh, V.; Quraishi, A. In vitro Conservation through Slow-Growth Storage. In Synthetic Seeds; Springer International Publishing: Cham, Switzerland, 2019; pp. 397–416. [Google Scholar]
- Lambardi, M.; Benelli, C.; Ozudogru, E.A.; Ozden-Tokatli, Y. Synthetic Seed Technology in Ornamental Plants. In Floriculture, Ornamental and Plant Biotechnology; Teixeira da Silva, J.A., Ed.; Global Science Books: Isleworth, UK, 2006; pp. 347–354. [Google Scholar]
- Benelli, C. Encapsulation of Shoot Tips and Nodal Segments for In vitro Storage of “Kober 5BB” Grapevine Rootstock. Horticulturae 2016, 2, 10. [Google Scholar] [CrossRef] [Green Version]
- Faisal, M.; Alatar, A. Synthetic Seeds: Germplasm Regeneration, Preservation and Prospects; Springer International Publishing: Cham, Switzerland, 2019; ISBN 978-3-030-24630-3. [Google Scholar]
- Ozudogru, E.A.; Kirdok, E.; Kaya, E.; Capuana, M.; De Carlo, A.; Engelmann, F. Medium-Term Conservation of Redwood (Sequoia Sempervirens (D. Don.) Endl.) In vitro Shoot Cultures and Encapsulated Buds. Sci. Hortic. 2011, 127, 431–435. [Google Scholar] [CrossRef]
- Ravi, D.; Arand, P. Production and Applications of Artificial Seeds: A Review. Int. Res. J. Biol. Sci. 2012, 1, 74–78. [Google Scholar]
- Islam, M.; Bari, M. In vitro Regeneration Protocol for Artificial Seed Production in an Important Medicinal Plant Mentha arvensis L. J. Bio-Sci. 2014, 20, 99–108. [Google Scholar] [CrossRef] [Green Version]
- Ara, H.; Jaiswal, U.; Jaiswal, V.S. Synthetic Seed: Prospects and Limitations. Curr. Sci. 2000, 78, 1438–1444. [Google Scholar]
- Onay, A.; Jeffree, C.E.; Yeoman, M.M. Plant Regeneration from Encapsulated Embryoids and an Embryogenic Mass of Pistachio, Pistacia vera L. Plant Cell Rep. 1996, 15, 723–726. [Google Scholar] [CrossRef]
- Piotto, B.; Di Noi, A. Seed Propagation of Mediterranean Trees and Shrubs. In Propagation of Mediterranean Trees and Shrubs from Seed–APAT; ANPA Handbook: Rome, Italy, 2003; pp. 61–82. [Google Scholar]
- Onay, A. In vitro Organogenesis and Embryogenesis of Pistachio, Pistacia vera L. Ph.D. Thesis, University of Edinburgh, Edinburgh, UK, 1996. [Google Scholar]
- Ghadirzadeh-Khorzoghi, E.; Jahanbakhshian-Davaran, Z.; Seyedi, S.M. Direct Somatic Embryogenesis of Drought Resistance Pistachio (Pistacia vera L.) and Expression Analysis of Somatic Embryogenesis-Related Genes. S. Afr. J. Bot. 2019, 121, 558–567. [Google Scholar] [CrossRef]
- Abousalim, A.; Mantell, S.H. Micrografting of Pistachio (Pistacia vera L. Cv. Mateur). Plant Cell Tissue Organ Cult. 1992, 29, 231–234. [Google Scholar] [CrossRef]
- Onay, A.; Pirinc, V.; Yildirim, H.; Basaran, D. In vitro Micrografting of Mature Pistachio (Pistacia vera Var. Siirt). Plant Cell Tissue Organ Cult. 2004, 77, 215–219. [Google Scholar] [CrossRef]
- Abousalim, A.; Mantell, S.H. Micrografting of Pistachio (Pistacia vera L. cv. Siirt). In Protocols for Micropropagation of Woody Trees and Fruits; Springer: Dordrecht, The Netherlands, 2007; pp. 289–298. [Google Scholar] [CrossRef]
