Dynamic Configuration Method of Flexible Workshop Resources Based on IICA-NS Algorithm
Abstract
:1. Introduction
- A state-based hybrid driven resource configuration method is proposed and combined with the traditional cycle-driven method to form a new resource dynamic configuration framework.
- To realize the dynamic configuration of resources driven by the real-time state of the workshop, two novel bottleneck heuristic neighborhood structures are designed and integrated into the ICA optimization algorithm to enhance the algorithm’s optimization ability.
- Introducing the invasion strategy to improve the ICA to avoid the algorithm falling into local optimum.
2. Resource Dynamic Configuration Framework and Problem Description
2.1. Resource Dynamic Configuration Framework
2.2. Problem Description and Mathematical Model
3. Hybrid Evolutionary Algorithm IICA-NS
3.1. Encoding and Decoding
3.2. Imperial Creation and Initialization
3.3. Intra-Empire Competition
3.3.1. Assimilation Mechanism
3.3.2. Revolutionary Mechanism Based on Neighborhood Search
- (1)
- Neighborhood search for the same bottleneck machine
- If the earliest completion time of JP[v] is later than the earliest start time of process u, the earliest start time of process v must be later than the earliest start time of process u after exchanging process u and process v. Then the whole solution time extends.
- If the earliest start time of JP[v] is equal to the earliest completion time of JP[JP[v]], then exchanging JP[v] and MP[JP[v]] will not shorten the start time of JP[v]. The same is true for the post-shifting process. Based on the above situation, the algorithm of the same-bottleneck machine neighborhood search designed in this paper is as follows:
Algorithm 1: neighborhood search in the same bottleneck machine |
|
- (2)
- Neighborhood search across bottleneck machines
Algorithm 2: neighborhood search across the machines |
|
3.4. Extra-Empire Competition
3.4.1. Invasion Mechanism
3.4.2. Country Competition Extra-Empire
4. Case Study
4.1. Basic Data Preparation and Parameter Setting
4.2. Experimental Results and Discussion
5. Conclusions
- (1)
- The impact of disturbance on resource configuration is clarified, and a state-driven dynamic resource configuration framework is proposed.
- (2)
- Integrating the knowledge in the manufacturing field, from the perspective of the critical path, the revolutionary link of the imperial competition algorithm is improved through the bottleneck heuristic neighborhood structure, and the optimization efficiency of the algorithm is effectively improved. Compared with PSO, the optimal solution is improved by 8.695%.
- (3)
- Aiming at the problem that the ICA algorithm is easy to fall into the local optimum, a foreign population invasion strategy is proposed to improve the original algorithm to strengthen its optimization ability of the algorithm. Compared with ICA, the optimal solution is improved by 4.348%.
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, G.; Zhang, G.; Guo, X.; Zhang, Y. Digital twin-driven service model and optimal allocation of manufacturing resources in shared manufacturing. J. Manuf. Syst. 2021, 59, 165–179. [Google Scholar] [CrossRef]
