Comparing the Effects of Lime Soil and Yellow Soil on Cadmium Accumulation in Rice during Grain-Filling and Maturation Periods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Experimental Design
2.2. Sample Collection and Preparation
2.3. Chemical Analysis and Quality Control
2.4. Measurement of Photosynthetic Parameters
2.5. Statistical Analyses
3. Results
3.1. DTPA Cd Content in the Soil during Rice Filling and Maturity
3.2. Ca and Mg Content in the Soil during Rice Filling and Maturity
3.3. Total Alkalinity Content and pH in the Soil during Rice Filling and Maturity
3.4. Cd Content in Different Parts of Rice during Rice Filling and Maturity
3.5. Total Ca and Mg Content of Rice Plants in Different Treatments at Maturity
3.6. Correlation between CRI and DTPA Cd in Soil and Cd Content in Different Parts of Rice
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, J.; Mu, G.; Zhang, Z.; Huang, X.; Fang, H. Speciation Variation and Bio-Activation of Soil Heavy Metals (Cd and Cr) in Rice-Rape Rotation Lands in Karst Regions. Int. J. Environ. Res. Public Health 2021, 18, 1364. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.-C.; Zhang, Q.-C.; Yan, C.-A.; Tang, G.-Y.; Zhang, M.-Y.; Ma, L.Q.; Gu, R.-H.; Xiang, P. Heavy metal(loid)s in agriculture soils, rice, and wheat across China: Status assessment and spatiotemporal analysis. Sci. Total Environ. 2023, 882, 163361. [Google Scholar] [CrossRef] [PubMed]
- Godt, J.; Scheidig, F.; Grosse-Siestrup, C.; Esche, V.; Brandenburg, P.; Reich, A.; Groneberg, D.A. The toxicity of cadmium and resulting hazards for human health. J. Occup. Med. Toxicol. 2006, 1, 22. [Google Scholar] [CrossRef] [PubMed]
- Aziz, R.; Rafiq, M.T.; Li, T.; Liu, D.; He, Z.; Stoffella, P.J.; Sun, K.; Yang, X. Uptake of cadmium by rice grown on contaminated soils and its bioavailability/toxicity in human cell lines (Caco-2/HL-7702). J. Agric. Food Chem. 2015, 63, 3599–3608. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Fan, C.; Xie, D.; Chen, H.; Zhang, S.; Chen, H.; Qin, S.; Fu, T.; He, T.; Gao, Z. Synergistic Effects of Water Management and Silicon Foliar Spraying on the Uptake and Transport Efficiency of Cadmium in Rice (Oryza sativa L.). Plants 2023, 12, 1414. [Google Scholar] [CrossRef] [PubMed]
- Wen, Y.; Li, W.; Yang, Z.; Zhuo, X.; Guan, D.-X.; Song, Y.; Guo, C.; Ji, J. Evaluation of various approaches to predict cadmium bioavailability to rice grown in soils with high geochemical background in the karst region, Southwestern China. Environ. Pollut. 2020, 258, 113645. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Yang, Z.; Yu, T.; Hou, Q.; Liu, X.; Wang, J.; Zhang, Q.; Wu, T. Study on safe usage of agricultural land in karst and non-karst areas based on soil Cd and prediction of Cd in rice: A case study of Heng County, Guangxi. Ecotoxicol. Environ. Saf. 2021, 208, 111505. