Angiogenin Levels and Carotid Intima-Media Thickness in Patients with Type 1 Diabetes and Metabolic Syndrome
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Design and Population
2.2. Metabolic Syndrome Criteria
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rawshani, A.; Rawshani, A.; Franzén, S.; Eliasson, B.; Svensson, A.M.; Miftaraj, M.; McGuire, D.K.; Sattar, N.; Rosengren, A.; Gudbjörnsdottir, S. Mortality and Cardiovascular Disease in Type 1 and Type 2 Diabetes. N. Engl. J. Med. 2017, 376, 1407–1418. [Google Scholar] [CrossRef]
- Lind, M.; Svensson, A.M.; Kosiborod, M.; Gudbjörnsdottir, S.; Pivodic, A.; Wedel, H.; Dahlqvist, S.; Clements, M.; Rosengren, A. Glycemic Control and Excess Mortality in Type 1 Diabetes. N. Engl. J. Med. 2014, 371, 1972–1982. [Google Scholar] [CrossRef]
- Marx, N.; Federici, M.; Schütt, K.; Müller-Wieland, D.; Ajjan, R.A.; Antunes, M.J.; Christodorescu, R.M.; Crawford, C.; Di Angelantonio, E.; Eliasson, B.; et al. 2023 ESC Guidelines for the management of cardiovascular disease in patients with diabetes: Developed by the task force on the management of cardiovascular disease in patients with diabetes of the European Society of Cardiology (ESC). Eur. Heart J. 2023; online ahead of print. [Google Scholar]
- Siebert, J.; Reiwer-Gostomska, M. Angiogenin-new important parameter in the assessment of ischaemic heart disease? Kardiol. Pol. 2006, 64, 899–900. [Google Scholar]
- Tschesche, H.; Kopp, C.; Horl, W.H.; Hempelmann, U. Inhibition of degranulation of polymorphonuclear leukocytes by angiogenin and its tryptic fragment. J. Biol. Chem. 1994, 269, 30274–30280. [Google Scholar] [CrossRef] [PubMed]
- Trouillon, R.; Kang, D.K.; Park, H.; Chang, S.I.; Ohare, D. Angiogenin induces nitric oxide synthesis in endothelial cells through PI-3 and akt kinases. Biochemistry 2010, 49, 3282–3288. [Google Scholar] [CrossRef] [PubMed]
- Johnson, K.E.; Wilgus, T.A. Vascular Endothelial Growth Factor and Angiogenesis in the Regulation of Cutaneous Wound Repair. Adv. Wound Care 2014, 3, 647–661. [Google Scholar] [CrossRef]
- Siebert, J.; Reiwer-Gostomska, M.; Mysliwska, J.; Marek, N.; Raczynska, K.; Glasner, L. Glycemic control influences serum angiogenin concentrations in patients with type 2 diabetes. Diabetes Care 2010, 33, 1829–1830. [Google Scholar] [CrossRef]
- Siebert, J.; Reiwer-Gostomska, M.; Babinska, Z.; Myśliwska, J.; Myśliwski, A.; Skopińska-Rózewska, E.; Sommer, E.; Skopiński, P. Low serum angiogenin level concentrations in patients with type 2 diabetes. Diabetes Care 2007, 12, 3086–3087. [Google Scholar] [CrossRef] [PubMed]
- Chiarelli, F.; Pomilio, M.; Mohn, A.; Tumini, S.; Verrotti, A.; Mezzetti, A.; Cipollone, F.; Wasniewska, M.; Morgese, G.; Spagnoli, A. Serum angiogenin concentrations in young patients with diabetes mellitus. Eur. J. Clin. Investig. 2002, 32, 110–114. [Google Scholar] [CrossRef] [PubMed]