- Pereira, M.T.; Santoro, M.C. An integrative heuristic method for detailed operations scheduling in assembly job shop systems. Int. J. Prod. Res. 2011, 49, 6089–6105. [Google Scholar] [CrossRef]
- Qiu, Y.; Ji, W.; Zhang, C. A hybrid machine learning and population knowledge mining method to minimize makespan and total tardiness of multi-variety products. Appl. Sci. 2019, 9, 5286. [Google Scholar] [CrossRef] [Green Version]
- Engin, O.; Güçlü, A. A new hybrid ant colony optimization algorithm for solving the no-wait flow shop scheduling problems. Appl. Soft Comput. 2018, 72, 166–176. [Google Scholar] [CrossRef]
- Wu, X.; Sun, Y. A green scheduling algorithm for flexible job shop with energy-saving measures. J. Clean. Prod. 2018, 172, 3249–3264. [Google Scholar] [CrossRef]
- Xiao, H.; Sun, K.; Pan, J.; Li, Y.; Liu, Y. Review of hybrid HVDC systems combining line communicated converter and voltage source converter. Int. J. Electr. Power Energy Syst. 2021, 129, 106713. [Google Scholar] [CrossRef]
- Zhang, C.; Jiang, P. RFID-driven energy-efficient control approach of CNC machine tools using deep belief networks. IEEE Trans. Autom. Sci. Eng. 2019, 17, 129–141. [Google Scholar] [CrossRef]
- Su, X.; Lu, J.; Chen, C.; Yu, J.; Ji, W. Dynamic Bottleneck Identification of Manufacturing Resources in Complex Manufacturing System. Appl. Sci. 2022, 12, 4195. [Google Scholar] [CrossRef]
- Berkhout, J.; Pauwels, E.; van der Mei, R.; Stolze, J.; Broersen, S. Short-term production scheduling with non-triangular sequence-dependent setup times and shifting production bottlenecks. Int. J. Prod. Res. 2021, 59, 727–751. [Google Scholar] [CrossRef]
- Tonke, D.; Grunow, M.; Akkerman, R. Robotic-cell scheduling with pick-up constraints and uncertain processing times. IISE Trans. 2019, 51, 1217–1235. [Google Scholar] [CrossRef]
- Dong, Y.; Ma, J.; Wang, S.; Liu, T.; Chen, X.; Huang, H. An Accurate Small Signal Dynamic Model for LCC-HVDC. IEEE Trans. Appl. Supercon. 2021, 31, 0603606. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, Z.; Ding, K.; Chan, F.T.; Ji, W. An energy-aware cyber physical system for energy Big data analysis and recessive production anomalies detection in discrete manufacturing workshops. Int. J. Prod. Res. 2020, 58, 7059–7077. [Google Scholar] [CrossRef]
- Dong, Y.; Sun, K.; Wang, J.; Wang, S.; Huang, H.; Liu, T.; Liu, Y. A time-delay correction control strategy for HVDC frequency regulation service. CSEE J. Power Energy Syst. 2022, 1–11. [Google Scholar] [CrossRef]
- Nouiri, M.; Bekrar, A.; Jemai, A.; Trentesaux, D.; Ammari, A.C.; Niar, S. Two stage particle swarm optimization to solve the flexible job shop predictive scheduling problem considering possible machine breakdowns. Comput. Ind. Eng. 2017, 112, 595–606. [Google Scholar] [CrossRef]
- Nouiri, M.; Bekrar, A.; Trentesaux, D. Towards energy efficient scheduling and rescheduling for dynamic flexible job shop problem. IFAC PapersOnLine 2018, 51, 1275–1280. [Google Scholar] [CrossRef]
