Stability of the Apollonius Type Additive Functional Equation in Modular Spaces and Fuzzy Banach Spaces
Abstract
:1. Introduction and Preliminaries
- (1)
- if and only if ,
- (2)
- for every α with ,
- (3)
- if and .If the condition (3) is replaced with
- (4)
- if and with an ,
- (1)
- is ρ-convergent to a point if as . The point x is called the ρ-limit of the sequence .
- (2)
- is called a ρ-Cauchy sequence if as .
- (3)
- is called ρ-complete if every ρ-Cauchy sequence in is ρ-convergent.
2. Stability of (3) in Modular Spaces Without -Conditions
3. Stability of (2) in Modular Spaces with -Conditions
4. Stability of (2) in -homogeneous Spaces
- (1)
- if and only if ,
- (2)
- for every and every λ with ,
- (3)
- for all ,
- (4)
- provided ,
- (5)
- provided .
5. Fuzzy Stability of (2) in Fuzzy Banach Spaces
- 1.
- ;
- 2.
- the sequence converges to a fixed point of J;
- 3.
- is the unique fixed point of J in the set ;
- 4.
- for all .
- (1)
- for ;
- (2)
- if and only if for all ;
- (3)
- if ;
- (4)
- ;
- (5)
- is a non-decreasing function of and ;
- (6)
- for , is continuous on .
- F is a fixed point of J, i.e.,
- , i.e.,
- , i.e.,This implies
6. Hyperstability of (2) in Fuzzy Banach Algebras
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nakano, H. Modulared Semi-Ordered Linear Spaces; Maruzen: Tokyo, Japan, 1950. [Google Scholar]
- Luxemburg, W.A.J. Banach Function Spaces. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 1955. [Google Scholar]
- Mazur, S.; Orlicz, W. On some classes of linear spaces. Studia Math. 1958, 17, 97–119. [Google Scholar] [CrossRef]
- Musielak, J.; Orlicz, W. On modular spaces. Studia Math. 1959, 18, 591–597. [Google Scholar] [CrossRef]
- Musielak, J.; Orlicz, W. Some remarks on modular spaces. Bull. Acad. Polon. Sci. Sr. Math. Astron. Phys. 1959, 7, 661–668. [Google Scholar]
- Ulam, S.M. Problems of Modern Mathematics; Sciences Editions; John Wiley & Sons Inc.: New York, NY, USA, 1964. [Google Scholar]
- Hyers, D.H. On the stability of linear functional equations. Proc. Nat. Acad. Sci. USA 1941, 27, 222–224. [Google Scholar] [CrossRef] [PubMed]
- Brillouët-Bellout, N.; Brzdȩk, J.; Ciepliński, K. On some recent developments in Ulam’s type stability. Abstr. Appl. Anal. 2012, 2012, 716936. [Google Scholar] [CrossRef]
- Czerwik, S. Functional Equations and Inequalities in Several Variables; World Scientific: River Edge, NJ, USA, 2002. [Google Scholar]
- Gǎvruta, P. A generalization of the Hyers-Ulam-Rassias stability of approximate additive mappings. J. Math. Anal. Appl. 1994, 184, 431–436. [Google Scholar] [CrossRef]
- Hyers, D.H.; Isac, G.; Rassias, T.M. Stability of Functional Equations in Several Variables; Birkhäuser: Basel, Switzerland, 1998. [Google Scholar]
- Jung, S. Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis; Springer: New York, NY, USA, 2011. [Google Scholar]
- Rassias, T.M. On the stability of linear mappings in Banach spaces. Proc. Amer. Math. Soc. 1978, 72, 297–300. [Google Scholar] [CrossRef]
- Jun, K.; Kim, H. On the stability of Apollonius’ equation. Bull. Belg. Math. Soc.-Simon Stevin 2004, 11, 615–624. [Google Scholar]
- Park, C.; Rassias, T.M. Homomorphisms in C*-ternary algebras and JB*-triples. J. Math. Anal. Appl. 2008, 337, 13–20. [Google Scholar] [CrossRef]
- Moghadam, M.R.; Rassias, T.M.; Keshavarz, V.; Park, C.; Park, Y.S. Jordan homomorphisms in C*-ternary algebras and JB*-triples. J. Comput. Anal. Appl. 2018, 24, 416–424. [Google Scholar]
- Khamsi, M.A. Quasicontraction mappings in modular spaces without Δ2-condition. Fixed Point Theory Appl. 2008, 2008, 916187. [Google Scholar] [CrossRef]
- Khamsi, M.A.; Kozlowski, W.M. Fixed Point Theory in Modular Function Spaces; Birkhäuser: Basel, Switzerland, 2015. [Google Scholar]