- Moens, A.L.; Goovaerts, I.; Claeys, M.J.; Vrints, C.J. Flow-mediated vasodilation: A diagnostic instrument, or an experimental tool? Chest 2005, 127, 2254–2263. [Google Scholar] [CrossRef]
- Stehouwer, C.D.A.; Lambert, J.; Donker, A.J.M.; Van Hinsbergh, V.W.M. Endothelial dysfunction and pathogenesis of diabetic angiopathy. Cardiovasc. Res. 1997, 34, 55–68. [Google Scholar] [CrossRef]
- Poznyak, A.V.; Sadykhov, N.K.; Kartuesov, A.G.; Borisov, E.E.; Melnichenko, A.A.; Grechko, A.V.; Orekhov, A.N. Hypertension as a risk factor for atherosclerosis: Cardiovascular risk assessment. Front. Cardiovasc. Med. 2022, 22, 959285. [Google Scholar] [CrossRef] [PubMed]
- Liao, M.; Chen, S.; Guo, R. Association between carotid ultrasonographic parameters and microvascular and macrovascular complications in diabetes: A systematic review and meta-analysis. J. Diabetes Its Complicat. 2023, 37, 108554. [Google Scholar] [CrossRef]
- Starzak, M.; Stanek, A.; Jakubiak, G.K.; Cholewka, A.; Cieślar, G. Arterial Stiffness Assessment by Pulse Wave Velocity in Patients with Metabolic Syndrome and Its Components: Is It a Useful Tool in Clinical Practice? Int. J. Environ. Res. Public Health 2022, 19, 10368. [Google Scholar] [CrossRef] [PubMed]
- Inkeri, J.; Tynjälä, A.; Forsblom, C.; Liebkind, R.; Tatlisumak, T.; Thorn, L.M.; Groop, P.H.; Shams, S.; Putaala, J.; Martola, J.; et al. Carotid intima-media thickness and arterial stiffness in relation to cerebral small vessel disease in neurologically asymptomatic individuals with type 1 diabetes. Acta Diabetol. 2021, 58, 929–937. [Google Scholar] [CrossRef]
- Wang, P.; Xu, Y.Y.; Lv, T.T.; Guan, S.Y.; Li, X.M.; Li, X.P.; Pan, H.F. Subclinical Atherosclerosis in Patients With Type 1 Diabetes Mellitus: A Systematic Review and Meta-Analysis. Angiology 2019, 70, 141–159. [Google Scholar] [CrossRef]
- Ne, J.Y.A.; Cai, T.Y.; Celermajer, D.S.; Caterson, I.D.; Gill, T.; Lee, C.M.Y.; Skilton, M.R. Obesity, arterial function and arterial structure—A systematic review and meta-analysis. Obes. Sci. Pract. 2017, 3, 171–184. [Google Scholar] [CrossRef] [PubMed]
- Polak, J.F.; Backlund, J.C.; Budoff, M.; Raskin, P.; Bebu, I.; Lachin, J.M.; DCCT/EDIC Research Group. Coronary Artery Disease Events and Carotid Intima-Media Thickness in Type 1 Diabetes in the DCCT/EDIC Cohort. J. Am. Heart Assoc. 2021, 10, e022922. [Google Scholar] [CrossRef] [PubMed]
- Willeit, P.; Tschiderer, L.; Allara, E.; Reuber, K.; Seekircher, L.; Gao, L.; Liao, X.; Lonn, E.; Gerstein, H.C.; Yusuf, S.; et al. Carotid Intima-Media Thickness Progression as Surrogate Marker for Cardiovascular Risk: Meta-Analysis of 119 Clinical Trials Involving 100,667 Patients. Circulation 2020, 142, 621–642. [Google Scholar] [CrossRef] [PubMed]
