Cartilage Tissue in Forensic Science—State of the Art and Future Research Directions
Abstract
:1. Introduction
2. Methods
3. Age Estimation
4. Postmortem Interval (PMI) Estimation
5. Cause of Death Determination
6. Forensic Genetic Analysis
7. Forensic Toxicology
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Armiento, A.R.; Alini, M.; Stoddart, M.J. Articular fibrocartilage-Why does hyaline cartilage fail to repair? Adv. Drug Deliv. Rev. 2019, 146, 289–305. [Google Scholar] [CrossRef] [PubMed]
- Buckwalter, J.A.; Mankin, H.J. Articular cartilage: Part I. J. Bone Jt. Surg. 1997, 79, 600. [Google Scholar] [CrossRef]
- Murakami, D.; Kobayashi, S.; Torigaki, T.; Kent, R. Finite element analysis of hard and soft tissuecontributions to thoracic response: Sensitivity analysis of fluctuations in boundary conditions. Stapp Car Crash J. 2006, 50, 169–189. [Google Scholar]
- Benjamin, M.; Ralphs, J.R. Fibrocartilage in tendons and ligaments—An adaptation to compressive load. J. Anat. 1998, 193, 481–494. [Google Scholar] [CrossRef] [PubMed]
- Baldwin, A.K.; Simpson, A.; Steer, R.; Cain, S.A.; Kielty, C.M. Elastic fibres in health and disease. Expert Rev. Mol. Med. 2013, 15, e8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kolasinski, S.L.; Neogi, T.; Hochberg, M.C.; Oatis, C.; Guyatt, G.; Block, J.; Callahan, L.; Copenhaver, C.; Dodge, C.; Felson, D.; et al. 2019 American College of Rheumatology/Arthritis Foundation guideline for the management of osteoarthritis of the hand, hip, and knee. Arthritis Rheumatol. 2020, 72, 220–233. [Google Scholar] [CrossRef]
- Banasr, A.; de la Grandmaison, G.L.; Durigon, M. Frequency of bone/cartilage lesions in stab and incised wounds fatalities. Forensic Sci. Int. 2003, 131, 131–133. [Google Scholar] [CrossRef]
- Porzionato, A.; Macchi, V.; Mazzarolo, C.; Morra, A.; Sanudo, J.; De Caro, R. Symmetrical apophyses on the posterior margins of the thyroid cartilage: A previously undescribed anatomical variation with potential forensic implications. Am. J. Forensic Med. Pathol. 2019, 40, 84–88. [Google Scholar] [CrossRef] [PubMed]
- Garetier, M.; Deloire, L.; Dédouit, F.; Dumousset, E.; Saccardy, C.; Salem, D.B. Postmortem computed tomography findings in suicide victims. Diagn. Interven. Imaging 2017, 98, 101–112. [Google Scholar] [CrossRef] [PubMed]
- Amadasi, A.; Buschmann, C.T.; Tsokos, M. Complex fracture patterns in hanging associated with a fall from height. Forensic Sci. Med. Pathol. 2020, 16, 359–361. [Google Scholar] [CrossRef]
- Meachim, G.; Emery, I.H. Cartilage fibrillation in shoulder and hip joints in Liverpool necropsies. J. Anat. 1973, 116, 161–179. [Google Scholar] [PubMed]
- Meachim, G. Cartilage fibrillation at the ankle joint in Liverpool necropsies. J. Anat. 1975, 119, 601–610. [Google Scholar] [PubMed]
- Oktay, C.; Aytaç, G. Evaluation of manubriosternal joint fusion and second costal cartilage calcification: Are they useful for estimating advanced age groups? J. Forensic Sci. 2022, 67, 450–459. [Google Scholar] [CrossRef]
- Moskovitch, G.; Dedouit, F.; Braga, J.; Rougé, D.; Rousseau, H.; Telmon, N. Multislice computed tomography of the first rib: A useful technique for bone age assessment. J. Forensic Sci. 2010, 55, 865–870. [Google Scholar] [CrossRef] [PubMed]