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Teng, L.; Fu, T.; He, T.; Wu, P. Comparing the effects of calcium and magnesium ions on accumulation and translocation of cadmium in rice. Environ. Sci. Pollut. Res. 2022, 29, 41628–41639. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Cai, N.; Gong, S.; Zhou, J.; He, T.; Wang, B.; Fu, T. Establishment and Optimization of Soil Cd Risk Threshold in Typical Karst Area with Potato Production, China. Bull. Environ. Contam. Toxicol. 2023, 110, 34. [Google Scholar] [CrossRef] [PubMed]
- Kong, X.; Liu, T.; Yu, Z.; Chen, Z.; Lei, D.; Wang, Z.; Zhang, H.; Li, Q.; Zhang, S. Heavy Metal Bioaccumulation in Rice from a High Geological Background Area in Guizhou Province, China. Int. J. Environ. Res. Public Health 2018, 15, 2281. [Google Scholar] [CrossRef]
- Wan, G.; Najeeb, U.; Jilani, G.; Naeem, M.S.; Zhou, W. Calcium invigorates the cadmium-stressed Brassica napus L. plants by strengthening their photosynthetic system. Environ. Sci. Pollut. Res. 2011, 18, 1478–1486. [Google Scholar] [CrossRef] [PubMed]
- Wen, Y.; Li, W.; Yang, Z.; Zhang, Q.; Ji, J. Enrichment and source identification of Cd and other heavy metals in soils with high geochemical background in the karst region, Southwestern China. Chemosphere 2020, 245, 125620. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.-H.; Peng, M.; Guo, F.; Liu, F.; Tang, S.-Q.; Yang, Z.; Zhang, F.-G.; Zhou, Y.-L.; Yang, K.; Li, K.; et al. Factors Affecting the Translocation and Accumulation of Cadmium in a Soil-Crop System in a Typical Karst Area of Guangxi Province, China. Huanjing Kexue 2021, 42, 1514–1522. [Google Scholar] [CrossRef] [PubMed]
- Pu, J.; Yuan, D.; Xiao, Q.; Zhao, H. Hydrogeochemical characteristics in karst subterranean streams: A case history from Chongqing, China. Carbonates Evaporites 2015, 30, 307–319. [Google Scholar] [CrossRef]
- Guo, F.; Jiang, G.; Yuan, D. Major ions in typical subterranean rivers and their anthropogenic impacts in southwest karst areas, China. Environ. Earth Sci. 2007, 53, 533–541. [Google Scholar] [CrossRef]
- Ding, Y.; Luo, W.; Xu, G. Characterisation of magnesium nutrition and interaction of magnesium and potassium in rice. Ann. Appl. Biol. 2006, 149, 111–123. [Google Scholar] [CrossRef]
- Loganathan, P.; Vigneswaran, S.; Kandasamy, J.; Naidu, R. Cadmium Sorption and Desorption in Soils: A Review. Crit. Rev. Environ. Sci. Technol. 2012, 42, 489–533. [Google Scholar] [CrossRef]
- Khaliq, M.A.; James, B.; Chen, Y.H.; Saqib, H.S.A.; Li, H.H.; Jayasuriya, P.; Guo, W. Uptake, translocation, and accumulation of Cd and its interaction with mineral nutrients (Fe, Zn, Ni, Ca, Mg) in upland rice. Chemosphere 2019, 215, 916–924. [Google Scholar] [CrossRef]
- Sarwar, N.; Saifullah; Malhi, S.S.; Zia, M.H.; Naeem, A.; Bibi, S.; Farid, G. Role of mineral nutrition in minimizing cadmium accumulation by plants. J. Sci. Food Agric. 2010, 90, 925–937. [Google Scholar] [CrossRef]