- Turkbey, E.B.; Backlund, J.C.; Gai, N.; Nacif, M.; van der Geest, R.J.; Lachin, J.M.; Armstrong, A.; Volpe, G.J.; Nazarian, S.; Lima, J.A.C.; et al. Left Ventricular Structure, Tissue Composition, and Aortic Distensibility in the Diabetes Control and Complications Trial/Epidemiology of Diabetes Intervention and Complications. Am. J. Cardiol. 2022, 174, 158–165. [Google Scholar] [CrossRef]
- McNeill, A.M.; Rosamond, W.D.; Girman, C.J.; Golden, S.H.; Schmidt, M.I.; East, H.E.; Ballantyne, C.M.; Heiss, G. The metabolic syndrome and 11-year risk of incident cardiovascular disease in the atherosclerosis risk in communities study. Diabetes Care 2005, 28, 385–390. [Google Scholar] [CrossRef] [PubMed]
- Kazlauskiene, L.; Butnoriene, J.; Norkus, A. Metabolic syndrome related to cardiovascular events in a 10-year prospective study. Diabetol. Metab. Syndr. 2015, 7, 102. [Google Scholar] [CrossRef] [PubMed]
- Ford, E.S. Risks for all-cause mortality, cardiovascular disease, and diabetes associated with the metabolic syndrome: A summary of the evidence. Diabetes Care 2005, 28, 1769–1778. [Google Scholar] [CrossRef]
- Gami, A.S.; Witt, B.J.; Howard, D.E.; Erwin, P.J.; Gami, L.A.; Somers, V.K.; Montori, V.M. Metabolic syndrome and risk of incident cardiovascular events and death. A systematic review and meta-analysis of longitudinal studies. J. Am. Coll. Cardiol. 2007, 49, 403–414. [Google Scholar] [CrossRef] [PubMed]
- Galassi, A.; Reynolds, K.; He, J. Metabolic syndrome and risk of cardiovascular disease: A meta-analysis. Am. J. Med. 2006, 119, 812–819. [Google Scholar] [CrossRef]
- Mottillo, S.; Filion, K.B.; Genest, J.; Joseph, L.; Pilote, L.; Poirier, P.; Rinfret, S.; Schiffrin, E.L.; Eisenberg, M.J. The metabolic syndrome and cardiovascular risk: A systematic review and meta-analysis. J. Am. Coll. Cardiol. 2010, 56, 1113–1132. [Google Scholar] [CrossRef]
- van Herpt, T.T.; Dehghan, A.; van Hoek, M.; Ikram, M.A.; Hofman, A.; Sijbrands, E.J.; Franco, O.H. The clinical value of metabolic syndrome and risks of cardiometabolic events and mortality in the elderly: The Rotterdam study. Cardiovasc. Diabetol. 2016, 15, 69. [Google Scholar] [CrossRef]
- Ju, S.Y.; Lee, J.Y.; Kim, D.H. Association of metabolic syndrome and its components with all-cause and cardiovascular mortality in the elderly. Medicine 2017, 96, e8491. [Google Scholar] [CrossRef]
- Guembe, M.J.; Fernandez-Lazaro, C.I.; Sayon-Orea, C.; Toledo, E.; Moreno Iribas, C.; RIVANA Study Investigators. Risk for cardiovascular disease associated with metabolic syndrome and its components: A 13-year prospective study in the RIVANA cohort. Cardiovasc. Diabetol. 2020, 19, 195. [Google Scholar] [CrossRef] [PubMed]
- Grundy, S.M. Metabolic Syndrome: A Multiplex Cardiovascular Risk Factor. J. Clin. Endocrinol. Metab. 2007, 92, 399–404. [Google Scholar] [CrossRef]
- Merger, S.R.; Kerner, W.; Stadler, M.; Zeyfang, A.; Jehle, P.; Müller-Korbsch, M.; Holl, R.W.; DPV Initiative; German BMBF Competence Network Diabetes Mellitus. Prevalence and comorbidities of double diabetes. Diabetes Res. Clin. Pract. 2016, 119, 48–56. [Google Scholar] [CrossRef]