- Sun, K.; Xiao, H.; Pan, J.; Liu, Y. VSC-HVDC interties for urban power grid enhancement. IEEE Trans. Power Syst. 2021, 36, 4745–4753. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, G.Q.; Sun, S.; Yang, T. Multi-agent based real-time production scheduling method for radio frequency identification enabled ubiquitous shopfloor environment. Comput. Ind. Eng. 2014, 76, 89–97. [Google Scholar] [CrossRef]
- Zhang, C.; Ji, W. Big data analysis approach for real-time carbon efficiency evaluation of discrete manufacturing workshops. IEEE Access 2019, 7, 107730–107743. [Google Scholar] [CrossRef]
- Zhang, C.; Jiang, P. Sustainability Evaluation of Process Planning for Single CNC Machine Tool under the Consideration of Energy-Efficient Control Strategies Using Random Forests. Sustainability 2019, 11, 3060. [Google Scholar] [CrossRef] [Green Version]
- Salido, M.A.; Escamilla, J.; Barber, F.; Giret, A. Rescheduling in job-shop problems for sustainable manufacturing systems. J. Clean. Prod. 2017, 162, S121–S132. [Google Scholar] [CrossRef]
- Zakaria, Z.; Petrovic, S. Genetic algorithms for match-up rescheduling of the flexible manufacturing systems. Comput. Ind. Eng. 2012, 62, 670–686. [Google Scholar] [CrossRef]
- Sun, K.; Qiu, W.; Yao, W.; You, S.; Yin, H.; Liu, Y. Frequency injection based hvdc attack-defense control via squeeze-excitation double cnn. IEEE Trans. Power Syst. 2021, 36, 5305–5316. [Google Scholar] [CrossRef]
- Li, X.; Gao, L. An effective hybrid genetic algorithm and tabu search for flexible job shop scheduling problem. Int. J. Prod. Econ. 2016, 174, 93–110. [Google Scholar] [CrossRef]
- Zhang, G.; Hu, Y.; Sun, J.; Zhang, W. An improved genetic algorithm for the flexible job shop scheduling problem with multiple time constraints. Swarm Evol. Comput. 2020, 54, 100664. [Google Scholar] [CrossRef]
- Chaouch, I.; Driss, O.B.; Ghedira, K. A modified ant colony optimization algorithm for the distributed job shop scheduling problem. Procedia Comput. Sci. 2017, 112, 296–305. [Google Scholar] [CrossRef]
- Nouiri, M.; Bekrar, A.; Jemai, A.; Niar, S.; Ammari, A.C. An effective and distributed particle swarm optimization algorithm for flexible job-shop scheduling problem. J. Intell. Manuf. 2018, 29, 603–615. [Google Scholar] [CrossRef]
- Ding, H.; Gu, X. Hybrid of human learning optimization algorithm and particle swarm optimization algorithm with scheduling strategies for the flexible job-shop scheduling problem. Neurocomputing 2020, 414, 313–332. [Google Scholar] [CrossRef]
- Lei, D.; Li, M.; Wang, L. A two-phase meta-heuristic for multiobjective flexible job shop scheduling problem with total energy consumption threshold. IEEE Trans. Cybern. 2018, 49, 1097–1109. [Google Scholar] [CrossRef]
- Majid, K.; Asadollah, A.; Javad, B.; Fatemeh, M.R.; Zahra, S.; Wing, C.K.; Ashkan, N.P. Multi-objective optimization of energy use and environmental emissions for walnut production using imperialist competitive algorithm. Appl. Energy 2020, 284, 116342. [Google Scholar]
- Ahmadizar, F.; Farhadi, S. Single-machine batch delivery scheduling with job release dates, due windows and earliness, tardiness, holding and delivery costs. Comput. Oper. Res. 2015, 53, 194–205. [Google Scholar] [CrossRef]