- Lee, T.-M.; Lai, H.-Y.; Chen, Z.-S. Effect of chemical amendments on the concentration of cadmium and lead in long-term contaminated soils. Chemosphere 2004, 57, 1459–1471. [Google Scholar] [CrossRef]
- Luo, W.; Yang, S.; Khan, M.A.; Ma, J.; Xu, W.; Li, Y.; Xiang, Z.; Jin, G.; Jia, J.; Zhong, B.; et al. Mitigation of Cd accumulation in rice with water management and calcium-magnesium phosphate fertilizer in field environment. Environ. Geochem. Health 2020, 42, 3877–3886. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.-Y.; Zhao, F.-J.; Wang, P. The relative contributions of root uptake and remobilization to the loading of Cd and As into rice grains: Implications in simultaneously controlling grain Cd and As accumulation using a segmented water management strategy. Environ. Pollut. 2022, 293, 118497. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Huang, X.; Chen, H.; Zhang, S.; Fan, C.; Fu, T.; He, T.; Gao, Z. Effect of silicon spraying on rice photosynthesis and antioxidant defense system on cadmium accumulation. Sci. Rep. 2024, 14, 15265. [Google Scholar] [CrossRef] [PubMed]
- Gong, J.; Gao, J.; Wu, H.; Lin, L.; Yang, J.; Tang, S.; Wang, Z.; Duan, Z.; Fu, Y.; Cai, Y.; et al. Heavy metal spatial distribution, source analysis, and ecological risks in the central hilly area of Hainan Island, China: Results from a high-density soil survey. Environ. Geochem. Health 2024, 46, 210. [Google Scholar] [CrossRef] [PubMed]
- Gu, X.; Ma, T.; Wu, Y.; Wu, X. Hydrogeochemical Characteristics of Groundwater in the Karst Region, Southwest China. Procedia Earth Planet. Sci. 2017, 17, 245–248. [Google Scholar] [CrossRef]
- Geng, Y.; Pan, S.; Zhang, L.; Qiu, J.; He, K.; Gao, H.; Li, Z.; Tian, D. Phosphorus biogeochemistry regulated by carbonates in soil. Environ. Res. 2022, 214, 113894. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Zhang, C.; Yu, T.; Liu, X.; Xia, X.; Hou, Q.; Yang, Y.; Yang, Z.; Wang, L. Annual net input fluxes of cadmium in paddy soils in karst and non-karst areas of Guangxi, China. J. Geochem. Explor. 2022, 241, 107072. [Google Scholar] [CrossRef]
- Wei, X.; Bai, X.; Wen, X.; Liu, L.; Xiong, J.; Yang, C. A large and overlooked Cd source in karst areas: The migration and origin of Cd during soil formation and erosion. Sci. Total Environ. 2023, 895, 165126. [Google Scholar] [CrossRef]
- Hu, J.; Wu, F.; Wu, S.; Sun, X.; Lin, X.; Wong, M.H. Phytoavailability and phytovariety codetermine the bioaccumulation risk of heavy metal from soils, focusing on Cd-contaminated vegetable farms around the Pearl River Delta, China. Ecotoxicol. Environ. Saf. 2013, 91, 18–24. [Google Scholar] [CrossRef]
- Wang, Z.; Yi, L.; Gao, W.; Zeng, X.; Wang, Z. Impact of inorganic anions on the cadmium effective fraction in soil and its phytoavailability during salinization in alkaline soils. Sheng Tai Xue Bao 2012, 32, 7512–7518. [Google Scholar] [CrossRef]