- Kręcki, R.; Krzemińska-Pakuła, M.; Drożdż, J.; Szcześniak, P.; Peruga, J.Z.; Lipiec, P.; Orszulak-Michalak, D.; Kasprzak, J.D. Relationship of serum angiogenin, adiponectin and resistin levels with biochemical risk factors and the angiographic severity of three-vessel coronary disease. Cardiol. J. 2010, 17, 599–606. [Google Scholar]
- Dyck, P.J. Detection, characterization, and staging of polyneuropathy: Assessed in diabetics. Muscle Nerve 1988, 11, 21–32. [Google Scholar] [CrossRef] [PubMed]
- Singer, D.E.; Schachat, A.; Nathan, D.M.; Patz, A.; Kahn, R.; Alello, L.M.; Smith, R.; Mazzaferri, E.L.; Kreisberg, R.A.; White, L.J. Screening guidelines for diabetic retinopathy. Ann. Intern. Med. 1992, 116, 683–685. [Google Scholar] [CrossRef]
- Kozera, G.M.; Wolnik, B.; Kunicka, K.B.; Szczyrba, S.; Wojczal, J.; Schminke, U.; Nyka, W.M.; Bieniaszewski, L. Cerebrovascular reactivity, intima-media thickness, and nephropathy presence in patients with type 1 diabetes. Diabetes Care 2009, 32, 878–882. [Google Scholar] [CrossRef] [PubMed]
- Zimmet, P.; Magliano, D.; Matsuzawa, Y.; Alberti, G.; Shaw, J. The metabolic syndrome: A global public health problem and a new definition. J. Atheroscler. Thromb. 2005, 12, 295–300. [Google Scholar] [CrossRef] [PubMed]
- De Geest, B.; Mishra, M. The metabolic syndrome in obese and non-obese subjects: A reappraisal of the syndrome X of Reaven. Eur. J. Prev. Cardiol. 2023, 30, 1193–1194. [Google Scholar] [CrossRef] [PubMed]
- Osadnik, K.; Osadnik, T.; Gierlotka, M.; Windak, A.; Tomasik, T.; Mastej, M.; Kuras, A.; Jóźwiak, K.; Penson, P.E.; Lip, G.Y.H.; et al. Metabolic syndrome is associated with similar long-term prognosis in those living with and without obesity: An analysis of 45 615 patients from the nationwide LIPIDOGRAM 2004–2015 studies. Eur. J. Prev. Cardiol. 2023, 30, 1195–1204. [Google Scholar] [CrossRef]
- Dobrowolski, P.; Prejbisz, A.; Kuryłowicz, A.; Baska, A.; Burchardt, P.; Chlebus, K.; Dzida, G.; Jankowski, P.; Jaroszewicz, J.; Jaworski, P.; et al. Metabolic syndrome—A new definition and management guidelines: A joint position paper by the Polish Society of Hypertension, Polish Society for the Treatment of Obesity, Polish Lipid Association, Polish Association for Study of Liver, Polish Society of Family Medicine, Polish Society of Lifestyle Medicine, Division of Prevention and Epidemiology Polish Cardiac Society, “Club 30” Polish Cardiac Society, and Division of Metabolic and Bariatric Surgery Society of Polish Surgeons. Arch. Med. Sci. 2022, 18, 1133–1156. [Google Scholar]
- Malamitsi-Puchner, A.; Sarandakou, A.; Dafogianni, C.; Tziotis, J.; Bartsocas, C.S. Serum angiogenin levels in children and adolescents with insulin-dependent diabetes mellitus. Pediatr. Res. 1998, 43, 798–800. [Google Scholar] [CrossRef]