- Yazdani, M.; Khalili, S.M.; Jolai, F. A parallel machine scheduling problem with two-agent and tool change activities: An efficient hybrid metaheuristic algorithm. Int. J. Comput. Integ. Manuf. 2016, 29, 1075–1088. [Google Scholar] [CrossRef]
- Seidgar, H.; Kiani, M.; Abedi, M.; Fazlollahtabar, H. An efficient imperialist competitive algorithm for scheduling in the two-stage assembly flow shop problem. Int. J. Prod. Res. 2014, 52, 1240–1256. [Google Scholar] [CrossRef]
- Zandieh, M.; Khatami, A.R.; Rahmati, S.H.A. Flexible job shop scheduling under condition-based maintenance: Improved version of imperialist competitive algorithm. Appl. Soft Comput. 2017, 58, 449–464. [Google Scholar] [CrossRef]
- Karimi, S.; Ardalan, Z.; Naderi, B.; Mohammadi, M. Scheduling flexible job-shops with transportation times: Mathematical models and a hybrid imperialist competitive algorithm. Appl. Math. Model. 2017, 41, 667–682. [Google Scholar] [CrossRef]
- Cruz Chávez, M.A.; Martínez Rangel, M.G.; Cruz Rosales, M.H. Accelerated simulated annealing algorithm applied to the flexible job shop scheduling problem. Int. Trans. Oper. Res. 2017, 24, 1119–1137. [Google Scholar] [CrossRef]
- Shen, L.; Dauzère-Pérès, S.; Neufeld, J.S. Solving the flexible job shop scheduling problem with sequence-dependent setup times. Eur. J. Oper. Res. 2018, 265, 503–516. [Google Scholar] [CrossRef]
- Palacios, J.J.; González, M.A.; Vela, C.R.; González-Rodríguez, I.; Puente, J. Genetic tabu search for the fuzzy flexible job shop problem. Comput. Oper. Res. 2015, 54, 74–89. [Google Scholar] [CrossRef] [Green Version]
- Marichelvam, M.K.; Geetha, M.; Tosun, Ö. An improved particle swarm optimization algorithm to solve hybrid flowshop scheduling problems with the effect of human factors—A case study. Comput. Oper. Res. 2020, 114, 104812. [Google Scholar] [CrossRef]
- Shi, F.; Zhao, S.; Meng, Y. Hybrid algorithm based on improved extended shifting bottleneck procedure and GA for assembly job shop scheduling problem. Int. J. Prod. Res. 2020, 58, 2604–2625. [Google Scholar] [CrossRef]
- Duan, J.; Feng, M.; Zhang, Q. Energy-efficient collaborative scheduling of heterogeneous multi-stage hybrid flowshop for large metallic component manufacturing. J. Clean Prod. 2022, 375, 134148. [Google Scholar] [CrossRef]
- Yang, W.; Su, J.; Yao, Y.; Yang, Z.; Yuan, Y. A novel hybrid whale optimization algorithm for flexible job-shop scheduling problem. Machines 2022, 10, 618. [Google Scholar] [CrossRef]
- Subramaniyan, M.; Skoogh, A.; Muhammad, A.S.; Bokrantz, J.; Johansson, B.; Roser, C. A generic hierarchical clustering approach for detecting bottlenecks in manufacturing. J. Manuf. Syst. 2020, 55, 143–158. [Google Scholar] [CrossRef]
- Subramaniyan, M.; Skoogh, A.; Salomonsson, H.; Bangalore, P.; Gopalakrishnan, M.; Sheikh Muhammad, A. Data-driven algorithm for throughput bottleneck analysis of production systems. Prod. Manuf. Res. 2018, 6, 225–246. [Google Scholar] [CrossRef]
- Peng, B.; Lü, Z.; Cheng, T.C.E. A tabu search/path relinking algorithm to solve the job shop scheduling problem. Comput. Oper. Res. 2015, 53, 154–164. [Google Scholar] [CrossRef]