- Kim, J.J.; Lee, S.S.; Fenter, P.; Myneni, S.C.B.; Nikitin, V.; Peters, C.A. Carbonate Coprecipitation for Cd and Zn Treatment and Evaluation of Heavy Metal Stability Under Acidic Conditions. Environ. Sci. Technol. 2023, 57, 3104–3113. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.-M.; Long, S.-S.; Li, B.-Y.; Huang, Y.-Y.; Li, Y.-J.; Yu, J.-Y.; Du, H.-H.; Khan, S.; Lei, M. Enrichment of cadmium in rice (Oryza sativa L.) grown under different exogenous pollution sources. Environ. Sci. Pollut. Res. 2020, 27, 44249–44256. [Google Scholar] [CrossRef] [PubMed]
- Farzadfar, S.; Zarinkamar, F.; Modarres-Sanavy, S.A.M.; Hojati, M. Exogenously applied calcium alleviates cadmium toxicity in Matricaria chamomilla L. plants. Environ. Sci. Pollut. Res. Int. 2013, 20, 1413–1422. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Wang, P.; Gu, Y.; Kretzschmar, R.; Kopittke, P.M.; Zhao, F.-J. The within-field spatial variation in rice grain Cd concentration is determined by soil redox status and pH during grain filling. Environ. Pollut. 2020, 261, 114151. [Google Scholar] [CrossRef] [PubMed]
- Ishfaq, M.; Wang, Y.; Yan, M.; Wang, Z.; Wu, L.; Li, C.; Li, X. Physiological Essence of Magnesium in Plants and Its Widespread Deficiency in the Farming System of China. Front. Plant Sci. 2022, 13, 802274. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Chen, X.; Ju, C.; Wang, C. Calcium signaling in plant mineral nutrition: From uptake to transport. Plant Commun. 2023, 4, 100678. [Google Scholar] [CrossRef]
- Srivastava, R.K.; Pandey, P.; Rajpoot, R.; Rani, A.; Gautam, A.; Dubey, R.S. Exogenous application of calcium and silica alleviates cadmium toxicity by suppressing oxidative damage in rice seedlings. Protoplasma 2015, 252, 959–975. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Wei, X.; Zhang, Y.; Zhan, Q.; Bocharnikova, E.; Matichenkov, V. Silicon-Calcium Synergetic Alleviation of Cadmium Toxicity in the Paddy Soil-Rice System: From Plot Experiment to Field Demonstration. Water Air Soil Pollut. 2022, 233, 357. [Google Scholar] [CrossRef]
- Shi, X.; Bao, J.; Lu, X.; Ma, L.; Zhao, Y.; Lan, S.; Cao, J.; Ma, S.; Li, S. The mechanism of Ca2+ signal transduction in plants responding to abiotic stresses. Environ. Exp. Bot. 2023, 216, 105514. [Google Scholar] [CrossRef]
- Luo, N.; Li, Y.W.; Cai, Q.Y.; Li, H.Y.; Mo, C.H.; Wong, M.H. Cadmium in rice: Transport mechanisms, influencing factors, and minimizing measures. Environ. Pollut. 2017, 224, 622–630. [Google Scholar] [CrossRef]
- Chou, T.-S.; Chao, Y.-Y.; Huang, W.-D.; Hong, C.-Y.; Kao, C.H. Effect of magnesium deficiency on antioxidant status and cadmium toxicity in rice seedlings. J. Plant Physiol. 2011, 168, 1021–1030. [Google Scholar] [CrossRef]
- Li, S.-L.; Liu, C.-Q.; Chen, J.-A.; Wang, S.-J. Karst ecosystem and environment: Characteristics, evolution processes, and sustainable development. Agric. Ecosyst. Environ. 2021, 306, 107173. [Google Scholar] [CrossRef]
