Amateur Female Athletes Perform the Running Split of a Triathlon Race at Higher Relative Intensity than the Male Athletes: A Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Study Design
2.2. Experimental Procedures
2.3. Statistical Analysis
3. Results
- The absolute and relative to body mass values for and the maximal aerobic speed were significantly higher for male than for female athletes. Conversely, there were no sex differences in the percentage of reached at VT and RCP. However, the speeds at VT and RCP were higher in male athletes (Table 1).
- Despite the sex differences according to , VT, and RCP, the mean speed maintained during the running split of an Olympic triathlon race was not different between sexes (p = 0.506, d = 0.23). The running speed during the race was situated between the speeds associated with VT and RCP for both sexes. However, female athletes performed the running split at a higher percentage of the speed at the RCP than male athletes (Table 1).
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Santos, A.C.; Turner, T.J.; Bycura, D.K. Current and Future Trends in Strength and Conditioning for Female Athletes. Int. J. Environ. Res. Public Health 2022, 19, 2687. [Google Scholar] [CrossRef] [PubMed]
- Lepers, R. Sex Difference in Triathlon Performance. Front. Physiol. 2019, 10, 973. [Google Scholar] [CrossRef] [PubMed]
- Bassett, D.R.; Howley, E.T. Limiting Factors for Maximum Oxygen Uptake and Determinants of Endurance Performance. Med. Sci. Sport. Exerc. 2000, 32, 70–84. [Google Scholar] [CrossRef] [PubMed]
- Basset, D.R., Jr. Scientific contributions of A. V. Hill: Exercise physiology pioneer. J. Appl. Physiol. 2002, 93, 1567–1582. [Google Scholar] [CrossRef]
- Besson, T.; Macchi, R.; Rossi, J.; Morio, C.Y.M.; Kunimasa, Y.; Nicol, C.; Vercruyssen, F.; Millet, G.Y. Sex Differences in Endurance Running. Sport. Med. 2022, 52, 1235–1257. [Google Scholar] [CrossRef]
- Millet, G.P.; Bentley, D.J. The Physiological Responses to Running after Cycling in Elite Junior and Senior Triathletes. Int. J. Sport. Med. 2004, 25, 191–197. [Google Scholar] [CrossRef]
- Schmidt, W.; Prommer, N. Impact of Alterations in Total Hemoglobin Mass on VO2max. Exerc. Sport Sci. Rev. 2010, 38, 68–75. [Google Scholar] [CrossRef]
- Mier, C.M.; Domenick, M.A.; Turner, N.S.; Wilmore, J.H. Changes in Stroke Volume and Maximal Aerobic Capacity with Increased Blood Volume in Men and Women. J. Appl. Physiol. 1996, 80, 1180–1186. [Google Scholar] [CrossRef]
- Rutkowski, D.R.; Barton, G.P.; François, C.J.; Aggarwal, N.; Roldán-Alzate, A. Sex Differences in Cardiac Flow Dynamics of Healthy Volunteers. Radiol. Cardiothorac. Imaging 2020, 2, e190058. [Google Scholar] [CrossRef]
- Bossi, A.H.; Lima, P.; de Lima, J.P.; Hopker, J. Laboratory Predictors of Uphill Cycling Performance in Trained Cyclists. J. Sport. Sci. 2017, 35, 1364–1371. [Google Scholar] [CrossRef]
- Whipp, B.J.; Davis, J.A.; Wasserman, K. Ventilatory Control of the “isocapnic Buffering” Region in Rapidly-Incremental Exercise. Respir. Physiol. 1989, 76, 357–367. [Google Scholar] [CrossRef] [PubMed]
- Beaver, W.L.; Wasserman, K.; Whipp, B.J. Bicarbonate Buffering of Lactic Acid Generated during Exercise. J. Appl. Physiol. 1986, 60, 472–478. [Google Scholar] [CrossRef] [PubMed]
- Puccinelli, P.J.; de Lira, C.A.B.; Vancini, R.L.; Nikolaidis, P.T.; Knechtle, B.; Rosemann, T.; Andrade, M.S. The Performance, Physiology and Morphology of Female and Male Olympic-Distance Triathletes. Healthcare 2022, 10, 797. [Google Scholar] [CrossRef]