- García-Pérez, P.; Lozano-Milo, E.; Landin, M.; Gallego, P.P. Machine Learning Unmasked Nutritional Imbalances on the Medicinal Plant Bryophyllum sp. Cultured In vitro. Front. Plant Sci. 2020, 11, 576177. [Google Scholar] [CrossRef]
- George, E.F.; Hall, M.A.; De Klerk, G.-J. Plant Growth Regulators II: Cytokinins, Their Analogues and Antagonists. In Plant Propagation by Tissue Culture; Springer: Berlin/Heidelberg, Germany, 2008; pp. 205–226. ISBN 1402050046. [Google Scholar]
- Hameg, R.; Arteta, T.A.; Landin, M.; Gallego, P.P.; Barreal, M.E. Modeling and Optimizing Culture Medium Mineral Composition for In vitro Propagation of Actinidia Arguta. Front. Plant Sci. 2020, 11, 554905. [Google Scholar] [CrossRef]
- García-Pérez, P.; Lozano-Milo, E.; Landín, M.; Gallego, P.P. Machine Learning Technology Reveals the Concealed Interactions of Phytohormones on Medicinal Plant In vitro Organogenesis. Biomolecules 2020, 10, 746. [Google Scholar] [CrossRef] [PubMed]
- Arteta, T.A.; Hameg, R.; Landin, M.; Gallego, P.P.; Barreal, M.E. Artificial Neural Networks Elucidated the Essential Role of Mineral Nutrients versus Vitamins and Plant Growth Regulators in Achieving Healthy Micropropagated Plants. Plants 2022, 11, 1284. [Google Scholar] [CrossRef]
- Lozano-Milo, E.; Landin, M.; Gallego, P.P.; García-Pérez, P. Machine Learning Deciphers Genotype and Ammonium as Key Factors for the Micropropagation of Bryophyllum sp. Medicinal Plants. Horticulturae 2022, 8, 987. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Bustamante-Garcia, M.A. Micropropagation and Rejuvenation of Pistacia Species and the Mechanism by Which Light Influences Root Initiation. Ph.D. Thesis, University of California, Davis, CA, USA, 1984. [Google Scholar]
- Yücel, S.; Onay, A.; Çolak, G.; Basaran, D. The Research of Obtaining from Pistacia vera L. Apical Bud and Nodal Bud by Micropropagation. Acta Hortic. 1991, 289, 167–170. [Google Scholar] [CrossRef]
- Chan, H.M.; Almehdi, A.A.; Parfitt, D.E. Isolation of Protoplasts from Pistachio (Pistacia vera L.) for the Production of Somatic Embryos. In Proceedings of the XXVIth International Horticultural Congress Program and Abstracts, Toronto, ON, Canada, 11–17 August 2002; p. 84. [Google Scholar]
- Benmahioul, B.; Kaid-Harche, M.; Dorion, N.; Daguin, F. In vitro Embryo Germination and Proliferation of Pistachio (Pistacia vera L.). Sci. Hortic. 2009, 122, 479–483. [Google Scholar] [CrossRef]
- Benmahioul, B.; Dorion, N.; Kaid-Harche, M.; Daguin, F. Micropropagation and Ex vitro Rooting of Pistachio (Pistacia vera L.). Plant Cell Tissue Organ Cult. 2012, 108, 353–358. [Google Scholar] [CrossRef]
- Akdemir, H.; Süzerer, V.; Onay, A.; Tilkat, E.; Ersali, Y.; Çiftçi, Y.O. Micropropagation of the Pistachio and Its Rootstocks by Temporary Immersion System. Plant Cell Tissue Organ Cult. 2014, 117, 65–76. [Google Scholar] [CrossRef]
- Barghchi, M.; Alderson, P.G. In vitro Propagation of Pistacia vera L. and the Commercial Cultivars Ohadi and Kalleghochi. J. Hortic. Sci. 1985, 60, 423–430. [Google Scholar] [CrossRef]
