Insights into Genes Encoding LEA_1 Domain-Containing Proteins in Cyperus esculentus, a Desiccation-Tolerant Tuber Plant
Abstract
:1. Introduction
2. Results
2.1. Characterization of Five LEA_1 Family Genes in Tigernut
2.2. Comparative Genomics Analyses Reveal Lineage-Specific Evolution of the LEA_1 Family in the Monocot Clade
2.3. LEA_1 Genes in Tigernut Exhibit a Tuber-Predominant Expression Pattern, in Contrast to the Seed-Preferential Expression in Arabidopsis, Rice, and Maize
2.4. LEA_1 Genes in Tigernut Were Expressed More than Their Orthologs in Purple Nutsedge
3. Discussion
3.1. Expansion of the LEA_1 Family in Tigernut Was Contributed by WGDs
3.2. LEA_1 Genes in Tigernut Underwent Apparent Expression and Function Divergence
4. Conclusions
5. Materials and Methods
5.1. Datasets and Identification of LEA_1 Family Genes
5.2. Phylogenetic and Conserved Motif Analyses
5.3. Synteny Analysis and Definition of Orthogroups
5.4. Plant Materials
5.5. Gene Expression Analysis Based on RNA-Seq
5.6. Gene Expression Analysis Based on qRT-PCR
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oliver, M.J.; Farrant, J.M.; Hilhorst, H.W.M.; Mundree, S.; Williams, B.; Bewley, J.D. Desiccation tolerance: Avoiding cellular damage during drying and rehydration. Annu. Rev. Plant Biol. 2020, 71, 435–460. [Google Scholar] [CrossRef] [PubMed]
- Matilla, A.J. The orthodox dry seeds are alive: A clear example of desiccation tolerance. Plants 2021, 11, 20. [Google Scholar] [CrossRef] [PubMed]
- Verdier, J.; Lalanne, D.; Pelletier, S.; Torres-Jerez, I.; Righetti, K.; Bandyopadhyay, K.; Leprince, O.; Chatelain, E.; Vu, B.L.; Gouzy, J.; et al. A regulatory network-based approach dissects late maturation processes related to the acquisition of desiccation tolerance and longevity of Medicago truncatula seeds. Plant Physiol. 2013, 163, 757–774. [Google Scholar] [CrossRef] [PubMed]
- Smolikova, G.; Leonova, T.; Vashurina, N.; Frolov, A.; Medvedev, S. Desiccation tolerance as the basis of long-term seed viability. Int. J. Mol. Sci. 2020, 22, 101. [Google Scholar] [CrossRef]
- Wang, X.S.; Zhu, H.B.; Jin, G.L.; Liu, H.L.; Wu, W.R.; Zhu, J. Genome-scale identification and analysis of LEA genes in rice (Oryza sativa L.). Plant Sci. 2007, 172, 414–420. [Google Scholar] [CrossRef]
- Battaglia, M.; Olvera-Carrillo, Y.; Garciarrubio, A.; Campos, F.; Covarrubias, A.A. The enigmatic LEA proteins and other hydrophilins. Plant Physiol. 2008, 148, 6–24. [Google Scholar] [CrossRef]
- Hundertmark, M.; Hincha, D.K. LEA (late embryogenesis abundant) proteins and their encoding genes in Arabidopsis thaliana. BMC Genom. 2008, 9, 118. [Google Scholar] [CrossRef]
- Mistry, J.; Chuguransky, S.; Williams, L.; Qureshi, M.; Salazar, G.A.; Sonnhammer, E.L.L.; Tosatto, S.C.E.; Paladin, L.; Raj, S.; Richardson, L.J.; et al. Pfam: The protein families database in 2021. Nucleic Acids Res. 2021, 49, D412–D419. [Google Scholar] [CrossRef]
- Dure, L. A repeating 11-mer amino acid motif and plant desiccation. Plant J. 1993, 3, 363–369. [Google Scholar] [CrossRef]