- Li, K.; Chen, S.; Chen, X.; Lan, X.; Huang, K. Genetic Diversity and Differentiation of Chinese Fir around Karst Landform in Guangxi. Forests 2023, 14, 340. [Google Scholar] [CrossRef]
- Li, S.-L.; Xu, S.; Wang, T.-J.; Yue, F.-J.; Peng, T.; Zhong, J.; Wang, L.-C.; Chen, J.-A.; Wang, S.-J.; Chen, X.; et al. Effects of agricultural activities coupled with karst structures on riverine biogeochemical cycles and environmental quality in the karst region. Agric. Ecosyst. Environ. 2020, 303, 107120. [Google Scholar] [CrossRef]
- Zhao, Y.; Deng, Q.; Lin, Q.; Zeng, C.; Zhong, C. Cadmium source identification in soils and high-risk regions predicted by geographical detector method. Environ. Pollut. 2020, 263, 114338. [Google Scholar] [CrossRef]
Soil Type | Cd | pH | Total Ca | Ca2+ | Total Mg | Mg2+ | CO32− |
---|---|---|---|---|---|---|---|
(mg·kg−1) | (g·kg−1) | (g·kg−1) | (g·kg−1) | (g·kg−1) | (mg·kg−1) | ||
YS | 0.67 | 5.85 | 3.25 | 0.55 | 1.72 | 0.43 | 10.76 |
LS | 0.69 | 7.08 | 5.46 | 2.05 | 2.81 | 0.90 | 42.29 |
Soil Type | Cd Level | Filling I | Filling II | Filling III | Maturity |
---|---|---|---|---|---|
LS | LS1 | 0.144 ± 0.032 g | 0.271 ± 0.017 f | 0.288 ± 0.015 f | 0.177 ± 0.025 f |
LS2 | 0.547 ± 0.089 e | 0.585 ± 0.018 d | 0.654 ± 0.056 d | 0.542 ± 0.058 d | |
LS3 | 0.998 ± 0.013 c | 1.000 ± 0.030 c | 1.013 ± 0.072 c | 0.913 ± 0.082 c | |
LS4 | 1.754 ± 0.077 a | 1.986 ± 0.092 a | 2.053 ± 0.076 a | 1.864 ± 0.119 a | |
YS | YS1 | 0.094 ± 0.012 g | 0.108 ± 0.021 g | 0.122 ± 0.018 g | 0.077 ± 0.022 f |
YS2 | 0.405 ± 0.037 f | 0.426 ± 0.031 e | 0.473 ± 0.014 e | 0.350 ± 0.050 e | |
YS3 | 0.754 ± 0.020 d | 0.635 ± 0.025 d | 0.686 ± 0.036 d | 0.602 ± 0.052 d | |
YS4 | 1.462 ± 0.043 b | 1.372 ± 0.073 b | 1.432 ± 0.089 b | 1.351 ± 0.064 b |
Soil Type | Cd Level | Filling I | Filling II | Filling III | Maturity | ||||
---|---|---|---|---|---|---|---|---|---|
Ca | Mg | Ca | Mg | Ca | Mg | Ca | Mg | ||
LS | LS1 | 5.16 ± 0.12 a | 2.46 ± 0.13 a | 5.15 ± 0.21 a | 2.54 ± 0.20 a | 5.26 ± 0.07 a | 2.54 ± 0.29 a | 5.05 ± 0.18 a | 2.45 ± 0.15 a |
LS2 | 4.90 ± 0.25 a | 2.24 ± 0.18 a | 5.03 ± 0.33 a | 2.46 ± 0.38 a | 5.02 ± 0.23 a | 2.33 ± 0.14 a | 5.13 ± 0.12 a | 2.33 ± 0.47 ab | |
LS3 | 4.73 ± 0.16 a | 2.13 ± 0.08 a | 4.92 ± 0.11 a | 2.24 ± 0.03 a | 4.93 ± 0.22 a | 2.20 ± 0.03 a | 4.58 ± 0.07 a | 2.13 ± 0.07 a | |
LS4 | 4.63 ± 0.01 a | 1.96 ± 0.04 a | 4.62 ± 0.23 a | 1.96 ± 0.07 a | 4.63 ± 0.16 a | 1.90 ± 0.04 a | 4.24 ± 0.16 a | 1.85 ± 0.02 a | |
YS | YS1 | 2.86 ± 0.21 b | 1.53 ± 0.08 b | 2.84 ± 0.21 b | 1.57 ± 0.21 b | 3.03 ± 0.22 b | 1.74 ± 0.14 b | 2.92 ± 0.09 b | 1.73 ± 0.02 b |
YS2 | 2.60 ± 0.13 bc | 1.45 ± 0.10 bc | 2.69 ± 0.04 bc | 1.45 ± 0.18 bc | 2.30 ± 0.18 bc | 1.48 ± 0.08 bc | 2.35 ± 0.09 bc | 1.46 ± 0.37 bc | |
YS3 | 2.50 ± 0.03 c | 1.25 ± 0.11 bc | 2.51 ± 0.02 c | 1.24 ± 0.06 bc | 2.22 ± 0.52 bc | 1.20 ± 0.03 bc | 2.70 ± 0.24 bc | 1.23 ± 0.03 bc | |
YS4 | 2.04 ± 0.08 c | 1.05 ± 0.04 c | 2.06 ± 0.16 c | 1.09 ± 0.04 c | 1.99 ± 0.14 c | 1.00 ± 0.05 c | 2.09 ± 0.10 c | 0.90 ± 0.20 c |