- Kılınç, F.M.; Süzerer, V.; Çiftçi, Y.Ö.; Onay, A.; Yıldırım, H.; Uncuoğlu, A.A.; Tilkat, E.; Koç, İ.; Akdemir, Ö.F.; Metin, Ö.K. Clonal Micropropagation of Pistacia lentiscus L. and Assessment of Genetic Stability Using IRAP Markers. Plant Growth Regul. 2015, 75, 75–88. [Google Scholar] [CrossRef]
- Driver, J.A.; Kuniyuki, A.H. In vitro Propagation of Paradox Walnut Rootstock. HortScience 1984, 19, 507–509. [Google Scholar] [CrossRef]
- Lloyd, G.; McCown, B. Commericially-Feasible Micropropagation of Montain Lauerl, Kalmia Latifolia, by Use of Shoot-Tip Culture. Proc. Int. Plant Propagators Soc. 1980, 30, 421–427. [Google Scholar]
- González, A.; Frutos, D. In vitro Culture of Pistacia vera L. Embryos and Aged Trees Explants. In Plant Aging; Rodriguez, R., Sanchez Tames, R., Durzan, D.J., Eds.; Springer: Boston, MA, USA, 1990; pp. 335–338. ISBN 9781468457629. [Google Scholar]
- Abousalim, A.; Mantell, S.H. A Practical Method for Alleviating Shoot-Tip Necrosis Symtoms in In vitro Shoot Cultures of Pistacia vera cv. Mateur. J. Hortic. Sci. 1994, 69, 357–365. [Google Scholar] [CrossRef]
- Dolcet-Sanjuan, R.; Claveria, E. Improved Shoot-Tip Micropropagation of Pistacia vera L. and the Beneficial Effects of Methyl Jasmonate. J. Am. Soc. Hortic. Sci. 1995, 120, 938–942. [Google Scholar] [CrossRef]
- Barghchi, M.; Alderson, P.G. The Control of Shoot Tip Necrosis in Pistacia vera L. In Vitro. Plant Growth Regul. 1996, 20, 31–35. [Google Scholar] [CrossRef]
- Barghchi, M.; Alderson, P.G. In vitro Propagation of Pistacia Species. Acta Hortic. 1983, 131, 49–60. [Google Scholar] [CrossRef]
- Yang, Z.; Lüdders, P. In vitro Propagation of Pistachio (Pistacia vera L.). Gartenbauwissenschaft 1993, 59, 30–34. [Google Scholar]
- Mederos-Molina, S.; Trujillo, M.I. Elimination of Browning Exudate and In vitro Development of Shoots in Pistacia vera L. cv. Mateur and Pistacia atlantica Desf. Culture. Acta Soc. Bot. Pol. 1999, 68, 21–24. [Google Scholar]
- Onay, A. Micropropagation of Pistachio from Mature Trees. Plant Cell Tissue Organ Cult. 2000, 60, 159–163. [Google Scholar] [CrossRef]
- Akdemir, H.; Yıldırım, H.; Tilkat, E.; Onay, A.; Özden Çiftçi, Y. Prevention of Shoot Tip Necrosis Responses in In vitro-Proliferated Mature Pistachio Plantlets. In Proceedings of the Vitro Biology Meeting of the SIVB, Seattle, WA, USA, 27 July 2012; p. P-2003. [Google Scholar]
- Parfitt, D.E.; Almehdi, A.A. Use of High CO2 Atmosphere and Medium Modifications for the Successful Micropropagation of Pistachio. Sci. Hortic. 1994, 56, 321–329. [Google Scholar] [CrossRef]
- Nezami-Alanagh, E.; Garoosi, G.-A.; Landín, M.; Gallego, P.P. Combining DOE with Neurofuzzy Logic for Healthy Mineral Nutrition of Pistachio Rootstocks In vitro Culture. Front. Plant Sci. 2018, 9, 1474. [Google Scholar] [CrossRef]
- Nezami-Alanagh, E.; Garoosi, G.-A.; Landín, M.; Gallego, P.P. Computer-Based Tools Provide New Insight into the Key Factors That Cause Physiological Disorders of Pistachio Rootstocks Cultured In vitro. Sci. Rep. 2019, 9, 9740. [Google Scholar] [CrossRef] [PubMed]