- Zou, Z.; Guo, J.Y.; Zheng, Y.J.; Xiao, Y.H.; Guo, A.P. Genomic analysis of LEA genes in Carica papaya and insight into lineage-specific family evolution in Brassicales. Life 2022, 12, 1453. [Google Scholar] [CrossRef]
- Cuevas-Velazquez, C.L.; Saab-Rincón, G.; Reyes, J.L.; Covarrubias, A.A. The unstructured N-terminal region of Arabidopsis group 4 late embryogenesis abundant (LEA) proteins is required for folding and for chaperone-like activity under water deficit. J. Biol. Chem. 2016, 291, 10893–10903. [Google Scholar] [CrossRef] [PubMed]
- Bies-Ethève, N.; Gaubier-Comella, P.; Debures, A.; Lasserre, E.; Jobet, E.; Raynal, M.; Cooke, R.; Delseny, M. Inventory, evolution and expression profiling diversity of the LEA (late embryogenesis abundant) protein gene family in Arabidopsis thaliana. Plant Mol. Biol. 2008, 67, 107–124. [Google Scholar] [CrossRef] [PubMed]
- Olvera-Carrillo, Y.; Campos, F.; Reyes, J.L.; Garciarrubio, A.; Covarrubias, A.A. Functional analysis of the group 4 late embryogenesis abundant proteins reveals their relevance in the adaptive response during water deficit in Arabidopsis. Plant Physiol. 2010, 154, 373–390. [Google Scholar] [CrossRef] [PubMed]
- Delahaie, J.; Hundertmark, M.; Bove, J.; Leprince, O.; Rogniaux, H.; Buitink, J. LEA polypeptide profiling of recalcitrant and orthodox legume seeds reveals ABI3-regulated LEA protein abundance linked to desiccation tolerance. J. Exp. Bot. 2013, 64, 4559–4573. [Google Scholar] [CrossRef] [PubMed]
- Chatelain, E.; Hundertmark, M.; Leprince, O.; Le Gall, S.; Satour, P.; Deligny-Penninck, S.; Rogniaux, H.; Buitink, J. Temporal profiling of the heat-stable proteome during late maturation of Medicago truncatula seeds identifies a restricted subset of late embryogenesis abundant proteins associated with longevity. Plant Cell Environ. 2012, 35, 1440–1455. [Google Scholar] [CrossRef]
- Vitrac, O.; Dufour, D.; Trystram, G.; Raoult-Wack, A.L. Deep-fat frying of cassava: Influence of raw material properties on chip quality. J. Sci. Food Agric. 2001, 81, 227–236. [Google Scholar] [CrossRef]
- Zou, Z.; Zhao, Y.G.; Zhang, L.; Xiao, Y.H.; Guo, A.P. Analysis of Cyperus esculentus SMP family genes reveals lineage-specific evolution and seed desiccation-like transcript accumulation during tuber maturation. Ind. Crop. Prod. 2022, 187, 115382. [Google Scholar] [CrossRef]
- Zou, Z.; Zheng, Y.J.; Chang, L.L.; Zou, L.P.; Zhang, L.; Min, Y.; Zhao, Y.G. TIP aquaporins in Cyperus esculentus: Genome-wide identification, expression profiles, subcellular localizations, and interaction patterns. BMC Plant Biol. 2024, 24, 298. [Google Scholar] [CrossRef]
- Zou, Z.; Zheng, Y.J.; Xiao, Y.H.; Liu, H.Y.; Huang, J.Q.; Zhao, Y.G. Molecular insights into PIP aquaporins in tigernut (Cyperus esculentus L.), a Cyperaceae tuber plant. Tropical Plants 2024, 3, e027. [Google Scholar] [CrossRef]