- Iannetta, D.; Inglis, E.C.; Mattu, A.T.; Fontana, F.Y.; Pogliaghi, S.; Keir, D.A.; Murias, J.M. A Critical Evaluation of Current Methods for Exercise Prescription in Women and Men. Med. Sci. Sport. Exerc. 2020, 52, 466–473. [Google Scholar] [CrossRef] [PubMed]
- Engel, F.A.; Ackermann, A.; Chtourou, H.; Sperlich, B. High-Intensity Interval Training Performed by Young Athletes: A Systematic Review and Meta-Analysis. Front. Physiol. 2018, 9, 1012. [Google Scholar] [CrossRef]
- Schwartz, J.; Oh, P.; Takito, M.Y.; Saunders, B.; Dolan, E.; Franchini, E.; Rhodes, R.E.; Bredin, S.S.D.; Coelho, J.P.; dos Santos, P.; et al. Translation, Cultural Adaptation, and Reproducibility of the Physical Activity Readiness Questionnaire for Everyone (PAR-Q+): The Brazilian Portuguese Version. Front. Cardiovasc. Med. 2021, 8, 2696. [Google Scholar] [CrossRef]
- Jones, A.M.; Doust, J.H. A 1% Treadmill Grade Most Accurately Reflects the Energetic Cost of Outdoor Running. J. Sport. Sci. 1996, 14, 321–327. [Google Scholar] [CrossRef]
- Whipp, B.J.; Ward, S.A.; Wasserman, K. Respiratory Markers of the Anaerobic Threshold. Adv. Cardiol. 1986, 35, 47–64. [Google Scholar]
- Howley, E.; Basset, D.; Welch, H. Criteria for Maximal Oxygen Uptake: Review and Commentary. Med. Sci. Sport. Exerc. 1995, 27, 1292–1301. [Google Scholar] [CrossRef]
- di Prampero, P.E. Energetics of Muscular Exercise. Rev. Physiol. Biochem. Pharmacol. 1981, 89, 143–222. [Google Scholar] [CrossRef]
- Banerjee, A.; Chitnis, U.B.; Jadhav, S.L.; Bhawalkar, J.S.; Chaudhury, S. Hypothesis Testing, Type I and Type II Errors. Ind. Psychiatry J. 2009, 18, 127. [Google Scholar] [CrossRef] [PubMed]
- Faul, F.; Erdfelder, E.; Lang, A.G.; Buchner, A. G*Power 3: A Flexible Statistical Power Analysis Program for the Social, Behavioral, and Biomedical Sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Etxebarria, N.; Wright, J.; Jeacocke, H.; Mesquida, C.; Pyne, D.B. Running Your Best Triathlon Race. Int. J. Sport. Physiol. Perform. 2021, 16, 744–747. [Google Scholar] [CrossRef] [PubMed]
- Ofoghi, B.; Zeleznikow, J.; Macmahon, C.; Rehula, J.; Dwyer, D.B. Performance Analysis and Prediction in Triathlon. J. Sport. Sci. 2016, 34, 607–612. [Google Scholar] [CrossRef]
- Hausswirth, C.; le Meur, Y.; Bieuzen, F.; Brisswalter, J.; Bernard, T. Pacing Strategy during the Initial Phase of the Run in Triathlon: Influence on Overall Performance. Eur. J. Appl. Physiol. 2010, 108, 1115–1123. [Google Scholar] [CrossRef]
- Puccinelli, P.J.; Lima, G.H.O.; Pesquero, J.B.; de Lira, C.A.B.; Vancini, R.L.; Nikolaids, P.T.; Knechtle, B.; Andrade, M.S. Previous Experience, Aerobic Capacity and Body Composition Are the Best Predictors for Olympic Distance Triathlon Performance: Predictors in Amateur Triathlon. Physiol. Behav. 2020, 225, 113110. [Google Scholar] [CrossRef]
- Murphy, W.G. The Sex Difference in Haemoglobin Levels in Adults—Mechanisms, Causes, and Consequences. Blood Rev. 2014, 28, 41–47. [Google Scholar] [CrossRef]
- Howden, E.J.; Perhonen, M.; Peshock, R.M.; Zhang, R.; Arbab-Zadeh, A.; Adams-Huet, B.; Levine, B.D. Females Have a Blunted Cardiovascular Response to One Year of Intensive Supervised Endurance Training. J. Appl. Physiol. 2015, 119, 37–46. [Google Scholar] [CrossRef]
- Holloszy, J.O.C. Adaptations of Skeletal Muscle to Endurance Exercise and Their Metabolic Consequences. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 1984, 56, 831–838. [Google Scholar] [CrossRef]
