On Cyclic Contractive Mappings of Kannan and Chatterjea Type in Generalized Metric Spaces
Abstract
:1. Introduction
- if ,
- whenever , for all ,
- whenever , for all ,
- ,
- , for all .
- If , i.e., for any , ∃ an integer such that , for all , then the point is called the limit of the sequence , and is said to be -convergent to a;
- If , i.e., for any given , ∃ an integer such that , for all , then the sequence is called -Cauchy;
- The space is said to be a complete -metric space if every -Cauchy sequence in is -convergent in .
- ;
- ;
- .
2. Main New Results in -Metric Spaces
- S1.
- ∃ real numbers with and , such that for any , we have
- S2.
- ∃ real numbers with and , such that for any , we have
3. Applications and Examples
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gahler, S. 2-metrische raume and ihre topologische struktur. Math. Nachrichten 1963, 26, 115–148. [Google Scholar] [CrossRef]
- Gahler, S. Zur geometric 2-metrische raume. Rev. Roum. Math. Pures Appl. 1966, 11, 665–667. [Google Scholar]
- Dhage, B.C. Generalized metric space and mappings with fixed point. Bull. Calc. Math. Soc. 1992, 84, 329–336. [Google Scholar]
- Ha, K.S.; Cho, Y.J.; White, A. Strictly convex and strictly 2-convex 2-normed spaces. Math. Jpn. 1988, 33, 375–384. [Google Scholar]
- Mustafa, Z.; Sims, B. Some remarks concerning D-metric spaces. In Proceedings of the International Conference on Fixed Point Theory and Applications, Valencia, Spain, 13–19 July 2003; Yokohama Publishers: Silverwater, NSW, Australia, 2004; pp. 189–198. [Google Scholar]
- Naidu, S.; Rao, K.; Rao, N.S. On the concepts of balls in a D-metric space. Int. J. Math. Math. Sci. 2005, 1, 133–141. [Google Scholar] [CrossRef]
- Naidu, S.; Rao, K.; Rao, N.S. On convergent sequences and fixed point theorems in a D-metric space. Int. J. Math. Math. Sci. 2005, 12, 1969–1988. [Google Scholar] [CrossRef]
- Mustafa, Z.; Sims, B. A new approach to generalized metric spaces. J. Nonlinear Convex Anal. 2006, 7, 289–297. [Google Scholar]
- Khandaqji, M.; Al-Sharif, S.; Al-Khaleel, M. Property P and some fixed point results on (ψ,Φ)-weakly contractive G-metric spaces. Int. Math. Math. Sci. 2012, 2012, 675094. [Google Scholar] [CrossRef]
- Asadi, M.; Karapınar, E.; Salimi, P. A new approach to G-metric and related fixed point theorems. J. Inequalities Appl. 2013, 454, 4. [Google Scholar] [CrossRef]
- Al-Khaleel, M.; Alahmari, A.; Al-Sharif, S. Coincidence and common fixed points for a sequence of mappings in G-metric spaces. Int. J. Math. Anal. 2015, 9, 1769–1783. [Google Scholar] [CrossRef]
- Al-Sharif, S.; Alahmari, A.; Al-Khaleel, M.; Salim, A. New results on fixed points for an infinite sequence of mappings in G-metric space. Ital. J. Pure Appl. Math. 2017, 2017, 517–540. [Google Scholar]
- Banach, S. Surles operations dans les ensembles et leur application aux equation sitegrales. Fund. Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]
- Kannan, R. Some results on fixed points. Bull. Calcutta Math. Soc. 1968, 10, 71–76. [Google Scholar]
- Chatterjea, S. Fixed point theorems. C. R. Acad. Bulgare Sci. 1972, 25, 727–730. [Google Scholar] [CrossRef]
- Zamfirescu, T. Fixed point theorems in metric spaces. Arch. Math. 1972, 23, 292–298. [Google Scholar] [CrossRef]
- Rus, I. Cyclic representations and fixed points. Ann. Tiberiu Popoviciu Semin. Funct. Equ. Approx. Convexity 2005, 3, 171–178. [Google Scholar]
- Petric, M. Some results concerning cyclical contractive mappings. Gen. Math. 2010, 18, 213–226. [Google Scholar]
- Khan, M.; Swaleh, M.; Sessa, S. Fixed point theorem by altering distances between points. Bull. Austral. Math. Soc. 1984, 30, 1–9. [Google Scholar] [CrossRef]
- Sastry, K.R.; Babu, G. Some fixed point theorems by altering distances between the points. Indian J. Pure Appl. Math. 1999, 30, 641–647. [Google Scholar]
- Sastry, K.; Naidu, S.; Babu, G.R.; Naidu, G.A. Generalization of common fixed point theorems for weakly commuting map by altering distances. Tamkang J. Math. 2000, 31, 243–250. [Google Scholar] [CrossRef]
- Naidu, S. Some fixed point theorems in metric spaces by altering distances. Czechoslov. Math. J. 2003, 53, 205–212. [Google Scholar] [CrossRef]
- Al-Khaleel, M.; Al-Sharif, S. On cyclic (ϕ-ψ)-Kannan and (ϕ-ψ)-Chatterjea contractions in metric spaces. Ann. Univ. Craiova Math. Comput. Sci. Ser. 2019, 46, 320–327. [Google Scholar]
- Al-Khaleel, M.; Al-Sharif, S. Cyclical Nonlinear Contractive Mappings Fixed Point Theorems with Application to Integral Equations. TWMS J. App. Eng. Math. 2022, 12, 224–234. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Khaleel, M.; Al-Sharif, S.; AlAhmad, R. On Cyclic Contractive Mappings of Kannan and Chatterjea Type in Generalized Metric Spaces. Mathematics 2023, 11, 890. https://doi.org/10.3390/math11040890
Al-Khaleel M, Al-Sharif S, AlAhmad R. On Cyclic Contractive Mappings of Kannan and Chatterjea Type in Generalized Metric Spaces. Mathematics. 2023; 11(4):890. https://doi.org/10.3390/math11040890
Chicago/Turabian StyleAl-Khaleel, Mohammad, Sharifa Al-Sharif, and Rami AlAhmad. 2023. "On Cyclic Contractive Mappings of Kannan and Chatterjea Type in Generalized Metric Spaces" Mathematics 11, no. 4: 890. https://doi.org/10.3390/math11040890
APA StyleAl-Khaleel, M., Al-Sharif, S., & AlAhmad, R. (2023). On Cyclic Contractive Mappings of Kannan and Chatterjea Type in Generalized Metric Spaces. Mathematics, 11(4), 890. https://doi.org/10.3390/math11040890