- Schmeling, A.; Schulz, R.; Reisinger, W.; Mühler, M.; Wernecke, K.D.; Geserick, G. Studies on the time frame for ossification of the medial clavicular epiphyseal cartilage in conventional radiography. Int. J. Leg. Med. 2004, 118, 5–8. [Google Scholar] [CrossRef] [PubMed]
- Rejtarová, O.; Hejna, P.; Rejtar, P.; Bukač, J.; Slížová, D.; Krs, O. Sexual dimorphism of ossified costal cartilage. Radiograph scan study on Caucasian men and women (Czech population). Forensic Sci. Int. 2009, 191, 110.e1–110.e5. [Google Scholar] [CrossRef] [PubMed]
- Desai, H.M.; Amonkar, G.P. Florid bronchial cartilage ossification: A case report with literature revisited. Am. J. Forensic Med. Pathol. 2013, 34, 125–126. [Google Scholar] [CrossRef]
- Navani, S.; Shah, J.R.; Levy, P.S. Determination of sex by costal cartilage calcification. Am. J. Roentgenol. Radium Ther. Nucl. Med. 1970, 108, 771–774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rao, N.G.; Pai, L.M. Costal cartilage calcification pattern--a clue for establishing sex identity. Forensic Sci. Int. 1988, 38, 193–202. [Google Scholar] [CrossRef]
- Rejtarová, O.; Slízová, D.; Smoranc, P.; Rejtar, P.; Bukac, J. Costal cartilages—A clue for determination of sex. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub. 2004, 148, 241–243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Boer, H.H.; Blau, S.; Delabarde, T.; Hackman, L. The role of forensic anthropology in disaster victim identification (DVI): Recent developments and future prospects. Forensic Sci. Res. 2018, 4, 303–315. [Google Scholar] [CrossRef]
- Middleham, H.P.; Boyd, L.E.; Mcdonald, S.W. Sex determination from calcification of costal cartilages in a Scottish sample. Clin. Anat. 2015, 28, 888–895. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, A.W.; Klose-Jensen, R.; Hartlev, L.B.; Boel, L.; Thomsen, J.S.; Keller, K.K.; Hauge, E.M. Age-related histological changes in calcified cartilage and subchondral bone in femoral heads from healthy humans. Bone 2019, 129, 11503. [Google Scholar] [CrossRef] [PubMed]
- Usui, A.; Kawasumi, Y.; Hosokai, Y.; Hayashizaki, Y.; Saito, H.; Funayama, M. Radiological analysis of a naturally mummified body. Jpn. J. Radiol. 2012, 30, 458–462. [Google Scholar] [CrossRef] [PubMed]
- LaGoy, A.; Evangelou, E.A.; Somogyi, T.; DiGangi, E.A. Recommended practices for macerating human thyroid cartilage. J. Forensic Sci. 2020, 65, 1266–1273. [Google Scholar] [CrossRef]
- Delbreil, A.; Gambier, A.; Lefrancq, T.; Taris, M.; Saint-Martin, P.; Sapanet, M. Pathology diagnosis of an atypical thyroid cartilage lesion. Leg. Med. 2019, 36, 47–49. [Google Scholar] [CrossRef] [PubMed]
- Naimo, P.; O’Donnell, C.; Bassed, R.; Briggs, C. The use of computed tomography in determining developmental changes, anomalies, and trauma of the thyroid cartilage. Forensic Sci. Med. Pathol. 2013, 9, 377–385. [Google Scholar] [CrossRef] [PubMed]
- de la Grandmaison, G.L.; Banasr, A.; Durigon, M. Age estimation using radiographic analysis of laryngeal cartilage. Am. J. Forensic Med. Pathol. 2003, 24, 96–99. [Google Scholar] [CrossRef] [PubMed]