- Burgmann, H.; Hollenstein, U.; Maca, T.; Zedwitz-Liebenstein, K.; Thalhammer, F.; Koppensteiner, R.; Ehringer, H.; Graninger, W. Increased serum laminin and angiogenin concentrations in patients with peripheral arterial occlusive disease. J. Clin. Pathol. 1996, 49, 508–510. [Google Scholar] [CrossRef] [PubMed]
- Höbaus, C.; Pesau, G.; Zierfuss, B.; Koppensteiner, R.; Schernthaner, G.H. Angiogenin—A Proposed Biomarker for Cardiovascular Disease-Is Not Associated with Long-Term Survival in Patients with Peripheral Artery Disease. Angiology 2021, 72, 855–860. [Google Scholar] [CrossRef] [PubMed]
- Marek-Trzonkowska, N.; Kwieczyńska, A.; Reiwer-Gostomska, M.; Koliński, T.; Molisz, A.; Siebert, J. Arterial Hypertension Is Characterized by Imbalance of Pro-Angiogenic versus Anti-Angiogenic Factors. PLoS ONE. 2015, 10, e0126190. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Cai, Y.; Zhou, W.; Sheng, J.; Xu, Z. The Potential of Angiogenin as a Serum Biomarker for Diseases: Systematic Review and Meta-Analysis. Dis. Markers. 2018, 2018, 1984718. [Google Scholar] [CrossRef]
- Fadini, G.P.; Albiero, M.; Bonora, B.M.; Avogaro, A. Angiogenic Abnormalities in Diabetes Mellitus: Mechanistic and Clinical Aspects. J. Clin. Endocrinol. Metab. 2019, 104, 5431–5444. [Google Scholar] [CrossRef]
- Jia, Y.; Baumann, T.K.; Wang, R.K. Label-free 3D optical microangiography imaging of functional vasa nervorum and peripheral microvascular tree in the hind limb of diabetic mice. J. Innov. Opt. Health Sci. 2010, 3, 307–313. [Google Scholar] [CrossRef]
- Powell, H.C.; Rosoff, J.; Myers, R.R. Microangiopathy in human diabetic neuropathy. Acta Neuropathol. 1985, 68, 295–305. [Google Scholar] [CrossRef]
- Werner, G.S.; Richartz, B.M.; Heink, S.; Ferrari, M.; Figulla, H.R. Impaired acute collateral recruitment as a possible mechanism for increased cardiac adverse events in patients with diabetes mellitus. Eur. Heart J. 2003, 24, 1134–1142. [Google Scholar] [CrossRef]
- Purushothaman, K.R.; Purushothaman, M.; Muntner, P.; Lento, P.A.; O’Connor, W.N.; Sharma, S.K.; Fuster, V.; Moreno, P.R. Inflammation, neovascularization and intra-plaque hemorrhage are associated with increased reparative collagen content: Implication for plaque progression in diabetic atherosclerosis. Vasc. Med. 2011, 16, 103–108. [Google Scholar] [CrossRef]
- Hayden, M.R.; Tyagi, S.C. Vasa vasorum in plaque angiogenesis, metabolic syndrome, type 2 diabetes mellitus, and atheroscleropathy: A malignant transformation. Cardiovasc. Diabetol. 2004, 3, 1. [Google Scholar] [CrossRef]
- Neubauer-Geryk, J.; Kozera, G.M.; Wolnik, B.; Szczyrba, S.; Nyka, W.M.; Bieniaszewski, L. Angiogenin in middle-aged type 1 diabetes patients. Microvasc. Res. 2012, 84, 387–389. [Google Scholar] [CrossRef] [PubMed]
- Su, E.; Yu, P.; Zhang, B.; Zhang, A.; Xie, S.; Zhang, C.; Li, S.; Zou, Y.; Liu, M.; Jiang, H. Endothelial Intracellular ANG (Angiogenin) Protects Against Atherosclerosis by Decreasing Endoplasmic Reticulum Stress. Arterioscler. Thromb. Vasc. Biol. 2022, 42, 305–325. [Google Scholar] [CrossRef]