Symbol | Definition |
---|---|
n | the total number of workpieces |
m | the total number of machines |
Ni | the number of processes of the workpiece i |
Ci | the completion time of workpiece i |
xijr | the decision variable for the machine selection of the process: when the process Oij selects the machine r, xijr = 1. Otherwise, xijr = 0 |
Cijr | the completion time of the j-th process of the i-th workpiece on the machine r |
pijr | the processing time of the l-th process of the k-th workpiece on the machine r |
Si(j+1) | the process completion time of the j-th process of the i-th workpiece, and the process start time of the j + 1-th procedure of the i-th workpiece |
Sklr | the start time of the l-th process of the k-th workpiece on the machine r |
Cklr | the completion time of the l-th process of the k-th workpiece on the machine r |
L | a sufficiently large positive number |
yijklr | the decision variable chosen for the process: when the process Oij is processed later than Okl on the machine r, yijklr = 0, otherwise, yijklr = 1 |
M | the machine set of the workshop |
mij | the processing machine of the processing process Oij |
Mij | the optional machine set of the processing process Oij, MijM |
the set consisting of the idle time of machine r | |
the available processing capacity of the machine r | |
Eq | the machine with the maximum bottleneck degree at different times |
gef | the shifting bottleneck degree of machine e in time window f |
ar | the duration of effective state in the station r |
amin | the minimum value of the duration of effective state of all machines in a particular stage |
Ur | the blockage time of station r |
Wr | the starvation time of station r |
Zf | the length of the current time window |
Symbols | Description |
---|---|
OS, MS | Initial operation and machine code |
OS′, MS′ | Updated operation and machine code sequence |
O | Bottleneck operation |
M(O) | Machine for processing the bottleneck operation O |
to, tv′ , tu′ | Processing time of operation o, v, u |
x1 , x2 | Machining operation on M(v′) and M(o) |
u, v | Processes that are moved backward and forward |
JP[i], MP[i] | Workpiece and machine pre-process of the process i |
JS[i], MS[i] | Subsequent operations on the workpiece and machine sequence of operation i |
SE[i], CE[i] | The earliest start and completion time of operation i |
SL[i], CL[i] | The latest start and completion time of the process i |
Order | Part Name | Order | Part Name | Order | Part Name |
---|---|---|---|---|---|
1 | Brake disc | 4 | Coupling | 7 | Absorbent sheet |
2 | Output shaft | 5 | Brake arm | 8 | Pin shaft |
3 | Traction wheel | 6 | Clamping piece | 9 | Iron core |
Name | Equipment Type | Equipment Model | CNC System | Main Motor Power (kW) | Spindle Speed (rpm) |
---|---|---|---|---|---|
M1 | Drilling and Milling Center 1 | TC-R2B | CNC-B00 | 7.5 | 16,000 |
M2 | Drilling and Milling Center 2 | TC-R2B | CNC-B00 | 7.5 | 16,000 |
M3 | Precision Machine Tool 1 | BNC427C | FANUC 160i-B | 7.5 | 6000 |
M4 | Precision Machine Tool 2 | BNC427C | FANUC 160i-B | 7.5 | 6000 |
M5 | Precision Machine Tool 3 | BNC427C | FANUC 160i-B | 7.5 | 6000 |