- Di Nunno, N.; Lombardo, S.; Costantinides, F.; Di Nunno, C. Anomalies and alterations of the hyoid-larynx complex in forensic radiographic studies. Am. J. Forensic Med. Pathol. 2004, 25, 14–19. [Google Scholar] [CrossRef]
- Aramaki, T.; Ikeda, T.; Usui, A.; Funayama, M. Age estimation by ossification of thyroid cartilage of Japanese males using Bayesian analysis of postmortem CT images. Leg. Med. 2017, 25, 29–35. [Google Scholar] [CrossRef]
- Ikeda, T. Estimating age at death based on costal cartilage calcification. Tohoku J. Exp. Med. 2017, 243, 237–246. [Google Scholar] [CrossRef] [PubMed]
- Treitl, K.M.; Aigner, L.I.; Gazov, E.; Fischer, F.; Schinner, R.; Schmid-Tannwald, C.; Kirchhoff, S.; Scherr, M.K. Injuries of the isolated larynx-hyoid complex in post-mortem computed tomography (PMCT) and post-mortem fine preparation (PMFP)—A comparison of 54 forensic cases. Eur. Radiol. 2020, 30, 4564–4572. [Google Scholar] [CrossRef] [PubMed]
- Ekizoglu, O.; Er, A.; Bozdag, M.; Basa, C.D.; Kacmaz, I.E.; Moghaddam, N.; Grabherr, S. Forensic age estimation via magnetic resonance imaging of knee in the Turkish population: Use of T1-TSE sequence. Int. J. Leg. Med. 2021, 135, 631–637. [Google Scholar] [CrossRef]
- Ekizoglu, O.; Er, A.; Bozdag, M.; Moghaddam, N.; Grabherr, S. Forensic age estimation based on fast spin-echo proton density (FSE PD)–weighted MRI of the distal radial epiphysis. Int. J. Leg. Med. 2021, 135, 1611–1616. [Google Scholar] [CrossRef] [PubMed]
- Pautet, F. Racémisation in vivo des amino-acides. Rôle éventuel dans le vieillissement moléculaire des protéines [In vivo amino acid racemization: Possible role in the molecular aging of proteins (author’s transl)]. Pathol. Biol. 1980, 28, 325–327. [Google Scholar] [PubMed]
- Arany, S.; Ohtani, S. Age estimation by racemization method in teeth: Application of aspartic acid, glutamate, and alanine. J. Forensic Sci. 2010, 55, 701–705. [Google Scholar] [CrossRef] [PubMed]
- Collins, M.J.; Penkman, K.E.; Rohland, N.; Shapiro, B.; Dobberstein, R.C.; Ritz-Timme, S.; Hofreiter, M. Is amino acid racemization a useful tool for screening for ancient DNA in bone? Proc. Biol. Sci. 2009, 276, 2971–2977. [Google Scholar] [CrossRef] [Green Version]
- Sirin, N.; Matzenauer, C.; Reckert, A.; Ritz-Timme, S. Age estimation based on aspartic acid racemization in dentine: What about caries-affected teeth? Int. J. Leg. Med. 2018, 132, 623–628. [Google Scholar] [CrossRef] [PubMed]
- Ohtani, S.; Yamamoto, K. Age estimation using the racemization of amino acid in human dentin. J. Forensic Sci. 1991, 36, 792–800. [Google Scholar] [CrossRef]
- Ritz-Timme, S.; Cattaneo, C.; Collins, M.J.; Waite, E.R.; Schütz, H.W.; Kaatsch, H.J.; Borrman, H.I.M. Age estimation: The state of the art in relation to the specific demands of forensic practise. Int. J. Leg. Med. 2000, 113, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Dobberstein, R.C.; Tung, S.M.; Ritz-Timme, S. Aspartic acid racemisation in purified elastin from arteries as basis for age estimation. Int. J. Leg. Med. 2010, 124, 269–275. [Google Scholar] [CrossRef] [PubMed]
- Klumb, K.; Matzenauer, C.; Reckert, A.; Lehmann, K.; Ritz-Timme, S. Age estimation based on aspartic acid racemization in human sclera. Int. J. Leg. Med. 2016, 130, 207–211. [Google Scholar] [CrossRef] [PubMed]