- Cerit, M.N.; Sendur, H.N.; Bolayır, B.; Cerit, E.T.; Cindil, E.; Yaşım Aktürk, M.; Baloş Törüner, F.; Özhan Oktar, S. Evaluation of common carotid artery in type 1 diabetes mellitus patients through speckle tracking carotid strain ultrasonography. Diagn. Interv. Radiol. 2021, 27, 195–205. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, D.; Gando, Y.; Murakami, H.; Kawano, H.; Yamamoto, K.; Morishita, A.; Miyatake, N.; Miyachi, M. Longitudinal trajectory of vascular age indices and cardiovascular risk factors: A repeated-measures analysis. Sci. Rep. 2023, 13, 5401. [Google Scholar] [CrossRef] [PubMed]
- Distiller, L.A.; Joffe, B.I.; Brown, V.; Distiller, G.B. The effect of features of the metabolic syndrome on atherosclerotic risk in relatively long-surviving patients with type 1 diabetes. Metab. Syndr. Relat. Disord. 2010, 8, 539–543. [Google Scholar] [CrossRef]
- Shah, A.S.; Dabelea, D.; Fino, N.F.; Dolan, L.M.; Wadwa, R.P.; D’Agostino, R., Jr.; Hamman, R.; Marcovina, S.; Daniels, S.R.; Urbina, E.M. Predictors of Increased Carotid Intima-Media Thickness in Youth with Type 1 Diabetes: The SEARCH CVD Study. Diabetes Care 2016, 39, 418–430. [Google Scholar] [CrossRef]
- Karikkineth, A.C.; AlGhatrif, M.; Oberdier, M.T.; Morrell, C.; Palchamy, E.; Strait, J.B.; Ferrucci, L.; Lakatta, E.G. Sex Differences in Longitudinal Determinants of Carotid Intima Medial Thickening with Aging in a Community-Dwelling Population: The Baltimore Longitudinal Study on Aging. J. Am. Heart Assoc. 2020, 9, e015396. [Google Scholar] [CrossRef] [PubMed]
- Mućka, S.; Miodońska, M.; Jakubiak, G.K.; Starzak, M.; Cieślar, G.; Stanek, A. Endothelial Function Assessment by Flow-Mediated Dilation Method: A Valuable Tool in the Evaluation of the Cardiovascular System. Int. J. Environ. Res. Public Health 2022, 19, 11242. [Google Scholar] [CrossRef]
Control Group | Diabetic Patients | p for Between-Group Comparison | Diabetic Patient Subgroups According to IDF 2005 | p for Between-Subgroup Comparison | ||
---|---|---|---|---|---|---|
Characteristics | n = 34 | n = 56 | Without MS n = 36 | With MS n = 20 | ||
Mean ± SD and Median (Range) | Mean ± SD and Median (Range) | |||||
Males, n (%) | 14 (41.2%) | 25 (44.6) | 0.75 | 12 (33.3) | 13 (65) | 0.02 |
Age, years | 37.1 ± 6.6 | 38.7 ± 6.3 | 0.31 | 36.6 ± 5.1 | 40.1 ± 7 | 0.03 |
(26.3–51.3) | (25–53) | (25–48) | (33–54) | |||
Onset of diabetes [age] | n.a. | 19.2 ± 7.1 | n.a. | 17 ± 6.3 | 20.5 ± 9 | 0.048 |
(3–39) | (3–29) | (3–39) | ||||
Duration of diabetes [years] | n.a. | 19.5 ± 6.6 | n.a. | 18.7 ± 7.1 | 19.54 ± 6 | 0.85 |
(4.5–35.3) | (4.5–35.3) | (12–35) | ||||
Hypertension, n (%) | 0 | 10 (17.9) | 0.02 | 3 (8.3) | 7 (35) | 0.03 |
ACEI/ARB/ B-blockers, n (%) | 0 | 10 (17.9) | 0.02 | 5 (13.9) | 5 (25) | 0.5 |
Smokers, n (%) | 3 (8.8) | 11 (19.6) | 0.28 | 9 (25) | 2 (10) | 0.32 |
