Generalized Taylor’s Formula and Steffensen’s Inequality
Abstract
:1. Introduction
2. Materials and Methods
- (a)
- If , then
- (b)
- If , then the inequality mentioned above holds in reverse.
3. Main Results
- (a)
- If , then
- (b)
- If , then the inequality mentioned above holds in reverse.
- (a)
- If for every , then
- (b)
- If for every , then the inequality mentioned above holds in reverse.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liao, J.G.; Berg, A. Sharpening Jensen’s inequality. Am. Stat. 2018, 4, 278–281. [Google Scholar] [CrossRef]
- Horvath, L.; Khan, K.A.; Pečarić, J. Cyclic refinements of the discrete and integral form of Jensen’s inequality with applications. Analysis 2016, 36, 253–262. [Google Scholar] [CrossRef]
- Lakshmikantham, V.; Vatsala, A.S. Theory of differential and integral inequalities with initial time difference and applications. Anal. Geom. Inequalities Appl. 1999, 478, 191–203. [Google Scholar]
- Cloud, M.J.; Drachman, B.C.; Lebedev, L.P. Inequalities with Applications to Engineering; Springer International Publishing: Cham, Switzerland, 2014. [Google Scholar]
- Lin, Q. Jensen inequality for superlinear expectations. Stat. Probab. Lett. 2019, 151, 79–83. [Google Scholar] [CrossRef]
- Beckenbach, E.F. Convex functions. Bull. Am. Math. Soc. 1948, 54, 439–460. [Google Scholar] [CrossRef]
- Peacaric, J.E.; Tong, Y.L. Convex Functions, Partial Orderings, and Statistical Applications; Academic Press: Cambridge, MA, USA, 1992. [Google Scholar]
- Wu, Y.; Qi, F. Discussions on two integral inequalities of Hermite–Hadamard type for convex functions. J. Comput. Appl. Math. 2022, 406, 114049. [Google Scholar] [CrossRef]
- Mohanapriya, A.; Ganesh, A.; Rajchakit, G.; Pinelas, S.; Govindan, V.; Unyong, B.; Gunasekaran, N. New generalization of Hermite–Hadamard type of inequalities for convex functions using Fourier integral transform. Thai J. Math. 2020, 18, 1051–1061. [Google Scholar]
- Steffensen, J.F. On certain inequalities between mean values, and their application to actuarial problems. Scand. Actuar. J. 1918, 1918, 82–97. [Google Scholar] [CrossRef]
- Fahad, A.; Wang, Y.; Butt, S.I. Jensen–Mercer and Hermite–Hadamard–Mercer Type Inequalities for GA-h-Convex Functions and Its Subclasses with Applications. Mathematics 2023, 11, 278. [Google Scholar] [CrossRef]
- Zhang, D.; Mesiar, R.; Pap, E. Choquet type integrals for single-valued functions with respect to set-functions and set-multifunctions. Inf. Sci. 2023, 630, 252–270. [Google Scholar] [CrossRef]
- Liu, J.B.; Butt, S.I.; Nasir, J.; Aslam, A.; Fahad, A.; Soontharanon, J. Jensen-Mercer variant of Hermite-Hadamard type inequalities via Atangana-Baleanu fractional operator. AIMS Math. 2022, 7, 2123–2141. [Google Scholar] [CrossRef]
- El-Deeb, A.A.; El-Sennary, H.A.; Khan, Z.A. Some Steffensen-type dynamic inequalities on time scales. Adv. Differ. Equ. 2019, 2019, 246. [Google Scholar] [CrossRef]
- Khan, M.B.; Macias-Diaz, J.E.; Treanta, S.; Soliman, M.S.; Zaini, H.G. Hermite-Hadamard Inequalities in Fractional Calculus for Left and Right Harmonically Convex Functions via Interval-Valued Settings. Fractal Fract. 2022, 6, 178. [Google Scholar] [CrossRef]
- Adeel, M.; Khan, K.A.; Pečarić, D.; Pečarić, J. Entropy results for Levinson-type inequalities via Green functions and Hermite interpolating polynomial. Aequationes Math. 2022, 96, 1–16. [Google Scholar] [CrossRef]
- Fahad, A.; Pečarić, J.; Praljak, M. Hermite Interpolation of composition function and Steffensen-type Inequalities. J. Math. Inequal. 2016, 10, 1051–1062. [Google Scholar] [CrossRef]
- Li, Y.; Samraiz, M.; Gul, A.; Vivas-Cortez, M.; Rahman, G. Hermite-Hadamard Fractional Integral Inequalities via Abel-Gontscharoff Green’s Function. Fractal Fract. 2022, 6, 126. [Google Scholar] [CrossRef]
- Pečarić, J.; Pribanić, A.P.; Kalamir, K.S. Integral error representation of Hermite interpolating polynomials and related generalizations of Steffensen’s inequality. Math. Inequalities Appl. 2019, 22, 1177–1191. [Google Scholar] [CrossRef]
- Pečarić, J.; Perušić Pribanić, A.; Smoljak Kalamir, K. Weighted Hermite–Hadamard-Type Inequalities by Identities Related to Generalizations of Steffensen’s Inequality. Mathematics 2022, 10, 1505. [Google Scholar] [CrossRef]
- Rabier, P. Steffensen’s inequality and L1-L∞ estimates of weighted integrals. Proc. Am. Math. Soc. 2012, 140, 665–675. [Google Scholar] [CrossRef]