- Matzenauer, C.; Reckert, A.; Ritz-Timme, S. Estimation of age at death based on aspartic acid racemization in elastic cartilage of the epiglottis. Int. J. Leg. Med. 2014, 128, 995–1000. [Google Scholar] [CrossRef] [PubMed]
- Pfeiffer, H.; Mörnstad, H.; Teivens, A. Estimation of chronologic age using the aspartic acid racemization method. I. On human rib cartilage. Int. J. Leg. Med. 1995, 108, 19–23. [Google Scholar] [CrossRef]
- Tiplamaz, S.; Gören, M.Z.; Yurtsever, N.T. Estimation of chronological age from postmortem tissues based on amino acid racemization. J. Forensic Sci. 2018, 63, 1533–1538. [Google Scholar] [CrossRef]
- Semba, R.D.; Nicklett, E.J.; Ferrucci, L. Does accumulation of advanced glycation end products contribute to the aging phenotype? J. Gerontol. A Biol. Sci. Med. Sci. 2010, 65, 963–975. [Google Scholar] [CrossRef] [Green Version]
- Pilin, A.; Pudil, F.; Bencko, V. Changes in colour of different human tissues as a marker of age. Int. J. Leg. Med. 2007, 121, 158–162. [Google Scholar] [CrossRef]
- Meng, H.; Zhang, M.; Xiao, B.; Chen, X.; Yan, J.; Zhao, Z.; Ma, K.; Shen, Y.; Xie, J. Forensic age estimation based on the pigmentation in the costal cartilage from human mortal remains. Leg. Med. 2019, 40, 32–36. [Google Scholar] [CrossRef]
- Weber, M.; Rothschild, M.A.; Niehoff, A. Anisotropic and age-dependent elastic material behavior of the human costal cartilage. Sci. Rep. 2021, 11, 13618. [Google Scholar] [CrossRef]
- Bonicelli, A.; Zioupos, P.; Arnold, E.; Rogers, K.D.; Xhemali, B.; Kranioti, E.F. Age related changes of rib cortical bone matrix and the application to forensic age-at-death estimation. Sci. Rep. 2021, 11, 2086. [Google Scholar] [CrossRef]
- Novoselov, V.P.; Savchenko, S.V.; Pyatkova, E.V.; Nadeev, A.P.; Ageeva, T.A.; Chikinev, Y.V.; Polyakevich, A.S. Morphological characteristics of the cartilaginous tissue of human auricle in different age periods. Bull. Exp. Biol. Med. 2016, 160, 840–843. [Google Scholar] [CrossRef]
- Rogers, C.J.; Clark, K.; Hodson, B.J.; Whitehead, M.P.; Sutton, R.; Schmerer, W.M. Postmortem degradation of porcine articular cartilage. J. Forensic Leg. Med. 2011, 18, 52–56. [Google Scholar] [CrossRef] [PubMed]
- Rogers, C.J.; Ten Broek, C.M.; Hodson, B.; Whitehead, M.P.; Schmerer, W.M.; Sutton, R. Identification of crystals forming on porcine articular cartilage: A new method for the estimation of the postmortem interval. J. Forensic Sci. 2014, 59, 1575–1582. [Google Scholar] [CrossRef] [Green Version]
- Paulis, M.; Hassan, E.; Abd-Elgaber, N. Estimation of postmortem interval from cartilage changes of rabbit auricle. Ain Shams J. Forensic Med. Clin. Toxicol. 2016, 26, 61–69. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Huang, J.; Wang, Z.; Zhang, J.; Huang, P. An investigation on annular cartilage samples for post-mortem interval estimation using Fourier transform infrared spectroscopy. Forensic Sci. Med. Pathol. 2019, 15, 521–527. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Wang, Q.; Jing, X.-L.; Li, B.; Zhang, Y.-M.; Wang, Z.J.; Li, C.-Z.; Lin, H.-C.; Zhang, J.; Huang, P.; et al. Relationship between PMI and ATR-FTIR spectral changes in swine costal cartilages and ribs. Fa Yi Xue Za Zhi 2016, 32, 21–25. [Google Scholar] [PubMed]