- Ozden-Tokatli, Y.; Ozudogru, E.A.; Akcin, A. In vitro Response of Pistachio Nodal Explants to Silver Nitrate. Sci. Hortic. 2005, 106, 415–426. [Google Scholar] [CrossRef]
- Nezami-Alanagh, E.; Garoosi, G.-A.; Maleki, S.; Landín, M.; Gallego, P.P. Predicting Optimal In vitro Culture Medium for Pistacia vera Micropropagation Using Neural Networks Models. Plant Cell Tissue Organ Cult. 2017, 129, 19–33. [Google Scholar] [CrossRef]
- Gamborg, O.L.; Miller, R.A.; Ojima, K. Nutrient Requirements of Suspension Cultures of Soybean Root Cells. Exp. Cell Res. 1968, 50, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Haberlandt, G. Kulturversuche Mit Isolierten Pflanzenzellen. Akad. Wiss. Wien. Math.-Naturwis. Kl. Abt. J. 1902, 111, 69–92. [Google Scholar]
- Laimer, M.; Rücker, W. Plant Tissue Culture; Springer: Vienna, Austria, 2003; ISBN 978-3-211-83839-6. [Google Scholar]
- Benmahioul, B. Factors Affecting In vitro Micropropagation of Pistachio (Pistacia vera L.). Agric. J. 2017, 1, 56–61. [Google Scholar] [CrossRef]
- Niedz, R.P.; Evens, T.J. Design of Experiments (DOE)—History, Concepts, and Relevance to In vitro Culture. Vitr. Cell. Dev. Biol.-Plant 2016, 52, 547–562. [Google Scholar] [CrossRef]
- Gallego, P.P.; Gago, J.; Landin, M. Artificial Neural Networks Technology to Model and Predict Plant Biology Process. In Artificial Neural Networks—Methodological Advances and Biomedical Applications; InTech: Rijeka, Croatia, 2011; pp. 197–216. [Google Scholar]
- Langley, P. The Changing Science of Machine Learning. Mach. Learn. 2011, 82, 275–279. [Google Scholar] [CrossRef] [Green Version]
- Joshi, A. V Machine Learning and Artificial Intelligence; Springer International Publishing: Cham, Switzerland, 2020; ISBN 978-3-030-26621-9. [Google Scholar]
- Niazian, M.; Niedbała, G. Machine Learning for Plant Breeding and Biotechnology. Agriculture 2020, 10, 436. [Google Scholar] [CrossRef]
- Hesami, M.; Jones, A.M.P. Application of Artificial Intelligence Models and Optimization Algorithms in Plant Cell and Tissue Culture. Appl. Microbiol. Biotechnol. 2020, 104, 9449–9485. [Google Scholar] [CrossRef] [PubMed]
- Landin, M.; Rowe, R.C.; York, P. Advantages of Neurofuzzy Logic against Conventional Experimental Design and Statistical Analysis in Studying and Developing Direct Compression Formulations. Eur. J. Pharm. Sci. 2009, 38, 325–331. [Google Scholar] [CrossRef]
- Gago, J.; Martínez-Núñez, L.; Landín, M.; Gallego, P.P. Artificial Neural Networks as an Alternative to the Traditional Statistical Methodology in Plant Research. J. Plant Physiol. 2010, 167, 23–27. [Google Scholar] [CrossRef] [PubMed]
- Nezami-Alanagh, E.; Garoosi, G.-A.; Haddad, R.; Maleki, S.; Landin, M.; Gallego, P.P. Design of Tissue Culture Media for Efficient Prunus Rootstock Micropropagation Using Artificial Intelligence Models. Plant Cell Tissue Organ. Cult. 2014, 117, 349–359. [Google Scholar] [CrossRef]