Package-years, n | 0 (0–20) | 0 (0–20) | 0.4 | 0 (0–20) | 0 (0–19) | 0.42 |
Hormonal contraception, n (%) | 3 (8.8) | 3 (5.4) | 0.8 | 2 (5.6) | 1 (5) | 0.6 |
Microangiopathy, n (%) | n.a. | 34 (61.7) | n.a. | 20 (55.6) | 14 (70) | 0.29 |
Statin treatment, n (%) | 0 | 6 (10.7) | 0.12 | 3 (8.3) | 3 (15) | 0.75 |
Episodes of severe hypoglicaemia [N/last year] | n.a. | 0 (0–10) | n.a. | 0 (0–5) | 1 (0–10) | 0.07 |
Episodes of mild hypoglicaemia [N/last month] | n.a. | 4 (0–30) | n.a. | 4 (0–30) | 4 (0–30) | 0.85 |
BMI [kg/m2] | 23.6 | 24.5 | 0.37 | 23.1 | 28.5 | <0.001 |
(20.1–33.3) | (19–27.3) | (19–27.2) | (5.1–37.3) | |||
Systolic blood pressure [mmHg] | 130 | 133 | 0.1 | 130 | 139 | 0.18 |
(94–189) | (83–180) | (83–180) | (103–168) | |||
Diastolic blood pressure [mmHg] | 70 | 66 | 0.47 | 65 | 70 | 0.56 |
(45–113) | (45–120) | (45–120) | (48–86) |
Control Group | Diabetic Patients | p for Between-Group comparison | Diabetic Patient Subgroups According to IDF 2005 | p for Between-Subgroup Comparison | ||
---|---|---|---|---|---|---|
Characteristics | n = 34 | n = 56 | Without MS n = 36 | With MS n = 20 | ||
Mean ± SD and Median (Range) | Mean ± SD and Median (Range) | |||||
HbA1c [%] | 5.5 | 7.61 | <0.001 | 7.5 | 8.2 | 0.11 |
(4.5–6.1) | (6–10) | (6–10) | (6.5–9.8) | |||
Insulin dose units/24 h | n.a. | 53 | n.a. | 48 | 69 | <0.001 |
(24–109) | (24–94) | (40.9–109) | ||||
Insulin dose units/kg | n.a. | 0.71 | n.a. | 0.71 | 0.79 | 0.69 |
(0.36–1.16) | (0.36–1.16) | (0.46–1.13) | ||||
C-reactive protein [mg/L] | 0.7 | 1.59 | <0.001 | 1.2 | 2.65 | 0.01 |
(0.2–9) | (0.3–9) | (0.3–7.3) | (0.4–9) | |||
Serum creatinine [mg/dL] | 0.75 | 0.79 | 0.2 | 0.79 | 0.79 | 0.48 |
(0.7–1.1) | (0.6–1.2) | (0.6–1.0) | (0.65–1.17) | |||
Urine albumin/creatinine ratio [μg alb./mg creat.] | 6.87 | 11.7 | 0.002 | 10.4 | 12.6 | 0.22 |
(1.8–25.3) | (1.2–1016.3) | (1.2–835.8) | (5.9–1016.3) | |||
Total cholesterol [mg/dL] | 194 | 185.5 | 0.35 | 176.5 | 190 | 0.12 |
(128–278) | (143–302) | (143–302) | (157–236) | |||
Cholesterol HDL [mg/dL] | 50.5 | 58 | 0.07 | 60.5 | 57 | 0.81 |
(33–90) | (33–115) | (36–111) | (33–115) | |||
Cholesterol LDL [mg/dL] | 126 | 112.5 | 0.09 | 109.5 | 117 | 0.35 |
(79–185) | (49–214) | (49–214) | (60–169) | |||
Triglicerides [mg/dL] | 80 | 65 | 0.32 | 60 | 85.5 | 0.01 |
(35–223) | (38–299) | (38–299) | (46–191) | |||
Cholesterol non-HDL [mg/dL] | 140 | 126 | 0.09 | 120.5 | 133.5 | 0.14 |
(89–220) | (57–256) | (57–256) | (75–187) | |||
Serum angiogenin [ng/mL] | 455.1 | 372.3 | 0.03 | 351 | 394.4 | 0.09 |
(230.6–580.6) | (190.4–999.8) | (190.4–999.8) | (270–925) | |||
Serum angiogenin [ng/mL] after the exclusion of patients with IDF criteria | 453.6 | 351 | 0.02 | n.a. | n.a. | n.a. |
(230.6–580.6) | (190.4–999.8) | |||||
Coefficients of variation for serum angiogenin [%] | 20.52 | 41.6 | ||||