- Ramírez, C.E.; Paredes, J.M.V.; Torales, E.F.; de Guevara, H.P.L.; Saucedo, J.I.D.; Castañeda, J.M.R.; Macías, A.H.; Montes, J.M.; Arellano, J.V.L.; Rodríguez, A.; et al. Chemical analysis tools for rapid determination of postmortem interval on-site: Application of Smart City principles to forensic science. In Proceedings of the 2019 IEEE International Smart Cities Conference (ISC2), Cassablanca, Marocco, 14–17 October 2019; pp. 575–580. [Google Scholar]
- Alibegović, A.; Balažic, J.; Petrovič, D.; Velikonja, N.K.; Blagus, R.; Šuput, D.; Drobnič, M. The optimal combination of cartilage source and apparatus for long-term in vitro chondrocyte viability analysis. J. Forensic Sci. 2012, 57, 1601–1607. [Google Scholar] [CrossRef] [PubMed]
- Alibegović, A.; Blagus, R.; Martinez, I.Z. Safranin O without fast green is the best staining method for testing the degradation of macromolecules in a cartilage extracellular matrix for the determination of the postmortem interval. Forensic Sci. Med. Pathol. 2020, 16, 252–258. [Google Scholar] [CrossRef] [PubMed]
- Bolton, S.N.; Whitehead, M.P.; Dudhia, J.; Baldwin, T.C.; Sutton, R. Investigating the postmortem molecular biology of cartilage and its potential forensic applications. J. Forensic Sci. 2015, 60, 1061–1067. [Google Scholar] [CrossRef] [Green Version]
- Love, J.C. Sharp force trauma analysis in bone and cartilage: A literature review. Forensic Sci. Int. 2019, 299, 119–127. [Google Scholar] [CrossRef]
- Papi, L.; Gori, F.; Spinetti, I. Homicide by stabbing committed with a “Fantasy Knife”. Forensic Sci. Int. Rep. 2020, 2, 100068. [Google Scholar] [CrossRef]
- Weber, M.; Banaschak, S.; Rothschild, M.A. Sharp force trauma with two katana swords: Identifying the murder weapon by comparing tool marks on the skull bone. Int. J. Leg. Med. 2021, 135, 313–322. [Google Scholar] [CrossRef] [PubMed]
- Rao, V.J.; Hart, R. Tool mark determination in cartilage of stabbing victim. J. Forensic Sci. 1983, 28, 794–799. [Google Scholar] [CrossRef]
- Spagnoli, L.; Amadasi, A.; Frustaci, M.; Mazzarelli, D.; Porta, D.; Cattaneo, C. Characteristics and time-dependence of cut marks and blunt force fractures on costal cartilages: An experimental study. Forensic Sci. Med. Pathol. 2016, 12, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Weber, M.; Niehoff, A.; Rothschild, M.A. Insights to enhance the examination of tool marks in human cartilage. Int. J. Leg. Med. 2021, 135, 2117–2134. [Google Scholar] [CrossRef]
- Pounder, D.J.; Reeder, F.D. Striation patterns in serrated blade stabs to cartilage. Forensic Sci. Int. 2011, 208, 91–94. [Google Scholar] [CrossRef]
- Pounder, D.J.; Sim, L.J. Virtual casting of stab wounds in cartilage using micro-computed tomography. Am. J. Forensic Med. Pathol. 2011, 32, 97–99. [Google Scholar] [CrossRef] [PubMed]
- Crowder, C.; Rainwater, C.W.; Fridie, J.S. Microscopic analysis of sharp force trauma in bone and cartilage: A validation study. J. Forensic Sci. 2013, 58, 1119–1126. [Google Scholar] [CrossRef]
- Puentes, K.; Cardoso, H.F.V. Reliability of cut mark analysis in human costal cartilage: The effects of blade penetration angle and intra-and inter-individual differences. Forensic Sci. Int. 2013, 231, 244–248. [Google Scholar] [CrossRef]