- Srivastava, R. Some families of integral, trigonometric and other related inequalities. Appl. Math. Inf. Sci. 2011, 5, 342–360. [Google Scholar]
- Wu, S.H.; Srivastava, H.M. Some improvements and generalizations of Steffensen’s integral inequality. Appl. Math. Comput. 2007, 192, 422–428. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Dragomir, S.S. An application of Hayashi’s inequality for differentiable functions. Comput. Math. Appl. 1996, 32, 95–99. [Google Scholar] [CrossRef]
- Balakrishnan, N.; Rychlik, T. Evaluating expectations of L-statistics by the Steffensen inequality. Metrika 2006, 63, 371–384. [Google Scholar] [CrossRef]
- Gajek, L.; Okolewski, A. Steffensen-type inequalities for order statistics and record statistics. Ann. Univ. Mariae-Curie-Sklodowska-Lub.-Pol. 1997, 51, 41–59. [Google Scholar]
- Smoljak Kalamir, K. Weaker Conditions for the q-Steffensen Inequality and Some Related Generalizations. Mathematics 2020, 8, 1462. [Google Scholar] [CrossRef]
- El-Deeb, A.A.; Bazighifan, O.; Awrejcewicz, J. On some new weighted Steffensen-type inequalities on time scales. Mathematics 2021, 9, 2670. [Google Scholar] [CrossRef]
- El-Deeb, A.A.; Moaaz, O.; Baleanu, D.; Askar, S.S. A variety of dynamic α-conformable Steffensen-type inequality on a time scale measure space. AIMS Math. 2022, 7, 11382–11398. [Google Scholar] [CrossRef]
- Yildirim, E. Some Generalization on q-Steffensen Inequality. J. Math. Inequalities 2022, 16, 1333–1345. [Google Scholar] [CrossRef]
- Pečarić, J. Connections among some inequalities of Gauss, Steffensen and Ostrowski. Southeast Asian Bull. Math. 1989, 13, 89–91. [Google Scholar]
- Fahad, A.; Pečarić, J.; Praljak, M. Generalized Steffensen’s inequality. J. Math. Inequal. 2015, 9, 481–487. [Google Scholar] [CrossRef]
- Fahad, A.; Butt, S.I.; Pečarić, J. Generalized Steffensen’s Inequality by Fink’s Identity. Mathematics 2019, 7, 329. [Google Scholar] [CrossRef]
- Butt, S.I.; Fahad, A.; Naseer, A.; Pečarić, J. Generalized Steffensen’s inequality by Montgomery identity. J. Inequalities Appl. 2019, 2019, 199. [Google Scholar] [CrossRef]
- Pečarić, J.; Perušić Pribanić, A.; Smoljak Kalamir, K. New generalizations of Steffensen’s inequality by Lidstone’s polynomial. Aequationes Math. 2023, 1–14. [Google Scholar] [CrossRef]
- Mironescu, P. The role of the Hardy type inequalities in the theory of function spaces. Rev. Roum. Math. Pures Appl. 2018, 63, 447–525. [Google Scholar]
- Johnson, W.P. The curious history of Faà di Bruno’s formula. Am. Math. Mon. 2002, 109, 217–234. [Google Scholar]
- O’Sullivan, C. De Moivre and Bell polynomials. Expo. Math. 2022, 40, 870–893. [Google Scholar] [CrossRef]
- Johnston, S.G.; Prochno, J. Faà di Bruno’s formula and inversion of power series. Adv. Math. 2022, 395, 108080. [Google Scholar] [CrossRef]
- Matić, M.; Pečarić, J.E.; Ujević, N. On new estimation of the remainder in generalized Taylor’s formula. Math. Inequal. Appl. 1999, 2, 343–361. [Google Scholar] [CrossRef]
- Cerone, P.; Dragomir, S.S. Three point identities and inequalities for n-time differentiable functions. SUT J. Math. 2000, 36, 351–383. [Google Scholar] [CrossRef]
- Cerone, P. Estimation of Relative Entropy Using Novel Taylor-Like Representations. Rgmia Res. Rep. Collect. 2002, 5, 33–45. [Google Scholar]
- Odibat, Z.M.; Shawagfeh, N.T. Generalized Taylor’s formula. Appl. Math. Comput. 2007, 186, 286–293. [Google Scholar] [CrossRef]
- Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables; Applied Mathematics Series 55, 4th printing; National Bureau of Standards: Washington, DC, USA, 1965.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fahad, A.; Butt, S.I.; Pečarić, J.; Praljak, M. Generalized Taylor’s Formula and Steffensen’s Inequality. Mathematics 2023, 11, 3570. https://doi.org/10.3390/math11163570
Fahad A, Butt SI, Pečarić J, Praljak M. Generalized Taylor’s Formula and Steffensen’s Inequality. Mathematics. 2023; 11(16):3570. https://doi.org/10.3390/math11163570
Chicago/Turabian StyleFahad, Asfand, Saad Ihsaan Butt, Josip Pečarić, and Marjan Praljak. 2023. "Generalized Taylor’s Formula and Steffensen’s Inequality" Mathematics 11, no. 16: 3570. https://doi.org/10.3390/math11163570
APA StyleFahad, A., Butt, S. I., Pečarić, J., & Praljak, M. (2023). Generalized Taylor’s Formula and Steffensen’s Inequality. Mathematics, 11(16), 3570. https://doi.org/10.3390/math11163570