- Cho, Y.J.; Ghaemi, M.B.; Choubin, M.; Gordji, M.E. On the Hyers-Ulam stability of sextic functional equations in β-homogeneous probabilistic modular spaces. Math. Inequal. Appl. 2013, 16, 1097–1114. [Google Scholar] [CrossRef]
- Gordji, M.E.; Sajadian, F.; Cho, Y.J.; Ramezani, M. A fixed point theorem for quasi-contraction mappings in partially order modular spaces with an application. UPB Sci. Bull. Ser. A 2014, 76, 135–146. [Google Scholar]
- Kim, H.-M.; Shin, H.-Y. Refined stability of additive and quadratic functional equations in modular spaces. J. Inequal. Appl. 2017, 2017, 146. [Google Scholar] [CrossRef] [PubMed]
- Park, C.; Bodaghi, A.; Kim, S.O. A fixed point approach to stability of additive mappings in modular spaces without Δ2-conditions. J. Comput. Anal. Appl. 2018, 24, 1038–1048. [Google Scholar]
- Park, C.; Rassias, J.M.; Bodaghi, A.; Kim, S.O. Approximate homomorphisms from ternary semigroups to modular spaces. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. 2019, 113, 2175–2188. [Google Scholar] [CrossRef]
- Sadeghi, G. A fixed point approach to stability of functional equations in modular spaces. Bull. Malays. Math. Sci. Soc. Second Ser. 2014, 37, 333–344. [Google Scholar]
- Wongkum, K.; Chaipunya, P.; Kumam, P. On the generalized Ulam-Hyers-Rassias stability of quadratic mappings in modular spaces without Δ2-conditions. J. Funct. Spaces 2015, 2015, 461719. [Google Scholar] [CrossRef]
- Wongkum, K.; Kumam, P.; Cho, Y.J.; Thounthong, P.; Chaipunya, P. On the generalized Ulam-Hyers-Rassias stability for quartic functional equation in modular spaces. J. Nonlinear Sci. Appl. 2017, 10, 1399–1406. [Google Scholar] [CrossRef]
- Cădariu, L.; Radu, V. Fixed points and the stability of Jensen’s functional equation. J. Inequal. Pure Appl. Math. 2003, 4, 4. [Google Scholar]
- Diaz, J.; Margolis, B. A fixed point theorem of the alternative for contractions on a generalized complete metric space. Bull. Amer. Math. Soc. 1968, 74, 305–309. [Google Scholar] [CrossRef]
- Bag, T.; Samanta, S.K. Finite dimensional fuzzy normed linear spaces. J. Fuzzy Math. 2003, 11, 687–705. [Google Scholar]
- Mirmostafaee, A.K.; Mirzavaziri, M.; Moslehian, M.S. Fuzzy stability of the Jensen functional equation. Fuzzy Sets Syst. 2008, 159, 730–738. [Google Scholar] [CrossRef]
- Mirmostafaee, A.K.; Moslehian, M.S. Fuzzy versions of Hyers-Ulam-Rassias theorem. Fuzzy Sets Syst. 2008, 159, 720–729. [Google Scholar] [CrossRef]
- Bînzar, T.; Pater, F.; Nădăban, S. On fuzzy normed algebras. J. Nonlinear Sci. Appl. 2016, 9, 5488–5496. [Google Scholar] [CrossRef]
- Miheţ, D.; Radu, V. On the stability of the additive Cauchy functional equation in random normed spaces. J. Math. Anal. Appl. 2008, 343, 567–572. [Google Scholar] [CrossRef]
- Bresǎr, M. Jordan mappings of semiprime rings. J. Algebra 1989, 127, 218–228. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.O.; Michael Rassias, J. Stability of the Apollonius Type Additive Functional Equation in Modular Spaces and Fuzzy Banach Spaces. Mathematics 2019, 7, 1125. https://doi.org/10.3390/math7111125
Kim SO, Michael Rassias J. Stability of the Apollonius Type Additive Functional Equation in Modular Spaces and Fuzzy Banach Spaces. Mathematics. 2019; 7(11):1125. https://doi.org/10.3390/math7111125
Chicago/Turabian StyleKim, Sang Og, and John Michael Rassias. 2019. "Stability of the Apollonius Type Additive Functional Equation in Modular Spaces and Fuzzy Banach Spaces" Mathematics 7, no. 11: 1125. https://doi.org/10.3390/math7111125
APA StyleKim, S. O., & Michael Rassias, J. (2019). Stability of the Apollonius Type Additive Functional Equation in Modular Spaces and Fuzzy Banach Spaces. Mathematics, 7(11), 1125. https://doi.org/10.3390/math7111125