- Love, J.C.; Derrick, S.M.; Wiersema, J.M.; Peters, C. Validation of tool mark analysis of cut costal cartilage. J. Forensic Sci. 2012, 57, 306–311. [Google Scholar] [CrossRef]
- Rajs, J.; Thiblin, I. Histologic appearance of fractured thyroid cartilage and surrounding tissues. Forensic Sci. Int. 2000, 114, 155–166. [Google Scholar] [CrossRef]
- Langlois, N.E.I.; Byard, R.W. Cable tie suicide. Forensic Sci. Med. Pathol. 2017, 13, 110–112. [Google Scholar] [CrossRef]
- Tomsia, M.; Droździok, K.; Javan, G.; Skowronek, R.; Szczepański, M.; Chełmecka, E. Costal cartilage ensures low degradation of DNA needed for genetic identification of human remains retrieved at different decomposition stages and different postmortem intervals. Postepy Hig. Med. Dosw. 2021, 75, 852–858. [Google Scholar] [CrossRef]
- Agostini, V.; Gino, S.; Inturri, S.; Marino, A.; Staiti, N.; Sticchi, M.; Cjhiti, E.; Gentile, G.; Primignani, P.; Giriodi, M. ‘Unusual’ tissues and sample collection strategies on exhumed bodies. Forensic Sci. Int. Genet. Suppl. Ser. 2019, 7, 169–171. [Google Scholar] [CrossRef]
- Seo, Y.; Uchiyama, D.; Kuroki, K.; Kishida, T. STR and mitochondrial DNA SNP typing of a bone marrow transplant recipient after death in a fire. Leg. Med. 2012, 14, 331–335. [Google Scholar] [CrossRef] [PubMed]
- Wheeler, A.; Czado, N.; Gangitano, D.; Turnbough, M.; Hughes-Stamm, S. Comparison of DNA yield and STR success rates from different tissues in embalmed bodies. Int. J. Leg. Med. 2017, 131, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Guo, Y.; Jin, X.; Mei, S.; Xie, T.; Lan, Q.; Fang, Y.; Zhu, B. Developmental validation study of a 24-plex Y-STR direct amplification system for forensic application. Int. J. Leg. Med. 2020, 134, 945–951. [Google Scholar] [CrossRef] [PubMed]
- Long, R.; Wang, W.P.; Xiong, P. Correlation between PMI and DNA degradation of costicartilage and dental pulp cells in human being. Fa Yi Xue Za Zhi. 2005, 21, 174–176. [Google Scholar]
- Xiao, J.L.; Meng, J.H.; Gan, Y.H.; Li, Y.L.; Zhou, C.Y.; Ma, X.C. DNA methylation profiling in different phases of temporomandibular joint osteoarthritis in rats. Arch. Oral Biol. 2016, 68, 105–115. [Google Scholar] [CrossRef] [PubMed]
- Woźniak, A.; Heidegger, A.; Piniewska-Róg, D.; Pośpiech, E.; Xavier, C.; Pisarek, A.; Kartasińska, E.; Boroń, M.; Freire-Aradas, A.; Wojtas, M.; et al. Development of the VISAGE enhanced tool and statistical models for epigenetic age estimation in blood, buccal cells and bones. Aging 2021, 13, 6459–6484. [Google Scholar] [CrossRef]
- Correia Dias, H.; Cunha, E.; Corte Real, F.; Manco, L. Age prediction in living: Forensic epigenetic age estimation based on blood samples. Leg. Med. 2020, 47, 101763. [Google Scholar] [CrossRef] [PubMed]
- Salado Puerto, M.; Abboud, D.; Baraybar, J.P.; Carracedo, A.; Fonseca, S.; Goodwin, W.; Guyomarc’h, P.; Jimenez, A.; Krenzer, U.; Morcillo Mendez, M.D.; et al. The search process: Integrating the investigation and identification of missing and unidentified persons. Forensic Sci. Int. Synerg. 2021, 3, 100154. [Google Scholar] [CrossRef]
- Becker, J.; Mahlke, N.S.; Ritz-Timme, S.; Boehme, P. The human intervertebral disc as a source of DNA for molecular identification. Forensic Sci. Med. Pathol. 2021, 17, 660–664. [Google Scholar] [CrossRef] [PubMed]