- Gago, J.; Landín, M.; Gallego, P.P. Artificial Neural Networks Modeling the In vitro Rhizogenesis and Acclimatization of Vitis vinifera L. J. Plant Physiol. 2010, 167, 1226–1231. [Google Scholar] [CrossRef]
- Ayuso, M.; Ramil-Rego, P.; Landin, M.; Gallego, P.P.; Barreal, M.E. Computer-Assisted Recovery of Threatened Plants: Keys for Breaking Seed Dormancy of Eryngium viviparum. Front. Plant Sci. 2017, 8, 2092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maleki, S.; Maleki Zanjani, B.; Kohnehrouz, B.B.; Landin, M.; Gallego, P.P. Computer-Based Tools Unmask Critical Mineral Nutrient Interactions in Hoagland Solution for Healthy Kiwiberry Plant Acclimatization. Front. Plant Sci. 2021, 12, 723992. [Google Scholar] [CrossRef] [PubMed]
- . García-Pérez, P.; Lozano-Milo, E.; Landín, M.; Gallego, P.P. Combining Medicinal Plant In vitro Culture with Machine Learning Technologies for Maximizing the Production of Phenolic Compounds. Antioxidants 2020, 9, 210. [Google Scholar] [CrossRef]
Pistacia sp. | Type | Size | Petiole | Rachis | Leaflets |
---|---|---|---|---|---|
Pistacia Section | |||||
P. atlantica | D, M and I | L | F- | NW | (5-)-7–11, L and O |
P. chinensis subsp. chinensis | D, M and P | L | A or F | None | 8–14, becoming G and L |
P. chinensis subsp. falcate | D, M and I | L | F | None | 11–15, G and L |
P. chinensis subsp. integerrima | D, M and P | L | A or F | None | 6-(9)-10, G and L |
P. eurycarpa | D, M and I | L | F | NW | (1–3-)-5–7, margin G and L |
P. khinjuk | D, M and I | L | A or R | None | 1–9, A and G |
P. terebinthus | C, D, I and P | L | R | None | (3-)6–11, G and M |
P. vera | C, D, and I | L | F | None | 3–5, M or O |
Lentiscella Section | |||||
P. lentiscus subsp. lentiscus | sub C and P | S | F | NW | 4–10-(-12), G and M |
P. lentiscus subsp. emarginata | C and P | S | F | W | 6–16, E and G |
P. Mexicana | M and I | S | F | NW | 10–30, G and M |
P. weinmannifolia | M and P | S | F | NW | (4–6)12–20, M |
Inter-specific hybrid | |||||
P. × saportae | C and I | L | - | NW | 7–9, G and M |
Pistacia Species | Seed Germination | Growth | Mineral Absorption | Scion Compatibility | Cold Tolerance | Disease Resistance | Nematodes Resistance | Reference |
---|---|---|---|---|---|---|---|---|
P. atlantica | ++ | +++ | ++ | ++ | + | + | [46,90,98,101,113] | |
P. atlantica sub. mutica | + | +++ | + | +++ | [46,98] | |||
P. chinesis subsp. integerrima | +++ | +++ | + | + | +++ | [90,101,113] | ||
P. khinjuk | +++ | +++ | +++ | + | [46,98,108,111] | |||
P. terebinthus subsp. palaestina | ++ | + | [46,98,114] | |||||
P. terebinthus | + | +++ | +++ | +++ | + | [90,101,113,115] | ||
UCB1 (♀ P. atlantica × ♂ P. integerrima) | +++ | ++ | +++ | [90,101,113] |
Species | Type of Culture | Basal Media | Problems and Disorders | Solutions Proposed | Reference |
---|---|---|---|---|---|
Cultivars | |||||
P. vera L. | Shoot tip Nodal buds | MS | BC, CB, STN | 1. Use seedling 2. Successive subculture 3. Remove auxins | [195] |
P. vera L. | Shoot tip Nodal buds | MS | BC, CB, STN, H | 1. Remove apical buds 2. Successive subculture 3. Activated charcoal or polyvinylpyrrolidone | [187] |
