OsmiR535, a Potential Genetic Editing Target for Drought and Salinity Stress Tolerance in Oryza sativa
Abstract
:1. Introduction
2. Results
2.1. Expression of OsmiR535 in Response to Various Drought and Salinity Treatments
2.2. Inhibition and Knockout of OsmiR535 Increased ABA and Salt Tolerance in Rice Seedlings
2.3. OsmiR535 Overexpression in Plants Causes Sensitivity to PEG-induced Drought Stresses
2.4. CRISPR/Cas9 Mediated Knockout of OsmiR535 Increased the Survival Rate of Rice Seedlings after Dehydration Stress
3. Discussion
4. Materials and Methods
4.1. Plant Growth Conditions
4.2. Vector Construction and Rice Transformation
4.3. RNA Extraction, cDNA Synthesis, and Quantitative Real-Time RT-PCR (qRT-PCR)
4.4. Histochemical Analysis of H2O2 and O2- by 3,3-diaminobenzidine (DAB) and Nitroblue Tetrazolium (NBT) Staining
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jones-Rhoades, M.W.; Bartel, D.P.; Bartel, B. MicroRNAS and their regulatory roles in plants. Annu. Rev. Plant Biol. 2006, 57, 19–53. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Li, Y.; Cao, X.; Qi, Y. MicroRNAs and Their Regulatory Roles in Plant–Environment Interactions. Annu. Rev. Plant Biol. 2019, 70, 489–525. [Google Scholar] [CrossRef] [PubMed]
- Samad, A.F.A.; Sajad, M.; Nazaruddin, N.; Fauzi, I.A.; Murad, A.M.A.; Zainal, Z.; Ismail, I. MicroRNA and Transcription Factor: Key Players in Plant Regulatory Network. Front. Plant Sci. 2017, 8, 565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, T.; Gonzalez, N.; Inzé, D.; Dubois, M. Emerging Connections between Small RNAs and Phytohormones. Trends Plant Sci. 2020, 25, 912–929. [Google Scholar] [CrossRef] [PubMed]
- Keller, M.; Schleiff, E.; Simm, S. miRNAs involved in transcriptome remodeling during pollen development and heat stress response in Solanum lycopersicum. Sci. Rep. 2020, 10, 1–13. [Google Scholar] [CrossRef]
- Sun, M.; Shen, Y.; Li, H.; Yang, J.; Cai, X.; Zheng, G.; Zhu, Y.; Jia, B.; Sun, X. The multiple roles of OsmiR535 in modulating plant height, panicle branching and grain shape. Plant Sci. 2019, 283, 60–69. [Google Scholar] [CrossRef]
- Morea, E.G.O.; Da Silva, E.M.; e Silva, G.F.F.; Valente, G.T.; Rojas, C.H.B.; Vincentz, M.; Nogueira, F.T.S. Functional and evolutionary analyses of the miR156 and miR529 families in land plants. BMC Plant Biol. 2016, 16, 40. [Google Scholar] [CrossRef] [Green Version]
- Yue, E.; Li, C.; Li, Y.; Liu, Z.; Xu, J.-H. MiR529a modulates panicle architecture through regulating SQUAMOSA PROMOTER BINDING-LIKE genes in rice (Oryza sativa). Plant Mol. Biol. 2017, 94, 469–480. [Google Scholar] [CrossRef]
- Lv, D.-K.; Bai, X.; Li, Y.; Ding, X.; Ge, Y.; Cai, H.; Ji, W.; Wu, N.; Zhu, Y. Profiling of cold-stress-responsive miRNAs in rice by microarrays. Gene 2010, 459, 39–47. [Google Scholar] [CrossRef]
- Sun, M.; Shen, Y.; Yang, J.; Cai, X.; Li, H.; Zhu, Y.; Jia, B.; Sun, X. miR535 negatively regulates cold tolerance in rice. Mol. Breed. 2020, 40, 14. [Google Scholar] [CrossRef]
- Ma, X.; Zhang, Q.; Zhu, Q.; Liu, W.; Chen, Y.; Qiu, R.; Wang, B.; Yang, Z.; Li, H.; Lin, Y.; et al. A Robust CRISPR/Cas9 System for Convenient, High-Efficiency Multiplex Genome Editing in Monocot and Dicot Plants. Mol. Plant 2015, 8, 1274–1284. [Google Scholar] [CrossRef] [PubMed]
- Zuker, M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 2003, 31, 3406–3415. [Google Scholar] [CrossRef] [PubMed]
- Jeong, D.-H.; Park, S.; Zhai, J.; Gurazada, S.G.R.; De Paoli, E.; Meyers, B.C.; Green, P.J. Massive Analysis of Rice Small RNAs: Mechanistic Implications of Regulated MicroRNAs and Variants for Differential Target RNA Cleavage. Plant Cell 2011, 23, 4185–4207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ling, L.-Z.; Zhang, S.-D. Exploring the evolutionary differences of SBP-box genes targeted by miR156 and miR529 in plants. Genetica 2012, 140, 317–324. [Google Scholar] [CrossRef]
- Fard, E.M.; Bakhshi, B.; Farsi, M.; Kakhki, A.M.; Nikpay, N.; Ebrahimi, M.A.; Mardi, M.; Salekdeh, G.H. MicroRNAs regulate the main events in rice drought stress response by manipulating the water supply to shoots. Mol. BioSyst. 2017, 13, 2289–2302. [Google Scholar] [CrossRef]