- Trindade-Filho, A.; Mendes, C.; Ferreira, S.; Oliveira, S.; Vasconcelos, A.; Maia, F.; Pak, H.; Paula, K. DNA obtained from decomposed corpses cartilage: A comparison with skeleton muscle source. Forensic Sci. Int. Genet. Suppl. Ser. 2008, 1, 459–461. [Google Scholar] [CrossRef]
- Diepenbroek, M.; Bayer, B.; Anslinger, K. Pushing the boundaries: Forensic DNA phenotyping challenged by single-cell sequencing. Genes 2021, 12, 1362. [Google Scholar] [CrossRef] [PubMed]
- Zupanič Pajnič, I.; Zupanc, T.; Leskovar, T.; Črešnar, M.; Fattorini, P. Eye and hair color prediction of ancient and Second World War skeletal remains using a forensic PCR-MPS Approach. Genes 2022, 13, 1432. [Google Scholar] [CrossRef]
- Strapasson, R.A.P.; Herrera, L.M.; Melani, R.F.H. Forensic facial reconstruction: Relationship between the alar cartilage and piriform aperture. J. Forensic Sci. 2017, 62, 1460–1465. [Google Scholar] [CrossRef] [PubMed]
- Latham, K.E.; Miller, J.J. DNA recovery and analysis from skeletal material in modern forensic contexts. Forensic Sci. Res. 2018, 4, 51–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shorter, E.; Avelar, R.; Zachariou, M.; Spyrou, G.M.; Raina, P.; Smagul, A.; Kharaz, Y.A.; Peffers, M.; Goljanek-Whysall, J.; de Magalhaes, J.P.; et al. Identifying novel osteoarthritis-associated genes in human cartilage using a systematic meta-analysis and a multi-source integrated network. Int. J. Mol. Sci. 2022, 23, 4395. [Google Scholar] [CrossRef] [PubMed]
- Tomsia, M.; Nowicka, J.; Skowronek, R.; Javan, G.T.; Chełmecka, E. Concentrations of volatile substances in costal cartilage in relation to blood and urine–preliminary studies. Arch. Forensic Med. Criminol. 2021, 71, 38–46. [Google Scholar] [CrossRef]
- Tomsia, M.; Głaz, M.; Nowicka, J.; Szczepański, M. Sodium nitrite detection in costal cartilage and vitreous humor—Case report of fatal poisoning with sodium nitrite. J. Forensic Leg. Med. 2021, 81, 102186. [Google Scholar] [CrossRef] [PubMed]
- Meier, H.; Springsklee, M.; Wildfeuer, A. Penetration of ampicillin and sulbactam into human costal cartilage. Infection 1994, 22, 152–155. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomsia, M.; Cieśla, J.; Pilch-Kowalczyk, J.; Banaszek, P.; Chełmecka, E. Cartilage Tissue in Forensic Science—State of the Art and Future Research Directions. Processes 2022, 10, 2456. https://doi.org/10.3390/pr10112456
Tomsia M, Cieśla J, Pilch-Kowalczyk J, Banaszek P, Chełmecka E. Cartilage Tissue in Forensic Science—State of the Art and Future Research Directions. Processes. 2022; 10(11):2456. https://doi.org/10.3390/pr10112456
Chicago/Turabian StyleTomsia, Marcin, Julia Cieśla, Joanna Pilch-Kowalczyk, Przemysław Banaszek, and Elżbieta Chełmecka. 2022. "Cartilage Tissue in Forensic Science—State of the Art and Future Research Directions" Processes 10, no. 11: 2456. https://doi.org/10.3390/pr10112456
APA StyleTomsia, M., Cieśla, J., Pilch-Kowalczyk, J., Banaszek, P., & Chełmecka, E. (2022). Cartilage Tissue in Forensic Science—State of the Art and Future Research Directions. Processes, 10(11), 2456. https://doi.org/10.3390/pr10112456