P. vera L. | Seedling shoots | WPM | H, VN | 1. Use MS free-vitamin 2. Use WPM | [191] |
P. vera L. | Shoot tips and nodal buds | MS | STN | 1. Increasecytokinins 2. Eliminate auxins | [196] |
P. vera cv. ‘mateur’ | Shoot tips and nodal buds | MS | STN | 1. Use of liquid culture 2. Use borone 3. Increase calcium | [192] |
P. vera cv. ‘mateur’ | Shoot tips of grafted seedling | MS | CB, STN, LY, H | 1.Successive subcultures 2. Decrease subculture period 3. Decrease BAP | [193] |
P. vera cv. ‘Antep’ | Immature kernels | MS | STN, BC, H | 1. Change BAP concentrations 2. Increase Ca2+ or BO3− | [169] |
P. vera L. | In vitro shoots | MS | STN | 1. Increase Ca2+ (24 mM) | [194] |
P. vera cv. mateur | Shoot tips and nodal buds | MS | CB | 1. Apply L-cystein 2. Activated charcoal or AgNO3 | [197] |
P. vera L. | Nodal buds | MS | BC | - | [198] |
P. vera L. | STN | 1. Increase B or Ca | [199] | ||
P. vera L. | Nodal buds | STN, CB | 1. Use of ascorbic, citric acid 2. Increase subcultures 3. Substitute BAP for Metatobolin and Kinetin | [106] | |
P. vera L. | Shoot tips Nodal buds | MS | STN, H | 1. Optimize RITA®® 2. Decrease cytokinin | [186] |
Rootstocks: | |||||
UCB1 | Shoot tips of seedlings | DKW | STN, LY, CO | 1. Use 2% CO2 2. Increase light intensity 3. Eliminate carbon 4. Increase level of BO3 and Zn(NO3)2 | [200] |
P. atlantica | Shoot tips and nodal buds | MS | CB | 1. Apply L-cystein 2. Activated charcoal or AgNO3 | [197] |
P. atlantica | Shoot tips and nodal buds | MS | CB | 1. Apply L-cystein 2. Activated charcoal or AgNO3 | [197] |
P. khinjuk | Shoot tips of seedlings | MS | BC | - | [119] |
P. khinjuk P. atlantica | Shoot tips Nodal buds | MS | STN; H | 1. Optimize RITA®® 2. Decrease cytokinins | [186] |
UCB1 | Shoot tips Nodal buds | MS | BC, STN | 1. Readjust iron salts | [201] |
UCB1 | Shoot tips Nodal buds | MS, POM | BC, STN, LY | 1. Readjust mineral nutrients and vitamins | [202] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nezami, E.; Gallego, P.P. History, Phylogeny, Biodiversity, and New Computer-Based Tools for Efficient Micropropagation and Conservation of Pistachio (Pistacia spp.) Germplasm. Plants 2023, 12, 323. https://doi.org/10.3390/plants12020323
Nezami E, Gallego PP. History, Phylogeny, Biodiversity, and New Computer-Based Tools for Efficient Micropropagation and Conservation of Pistachio (Pistacia spp.) Germplasm. Plants. 2023; 12(2):323. https://doi.org/10.3390/plants12020323
Chicago/Turabian StyleNezami, Esmaeil, and Pedro P. Gallego. 2023. "History, Phylogeny, Biodiversity, and New Computer-Based Tools for Efficient Micropropagation and Conservation of Pistachio (Pistacia spp.) Germplasm" Plants 12, no. 2: 323. https://doi.org/10.3390/plants12020323
APA StyleNezami, E., & Gallego, P. P. (2023). History, Phylogeny, Biodiversity, and New Computer-Based Tools for Efficient Micropropagation and Conservation of Pistachio (Pistacia spp.) Germplasm. Plants, 12(2), 323. https://doi.org/10.3390/plants12020323