M6 | CNC Lathe 1 | L200E-M | OSP-P200LA-R | 11 | 6000 |
M7 | CNC Lathe 2 | L200E-M | OSP-P200LA-R | 11 | 6000 |
M8 | CNC Lathe 3 | L200E-M | OSP-P200LA-R | 11 | 6000 |
M9 | Counter Turning Center 1 | LT2000EX | OKUMA | 5.5 | 6000 |
M10 | Counter Turning Center 2 | LT2000EX | OKUMA | 5.5 | 6000 |
M11 | Machining Center 1 | LJ-650 | FANUC Oi-M | 11/15 | 6000 |
M12 | Machining Center 2 | LJ-650 | FANUC Oi-M | 11/15 | 6000 |
M13 | Machining Center 3 | LJ-650 | FANUC Oi-M | 11/15 | 6000 |
Part | Process | Machine Processing Time | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
M1 | M2 | M3 | M4 | M5 | M6 | M7 | M8 | M9 | M10 | M11 | M12 | M13 | ||
Part1 | O11 | 6 | 6 | - | 9 | 10 | 11 | 4 | 5 | 4 | 7 | 6 | 8 | 9 |
O12 | 2 | 4 | 3 | 6 | 7 | 2 | 2 | 7 | 5 | 8 | 6 | 2 | 4 | |
… | … | … | … | … | … | … | … | … | … | … | … | … | … | |
Part2 | O21 | 9 | 9 | 3 | 7 | - | 5 | 6 | 7 | 7 | 7 | 4 | 9 | 9 |
O22 | 5 | 7 | 8 | 5 | 8 | 5 | 3 | 9 | 4 | 5 | 5 | 4 | 7 | |
… | … | … | … | … | … | … | … | … | … | … | … | … | … | |
Part3 | O31 | 9 | 4 | 4 | 5 | 6 | 10 | 10 | - | 10 | 5 | 4 | 6 | 10 |
O32 | 10 | 9 | 7 | 8 | 4 | 9 | 5 | 2 | 8 | 5 | 8 | 8 | 7 | |
… | … | … | … | … | … | … | … | … | … | … | … | … | … | |
Part4 | O41 | 8 | 4 | 3 | 7 | 6 | 9 | 10 | 5 | 8 | 5 | 10 | 9 | 10 |
O42 | 3 | 10 | 4 | 3 | 4 | 2 | 9 | 5 | 10 | - | 9 | 10 | 5 | |
… | … | … | … | … | … | … | … | … | … | … | … | … | … | |
Part5 | O51 | 6 | 3 | 8 | 5 | 4 | 3 | 3 | 3 | 9 | 6 | 5 | 10 | 3 |
O52 | 4 | 9 | 8 | 8 | 8 | 5 | 4 | 7 | 10 | 4 | 3 | 7 | 9 | |
… | … | … | … | … | … | … | … | … | … | … | … | … | … | |
Part6 | O61 | 9 | 9 | 9 | 9 | 5 | 8 | 6 | 7 | 6 | 3 | 3 | 6 | 10 |
O62 | 7 | 7 | 10 | 9 | 4 | 9 | 9 | 5 | 7 | 10 | 6 | 5 | 5 | |
… | … | … | … | … | … | … | … | … | … | … | … | … | … | |
Part7 | O71 | 8 | 4 | 4 | 7 | 7 | 8 | 8 | 9 | 6 | 6 | 7 | 7 | 9 |
O72 | 3 | 6 | 6 | 3 | 3 | 7 | 6 | 9 | 6 | 7 | 5 | 7 | 7 | |
… | … | … | … | … | … | … | … | … | … | … | … | … | … | |
Part8 | O81 | 9 | 10 | 4 | 7 | 9 | 9 | 5 | 4 | 10 | 5 | 5 | 3 | 6 |
O82 | 9 | 5 | 8 | 9 | 5 | 3 | 10 | 5 | 7 | 5 | 10 | 6 | 9 | |
… | … | … | … | … | … | … | … | … | … | … | … | … | … | |
Part9 | O91 | 5 | 3 | 3 | 10 | 3 | 8 | 3 | 6 | 7 | 7 | 5 | 8 | 4 |
O92 | 8 | 5 | 6 | 3 | 8 | 8 | 5 | 9 | 7 | 3 | 5 | 5 | 7 | |
… | … | … | … | … | … | … | … | … | … | … | … | … | … |
Small Scale Levels | Middle Scale Levels | Large Scale Levels | |||
---|---|---|---|---|---|
1 | [P1, P5, P8] | 4 | [P1, P4, P7, P8, P9] | 7 | [P2, P3, P4, P6, P7, P8, P9] |
2 | [P2, P3, P7] | 5 | [P2, P3, P4, P5, P6] | 8 | [P1, P3, P4, P5, P6, P8, P9] |
3 | [P4, P6, P9] | 6 | [P1, P3, P5, P8, P9] | 9 | [P1, P2, P3, P5, P7, P8, P9,] |
Algorithm | Parameter Settings |
---|---|
IICA-NS | Revolution probability: 0.1; Assimilation probability: 0.9; Intrusion probability: 0.29; imperialist countries: 15 |
ICA | Revolution probability: 0.1; Assimilation probability: 0.9; imperialist countries: 15 |
PSO | C1, C2 = 2, inertia factor: 0.9 |
GA | Mutation probability: 0.1; Crossover probability: 0.9 |
SSA | Discoverer PD = 20%; Followers SD = 10%; Alert threshold R2 0.8 |
MFO | b = 1; dimension: 13 |