- Jeukendrup, A.E. Carbohydrate Intake during Exercise and Performance. Nutrition 2004, 20, 669–677. [Google Scholar] [CrossRef]
- Périard, J.D.; Eijsvogels, T.M.H.; Daanen, H.A.M. Exercise under Heat Stress: Thermoregulation, Hydration, Performance Implications, and Mitigation Strategies. Physiol. Rev. 2021, 101, 1873–1979. [Google Scholar] [CrossRef] [PubMed]
- Tarnopolsky, L.J.; MacDougall, J.D.; Atkinson, S.A.; Tarnopolsky, M.A.; Sutton, J.R. Gender Differences in Substrate for Endurance Exercise. J. Appl. Physiol. 1990, 68, 302–308. [Google Scholar] [CrossRef] [PubMed]
- Nelson, R.C.; Brooks, C.M.; Pike, N.L. Biomechanical Comparison of Male and Female Distance Runners. Ann. N. Y. Acad. Sci. 1977, 301, 793–807. [Google Scholar] [CrossRef] [PubMed]
- Temesi, J.; Arnal, P.J.; Rupp, T.; Féasson, L.; Cartier, R.; Gergelé, L.; Verges, S.; Martin, V.; Millet, G.Y. Are Females More Resistant to Extreme Neuromuscular Fatigue? Med. Sci. Sport. Exerc. 2015, 47, 1372–1382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Male (n = 22) | Female (n = 19) | p-Value | Power (1-ß) | Effect Size (d) | CI for Effect Size | |
---|---|---|---|---|---|---|
(L/min) | 4.00 ± 0.52 | 2.89 ± 0.40 | <0.001 | 1.00 | 2.39 | 1.3 to 3.4 |
(mL/kg/min) | 54.0 ± 5.1 | 49.8 ± 7.7 | 0.047 | 0.64 | 0.64 | 0.1 to 1.2 |
MAS (km/h) | 17 ± 2 | 15 ± 2 | 0.001 | 0.93 | 1.00 | 0.6 to 1.4 |
at VT | 74.4 ± 4.9 | 76.1 ± 5.4 | 0.298 | 0.26 | 0.32 | −0.2 to 0.8 |
Speed at VT (km/h) | 11.8 ± 1.1 | 10.7 ± 1.5 | 0.021 | 0.83 | 0.83 | 0.3 to 1.4 |
at RCP | 89.9 ± 3.6 | 90.6 ± 4.0 | 0.560 | 0.14 | 0.18 | −0.3 to 0.7 |
Speed at RCP (km/h) | 14.3 ± 1.2 | 12.8 ± 1.6 | 0.001 | 0.95 | 1.06 | 0.6 to 1.5 |
Mean speed in running split (km/h) | 12.1 ± 1.7 | 11.7 ± 1.8 | 0.506 | 0.18 | 0.23 | −0.4 to 0.8 |
% RCP maintained during the running split | 84.0 ± 8.7 | 91.2 ± 7.0 | 0.005 | 0.88 | 0.91 | 0.4 to 1.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Araújo Moury Fernandes, G.C.; Barbosa Junior, J.G.G.; Seffrin, A.; Vivan, L.; de Lira, C.A.B.; Vancini, R.L.; Weiss, K.; Knechtle, B.; Andrade, M.S. Amateur Female Athletes Perform the Running Split of a Triathlon Race at Higher Relative Intensity than the Male Athletes: A Cross-Sectional Study. Healthcare 2023, 11, 418. https://doi.org/10.3390/healthcare11030418
De Araújo Moury Fernandes GC, Barbosa Junior JGG, Seffrin A, Vivan L, de Lira CAB, Vancini RL, Weiss K, Knechtle B, Andrade MS. Amateur Female Athletes Perform the Running Split of a Triathlon Race at Higher Relative Intensity than the Male Athletes: A Cross-Sectional Study. Healthcare. 2023; 11(3):418. https://doi.org/10.3390/healthcare11030418
Chicago/Turabian StyleDe Araújo Moury Fernandes, Guilherme Corrêa, José G. G. Barbosa Junior, Aldo Seffrin, Lavínia Vivan, Claudio A. B. de Lira, Rodrigo L. Vancini, Katja Weiss, Beat Knechtle, and Marilia S. Andrade. 2023. "Amateur Female Athletes Perform the Running Split of a Triathlon Race at Higher Relative Intensity than the Male Athletes: A Cross-Sectional Study" Healthcare 11, no. 3: 418. https://doi.org/10.3390/healthcare11030418
APA StyleDe Araújo Moury Fernandes, G. C., Barbosa Junior, J. G. G., Seffrin, A., Vivan, L., de Lira, C. A. B., Vancini, R. L., Weiss, K., Knechtle, B., & Andrade, M. S. (2023). Amateur Female Athletes Perform the Running Split of a Triathlon Race at Higher Relative Intensity than the Male Athletes: A Cross-Sectional Study. Healthcare, 11(3), 418. https://doi.org/10.3390/healthcare11030418