- Zhou, L.; Liu, Y.; Liu, Z.; Kong, D.; Duan, M.; Luo, L.J. Genome-wide identification and analysis of drought-responsive microRNAs in Oryza sativa. J. Exp. Bot. 2010, 61, 4157–4168. [Google Scholar] [CrossRef]
- Wu, J.; Yu, C.; Hunag, L.; Wu, M.; Liu, B.; Liu, Y.; Song, G.; Liu, D.; Gan, Y. Overexpression of MADS-box transcription factor OsMADS25 enhances salt stress tolerance in Rice and Arabidopsis. Plant Growth Regul. 2019, 90, 163–171. [Google Scholar] [CrossRef]
- Xiong, J.H.; Fu, B.Y.; Xu, H.X.; Li, Y.S. Proteomic analysis of PEG-simulated drought stress-responsive proteins of rice leaves using a pyramiding rice line at the seedling stage. Bot. Stud. 2010, 51, 137–145. [Google Scholar]
- Yamaguchi-Shinozaki, K.; Shinozaki, K. A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 1994, 6, 251–264. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Liu, B.; Xu, M.; Jamil, M.; Wang, G. ABA-induced CCCH tandem zinc finger protein OsC3H47 decreases ABA sensitivity and promotes drought tolerance in Oryza sativa. Biochem. Biophys. Res. Commun. 2015, 464, 33–37. [Google Scholar] [CrossRef]
- Tang, G.; Yan, J.; Gu, Y.; Qiao, M.; Fan, R.; Mao, Y.; Tang, X. Construction of short tandem target mimic (STTM) to block the functions of plant and animal microRNAs. Methods 2012, 58, 118–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, A.R.; Wakeel, A.; Muhammad, N.; Liu, B.; Wu, M.; Liu, Y.; Ali, I.; Zaidi, S.-H.-R.; Azhar, W.; Song, G.; et al. Involvement of ethylene signaling in zinc oxide nanoparticle-mediated biochemical changes inArabidopsis thalianaleaves. Environ. Sci. Nano 2019, 6, 341–355. [Google Scholar] [CrossRef]
- Ali, I.; Jan, M.; Wakeel, A.; Azizullah, A.; Liu, B.; Islam, F.; Ali, A.; Daud, M.K.; Liu, Y.; Gan, Y. Biochemical responses and ultrastructural changes in ethylene insensitive mutants of Arabidopsis thialiana subjected to bisphenol A exposure. Ecotoxicol. Environ. Saf. 2017, 144, 62–71. [Google Scholar] [CrossRef] [PubMed]
Primer | Sequence (5′–3′) | For Experiment |
---|---|---|
KpnI-MIR535-F | ATAGGTACCGAGGGAGAGAAGAGAGGACACA | Overexpression |
BamHI-MIR535-R | CGCGGATCCCAATAAGAGAACATTTAGGGGA | |
miR535gRT1 | CTCACCGTGACCGCCGCACGTTTTAGAGCTAGAAAT | CRISPR/cas9 |
OsU6aT1 | GTGCGGCGGTCACGGTGAGCGGCAGCCAAGCCAGCA | |
miR535gRT2 | GCACGCAGGTACGCCGCCGGTTTTAGAGCTAGAAAT | |
miR535OsU3T2 | CGGCGGCGTACCTGCGTGCTGCCACGGATCATCTGC | |
KpnI-STTM535-F | CAGGGTACCTGACAACGAGACTAGAGAGCACGCGTTGTTGTTGTTATGGTCTA | STTM |
BamHI-STTM535-R | CGCGGATCCGCGTGCTCTCTAGTCTCGTTGTCAATTCTTCTTCTTTAGACCAT | |
qOsUBQ-F | GAAGGAGGAGGAAATCGAAC | Realtime-qPCR |
qOsUBQ-R | CTTCACAGAGGTGATGCTAAGG | |
qOsSPL2-F | CGTGTTCCAAGAGCCGTACTA | |
qOsSPL2-R | GCAGTGGTAGTGGCAGATTTT | |
qOsSPL7-F | CGCTCCAGGGAGTCAAGGAG | |
qOsSPL7-R | GAGCACGTGGAACCGGCTGC | |
qOsSPL11F | GCAGATGCATCTGAAACTGC | |
qOsSPL11R | GGTACACTGGGCAATGTGCTGT | |
qSPL14F | TCCATTTTGCAGGTCCGGACG | |
qSPL14R | GATGCTTGCTGTACAGGATC | |
qSPL16-F | TCTCTGCCGTTCTCATGGCAG | |
qSPL16-R | CTTACCATGGCAGAAAAGAAC | |
qSPL19F | GAAGATGGAGCCAACATTACC | |
qSPL19R | GATTCTGCTGAAAGAAGAGGGG | |
qSPL18F | CAAGATGTTCTCCTCCGACG | |
qSPL18R | AGTTGGCCGGGGATGACA | |
qMIR535-F | GGCGGTGACAACGAGAGAGA | |
qMIR535-R | GCAGTGACAACGGGAGAAAG |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yue, E.; Cao, H.; Liu, B. OsmiR535, a Potential Genetic Editing Target for Drought and Salinity Stress Tolerance in Oryza sativa. Plants 2020, 9, 1337. https://doi.org/10.3390/plants9101337
Yue E, Cao H, Liu B. OsmiR535, a Potential Genetic Editing Target for Drought and Salinity Stress Tolerance in Oryza sativa. Plants. 2020; 9(10):1337. https://doi.org/10.3390/plants9101337
Chicago/Turabian StyleYue, Erkui, Huan Cao, and Bohan Liu. 2020. "OsmiR535, a Potential Genetic Editing Target for Drought and Salinity Stress Tolerance in Oryza sativa" Plants 9, no. 10: 1337. https://doi.org/10.3390/plants9101337
APA StyleYue, E., Cao, H., & Liu, B. (2020). OsmiR535, a Potential Genetic Editing Target for Drought and Salinity Stress Tolerance in Oryza sativa. Plants, 9(10), 1337. https://doi.org/10.3390/plants9101337