- De Castro, O.; Gargiulo, R.; Del Guacchio, E.; Caputo, P.; De Luca, P. A molecular survey concerning the origin of Cyperus esculentus (Cyperaceae, Poales): Two sides of the same coin (weed vs. crop). Ann. Bot. 2015, 115, 733–745. [Google Scholar] [CrossRef]
- Zou, Z.; Xiao, Y.H.; Zhang, L.; Zhao, Y.G. Analysis of Lhc family genes reveals development regulation and diurnal fluctuation expression patterns in Cyperus esculentus, a Cyperaceae plant. Planta 2023, 257, 59. [Google Scholar] [CrossRef] [PubMed]
- Zou, Z.; Zheng, Y.J.; Zhang, Z.T.; Xiao, Y.H.; Xie, Z.N.; Chang, L.L.; Zhang, L.; Zhao, Y.G. Molecular characterization oleosin genes in Cyperus esculentus, a Cyperaceae plant producing oil in underground tubers. Plant Cell Rep. 2023, 42, 1791–1808. [Google Scholar] [CrossRef] [PubMed]
- Zou, Z.; Fu, X.W.; Huang, J.Q.; Zhao, Y.G. Molecular characterization of CeOLE6, a diverged SH oleosin gene, preferentially expressed in Cyperus esculentus tubers. Planta 2024, in press. [Google Scholar]
- Zou, Z.; Zhao, Y.G.; Zhang, L.; Kong, H.; Guo, Y.L.; Guo, A.P. Single-molecule real-time (SMRT)-based full-length transcriptome analysis of tigernut (Cyperus esculentus L.). Chin. J. Oil Crop Sci. 2021, 43, 229–235. [Google Scholar] [CrossRef]
- Zhao, X.; Yi, L.; Ren, Y.; Li, J.; Ren, W.; Hou, Z.; Su, S.; Wang, J.; Zhang, Y.; Dong, Q.; et al. Chromosome-scale genome assembly of the yellow nutsedge (Cyperus esculentus). Genome Biol. Evol. 2023, 15, evad027. [Google Scholar] [CrossRef] [PubMed]
- Amborella Genome Project. The Amborella genome and the evolution of flowering plants. Science 2013, 342, 1241089. [Google Scholar] [CrossRef]
- Jiao, Y.; Li, J.; Tang, H.; Paterson, A.H. Integrated syntenic and phylogenomic analyses reveal an ancient genome duplication in monocots. Plant Cell 2014, 26, 2792–2802. [Google Scholar] [CrossRef]
- Wang, W.; Haberer, G.; Gundlach, H.; Gläßer, C.; Nussbaumer, T.; Luo, M.C.; Lomsadze, A.; Borodovsky, M.; Kerstetter, R.A.; Shanklin, J.; et al. The Spirodela polyrhiza genome reveals insights into its neotenous reduction fast growth and aquatic lifestyle. Nat. Commun. 2014, 5, 3311. [Google Scholar] [CrossRef]
- Ming, R.; VanBuren, R.; Wai, C.M.; Tang, H.; Schatz, M.C.; Bowers, J.E.; Lyons, E.; Wang, M.L.; Chen, J.; Biggers, E.; et al. The pineapple genome and the evolution of CAM photosynthesis. Nat. Genet. 2015, 47, 1435–1442. [Google Scholar] [CrossRef]
- Emms, D.M.; Kelly, S. OrthoFinder: Phylogenetic orthology inference for comparative genomics. Genome Biol. 2019, 20, 238. [Google Scholar] [CrossRef]
- Niemeyer, P.W.; Irisarri, I.; Scholz, P.; Schmitt, K.; Valerius, O.; Braus, G.H.; Herrfurth, C.; Feussner, I.; Sharma, S.; Carlsson, A.S.; et al. A seed-like proteome in oil-rich tubers. Plant J. 2022, 112, 518–534. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Hu, W.; Yan, Y.; Tie, W.; Ding, Z.; Guo, J.; He, G. The late embryogenesis abundant protein family in cassava (Manihot esculenta Crantz): Genome-wide characterization and expression during abiotic stress. Molecules 2018, 23, 1196. [Google Scholar] [CrossRef] [PubMed]