Soil Type | Cd Level | Root | Stem | Leave | Grain | ||||
---|---|---|---|---|---|---|---|---|---|
Ca | Mg | Ca | Mg | Ca | Mg | Ca | Mg | ||
LS | LS1 | 1226 ± 141 | 2323 ± 75 | 2079 ± 160 | 2942 ± 126 | 1980 ± 21 | 1769 ± 67 | 294 ± 52 | 954 ± 153 |
LS2 | 1402 ± 96 | 2446 ± 92 | 2253 ± 62 | 3083 ± 290 | 2042 ± 21 | 2087 ± 48 | 321 ± 61 | 1051 ± 44 | |
LS3 | 1520 ± 78 | 2876 ± 181 | 2386 ± 88 | 3462 ± 208 | 2159 ± 71 | 2057 ± 45 | 287 ± 54 | 1205 ± 154 | |
LS4 | 1895 ± 225 | 3075 ± 57 | 2800 ± 105 | 3613 ± 35 | 2201 ± 172 | 2347 ± 194 | 276 ± 48 | 1155 ± 96 | |
YS | YS1 | 948 ± 118 | 1953 ± 153 | 2056 ± 72 | 2480 ± 152 | 1747 ± 37 | 1351 ± 113 | 394 ± 80 | 779 ± 140 |
YS2 | 1134 ± 174 | 2238 ± 122 | 2290 ± 54 | 2701 ± 45 | 1799 ± 123 | 1644 ± 80 | 336 ± 50 | 1015 ± 101 | |
YS3 | 1379 ± 105 | 2401 ± 102 | 2788 ± 72 | 3058 ± 125 | 1898 ± 97 | 1961 ± 5 | 327 ± 69 | 1038 ± 37 | |
YS4 | 1659 ± 125 | 2625 ± 55 | 3021 ± 235 | 3427 ± 179 | 2051 ± 72 | 2163 ± 128 | 251 ± 5 | 1091 ± 48 |
DTPA Cd | Ca2+ | Mg2+ | Total Alkalinity | pH | |
---|---|---|---|---|---|
DTPA Cd | 1 | −0.347 * | −0.335 * | −0.320 * | −0.346 * |
Ca2+ | −0.147 | 1 | 0.212 | 0.746 ** | 0.817 ** |
Mg2+ | −0.195 | 0.212 | 1 | 0.566 ** | 0.498 ** |
Total alkalinity | −0.220 | 0.746 ** | 0.566 ** | 1 | 0.966 ** |
pH | −0.246 | 0.817 ** | 0.498 ** | 0.966 ** | 1 |
Pearson Correlation Coefficient | Root | Stem | Leaf | Grain | |
---|---|---|---|---|---|
Ca2+ | Filling stage I | −0.211 | −0.332 | −0.377 | −0.240 |
Filling stage II | 0.010 | −0.243 | −0.320 | 0.000 | |
Filling stage III | −0.122 | −0.301 | −0.320 | −0.356 | |
Maturity | −0.353 | −0.596 | −0.516 | −0.779 * | |
Mg2+ | Filling stage I | −0.438 | −0.623 | −0.631 | −0.444 |
Filling stage II | −0.307 | −0.561 | −0.620 | −0.335 | |
Filling stage III | −0.599 | −0.722 * | −0.777 * | −0.769 * | |
Maturity | −0.095 | −0.341 | −0.271 | −0.495 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Teng, L.; Mao, X.; He, T.; Fu, T. Comparing the Effects of Lime Soil and Yellow Soil on Cadmium Accumulation in Rice during Grain-Filling and Maturation Periods. Plants 2024, 13, 2018. https://doi.org/10.3390/plants13152018
Wang H, Teng L, Mao X, He T, Fu T. Comparing the Effects of Lime Soil and Yellow Soil on Cadmium Accumulation in Rice during Grain-Filling and Maturation Periods. Plants. 2024; 13(15):2018. https://doi.org/10.3390/plants13152018
Chicago/Turabian StyleWang, Hu, Lang Teng, Xu Mao, Tengbing He, and Tianling Fu. 2024. "Comparing the Effects of Lime Soil and Yellow Soil on Cadmium Accumulation in Rice during Grain-Filling and Maturation Periods" Plants 13, no. 15: 2018. https://doi.org/10.3390/plants13152018
APA StyleWang, H., Teng, L., Mao, X., He, T., & Fu, T. (2024). Comparing the Effects of Lime Soil and Yellow Soil on Cadmium Accumulation in Rice during Grain-Filling and Maturation Periods. Plants, 13(15), 2018. https://doi.org/10.3390/plants13152018