Serum angiogenin [ng/mL] after the exclusion of patients with microangiopathy | 455.1 | 370.3 | 0.13 | 343.3 | 440.5 | 0.94 |
(230.6–580.6) | (199.8–999.8) | (199.8–999.8) | (272.4–924.8) | |||
Serum angiogenin [ng/mL] after the exclusion of patients with hypertension and/or treatment with ACEI/ARB/B-blockers | 455.1 | 369.2 | 0.02 | 341.6 | 440.5 | 0.5 |
(230.6–580.6) | (190.4–999.8) | (190.4–999.8) | (272.4–924.8) | |||
Serum angiogenin [ng/mL] after the exclusion of smokers | 456.5 | 365.4 | 0.003 | 341.6 | 394.4 | 0.02 |
(230.6–580.6) | (190.4–924.8) | (190.4–500.4) | (269.6–924.8) | |||
cIMT [mm] | 0.52 | 0.54 | 0.06 | 0.5 | 0.56 | 0.003 |
(0.4–0.7) | (0.4–1.0) | (0.4–0.8) | (0.46–0.99) | |||
cIMT [mm] after the exclusion of patients with IDF criteria | 0.51 | 0.52 | 0.55 | n.a. | n.a. | n.a. |
(0.4–0.6) | (0.4–0.8) | |||||
cIMT [mm] after the exclusion of patients with microangiopathy | 0.52 | 0.53 | 0.62 | 0.5 | 0.55 | 0.04 |
(0.39–0.66) | (0.41–0.66) | (0.4–0.7) | (0.52–0.63) | |||
cIMT [mm] after the exclusion of patients with hypertension and/or treatment with ACEI/ARB/B-blockers | 0.52 | 0.53 | 0.10 | 0.51 | 0.56 | 0.001 |
(0.4–0.7) | (0.4–1.0) | (0.41–0.77) | (0.52–0.99) | |||
cIMT [mm] after the exclusion of smokers | 0.52 | 0.54 | 0.09 | 0.51 | 0.56 | 0.006 |
(0.4–0.7) | (0.4–1.0) | (0.4–0.8) | (0.46–0.99) |
Parameter | Adjusted for | Diabetic Patient Subgroups According to IDF 2005 | p for Between-Subgroup Comparison | |
---|---|---|---|---|
Without MS n = 36 | With MS n = 20 | |||
cIMT [mm] | 0.5 (0.4–0.8) | 0.56 (0.46–0.99) | 0.003 | |
gender | 0.051 | |||
age | 0.25 | |||
age of DM onset | 0.047 | |||
creatinine | 0.03 | |||
Serum angiogenin [ng/mL] | 351 (190.4–999.8) | 394.4 (270–925) | 0.09 | |
gender | 0.26 | |||
age | 0.67 | |||
insulin/24 h | 0.89 | |||
smoking | 0.30 | |||
creatinine | 0.60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neubauer-Geryk, J.; Wielicka, M.; Kozera, G.M.; Bieniaszewski, L. Angiogenin Levels and Carotid Intima-Media Thickness in Patients with Type 1 Diabetes and Metabolic Syndrome. Biomedicines 2023, 11, 2591. https://doi.org/10.3390/biomedicines11092591
Neubauer-Geryk J, Wielicka M, Kozera GM, Bieniaszewski L. Angiogenin Levels and Carotid Intima-Media Thickness in Patients with Type 1 Diabetes and Metabolic Syndrome. Biomedicines. 2023; 11(9):2591. https://doi.org/10.3390/biomedicines11092591
Chicago/Turabian StyleNeubauer-Geryk, Jolanta, Melanie Wielicka, Grzegorz M. Kozera, and Leszek Bieniaszewski. 2023. "Angiogenin Levels and Carotid Intima-Media Thickness in Patients with Type 1 Diabetes and Metabolic Syndrome" Biomedicines 11, no. 9: 2591. https://doi.org/10.3390/biomedicines11092591
APA StyleNeubauer-Geryk, J., Wielicka, M., Kozera, G. M., & Bieniaszewski, L. (2023). Angiogenin Levels and Carotid Intima-Media Thickness in Patients with Type 1 Diabetes and Metabolic Syndrome. Biomedicines, 11(9), 2591. https://doi.org/10.3390/biomedicines11092591