- Zou, Z.; Yang, J.H. Genome-wide comparison reveals divergence of cassava and rubber aquaporin family genes after the recent whole-genome duplication. BMC Genom. 2019, 20, 380. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Jin, J.; Guo, A.Y.; Zhang, H.; Luo, J.; Gao, G. GSDS 2.0: An upgraded gene feature visualization server. Bioinformatics 2015, 31, 1296–1297. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol. 2013, 30, 2725–2729. [Google Scholar] [CrossRef]
- Zou, Z.; Yang, J.H. Genomic analysis of Dof transcription factors in Hevea brasiliensis, a rubber-producing tree. Ind. Crops Prod. 2019, 134, 271–283. [Google Scholar] [CrossRef]
- Qiao, X.; Li, Q.; Yin, H.; Qi, K.; Li, L.; Wang, R.; Zhang, S.; Paterson, A.H. Gene duplication and evolution in recurring polyploidization-diploidization cycles in plants. Genome Biol. 2019, 20, 38. [Google Scholar] [CrossRef]
- Mortazavi, A.; Williams, B.A.; McCue, K.; Schaeffer, L.; Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-seq. Nat. Methods 2008, 5, 621–628. [Google Scholar] [CrossRef]
- Zou, Z.; Gong, J.; An, F.; Xie, G.S.; Wang, J.K.; Mo, Y.Y.; Yang, L.F. Genome-wide identification of rubber tree (Hevea brasiliensis Muell. Arg.) aquaporin genes and their response to ethephon stimulation in the laticifer, a rubber-producing tissue. BMC Genom. 2015, 16, 1001. [Google Scholar] [CrossRef]
Gene Name | Locus ID | Position | AA | MW (kDa) | pI | GRAVY | LEA_1 Location | Duplicate | Mode | Group |
---|---|---|---|---|---|---|---|---|---|---|
CeLEA1-1 | CESC_14864 | Scf11:2802864..2803416(−) | 112 | 12.13 | 9.40 | −1.137 | 1..70 | - | - | I |
CeLEA1-2 | CESC_19809 | Scf22:1436544..1436936(+) | 130 | 13.73 | 9.66 | −0.780 | 1..70 | CeLEA1-1 | WGD | I |
CeLEA1-3 | CESC_02592 | Scf21:1359881..1360694(+) | 147 | 15.18 | 6.59 | −0.784 | 9..78 | - | - | II |
CeLEA1-4 | CESC_10473 | Scf23:2545043..2545918(+) | 133 | 13.67 | 9.79 | −0.934 | 1..70 | CeLEA1-3 | WGD | II |
CeLEA1-5 | CESC_14205 | Scf2:1221799..1222572(−) | 96 | 10.75 | 5.30 | −1.331 | 1..64 | CeLEA1-4 | WGD | II |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Fu, X.; Zou, Z. Insights into Genes Encoding LEA_1 Domain-Containing Proteins in Cyperus esculentus, a Desiccation-Tolerant Tuber Plant. Plants 2024, 13, 2933. https://doi.org/10.3390/plants13202933
Zhao Y, Fu X, Zou Z. Insights into Genes Encoding LEA_1 Domain-Containing Proteins in Cyperus esculentus, a Desiccation-Tolerant Tuber Plant. Plants. 2024; 13(20):2933. https://doi.org/10.3390/plants13202933
Chicago/Turabian StyleZhao, Yongguo, Xiaowen Fu, and Zhi Zou. 2024. "Insights into Genes Encoding LEA_1 Domain-Containing Proteins in Cyperus esculentus, a Desiccation-Tolerant Tuber Plant" Plants 13, no. 20: 2933. https://doi.org/10.3390/plants13202933
APA StyleZhao, Y., Fu, X., & Zou, Z. (2024). Insights into Genes Encoding LEA_1 Domain-Containing Proteins in Cyperus esculentus, a Desiccation-Tolerant Tuber Plant. Plants, 13(20), 2933. https://doi.org/10.3390/plants13202933