Task Set | ICA-VNS | ICA | GA | PSO | MFO | SSA |
---|---|---|---|---|---|---|
PTS1 | 15 | 15 | 16 | 16 | 15 | 16 |
PTS2 | 16 | 16 | 15 | 16 | 15 | 16 |
PTS3 | 16 | 17 | 16 | 17 | 16 | 16 |
PTS4 | 19 | 19 | 20 | 21 | 21 | 20 |
PTS5 | 19 | 20 | 21 | 21 | 20 | 21 |
PTS6 | 18 | 18 | 19 | 19 | 19 | 19 |
PTS7 | 22 | 23 | 26 | 25 | 25 | 25 |
PTS8 | 23 | 24 | 25 | 26 | 24 | 25 |
PTS9 | 22 | 24 | 24 | 25 | 24 | 24 |
Task Set | ICA-VNS | ICA | GA | PSO | MFO | SSA |
---|---|---|---|---|---|---|
PTS1 | 0 | 0 | 6.67 | 6.67 | 0 | 6.67 |
PTS2 | 6.67 | 6.67 | 0 | 6.67 | 0 | 6.67 |
PTS3 | 0 | 6.25 | 0 | 6.25 | 0 | 0 |
PTS4 | 0 | 0.00 | 5.26 | 10.53 | 10.53 | 5.26 |
PTS5 | 0 | 5.26 | 10.53 | 10.53 | 5.26 | 10.53 |
PTS6 | 0 | 0.00 | 5.56 | 5.56 | 5.56 | 5.56 |
PTS7 | 0 | 4.55 | 18.18 | 13.64 | 13.64 | 13.64 |
PTS8 | 0 | 4.35 | 8.70 | 13.04 | 4.35 | 8.70 |
PTS9 | 0 | 9.09 | 9.09 | 13.64 | 9.09 | 9.09 |
Task Set | ICA-VNS | ICA | GA | PSO | MFO | SSA |
---|---|---|---|---|---|---|
PTS1 | 28.94 | 32.04 | 10.00 | 17.51 | 9.65 | 10.23 |
PTS2 | 29.07 | 32.18 | 10.04 | 17.59 | 9.84 | 10.18 |
PTS3 | 29.35 | 32.49 | 10.14 | 17.76 | 9.87 | 10.37 |
PTS4 | 31.71 | 33.23 | 10.72 | 18.18 | 10.12 | 11.48 |
PTS5 | 31.85 | 33.37 | 10.76 | 18.25 | 10.25 | 11.53 |
PTS6 | 31.50 | 33.01 | 10.66 | 18.07 | 10.23 | 11.44 |
PTS7 | 33.78 | 36.49 | 10.92 | 30.12 | 11.64 | 12.36 |
PTS8 | 34.83 | 37.62 | 11.17 | 31.06 | 11.43 | 12.43 |
PTS9 | 33.36 | 36.03 | 11.82 | 29.75 | 11.56 | 12.29 |
Task Set | ICA | GA | PSO | MFO | SSA |
---|---|---|---|---|---|
PTS1 | 0.0332 | 1.3082 × 10−7 | 2.6359 × 10−11 | 0.2465 | 1.2086 × 10−7 |
PTS2 | 0.0029 | 0.25 | 5.4433 × 10−10 | 0.3993 | 1.7491 × 10−10 |
PTS3 | 3.9370 × 10−7 | 0.1250 | 1.9618 × 10−7 | 0.6250 | 0.5 |
PTS4 | 0.0199 | 1.3081 × 10−7 | 2.6359 × 10−11 | 2.4658 × 10−11 | 1.2086 × 10−7 |
PTS5 | 6.0041 × 10−11 | 4.6466 × 10−12 | 2.5995 × 10−12 | 6.0171 × 10−11 | 3.9877 × 10−12 |
PTS6 | 1.9379 × 10−5 | 3.2314 × 10−8 | 1.2699 × 10−8 | 5.5295 × 10−8 | 8.4341 × 10−8 |
PTS7 | 5.1175 × 10−10 | 4.4879 × 10−11 | 4.7816 × 10−11 | 1.5757 × 10−11 | 5.4042 × 10−12 |
PTS8 | 1.7204 × 10−7 | 3.2180 × 10−11 | 5.6686 × 10−12 | 2.4527 × 10−7 | 2.4981 × 10−11 |
PTS9 | 9.1808 × 10−7 | 1.8647 × 10−10 | 2.8719 × 10−11 | 1.4376 × 10−6 | 2.7377 × 10−10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, X.; Zhang, C.; Chen, C.; Fang, L.; Ji, W. Dynamic Configuration Method of Flexible Workshop Resources Based on IICA-NS Algorithm. Processes 2022, 10, 2394. https://doi.org/10.3390/pr10112394
Su X, Zhang C, Chen C, Fang L, Ji W. Dynamic Configuration Method of Flexible Workshop Resources Based on IICA-NS Algorithm. Processes. 2022; 10(11):2394. https://doi.org/10.3390/pr10112394
Chicago/Turabian StyleSu, Xuan, Chaoyang Zhang, Chen Chen, Lei Fang, and Weixi Ji. 2022. "Dynamic Configuration Method of Flexible Workshop Resources Based on IICA-NS Algorithm" Processes 10, no. 11: 2394. https://doi.org/10.3390/pr10112394
APA StyleSu, X., Zhang, C., Chen, C., Fang, L., & Ji, W. (2022). Dynamic Configuration Method of Flexible Workshop Resources Based on IICA-NS Algorithm. Processes, 10(11), 2394. https://doi.org/10.3390/pr10112394