Model Forecasting Development for Dengue Fever Incidence in Surabaya City Using Time Series Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. ARIMA Model
2.4. SARIMA Model
2.5. LSTM Model
2.6. Non-Stationary Test
3. The Proposed Model
3.1. Descriptive Statistics
3.2. Model Identification
3.3. Non-Stationary Test
3.4. Training and Test Models
4. Results and Discussion
Out-of-Sample Forecasting
5. Conclusions
6. Recommendations
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. WHO Guidelines Approved by the Guidelines Review Committee. In Dengue: Guidelines for Diagnosis, Treatment, Prevention and Control: New Edition; World Health Organization Copyright © 2009; World Health Organization: Geneva, Switzerland, 2009. [Google Scholar]
- WHO. Dengue: Guidelines for Diagnosis, Treatment, Prevention and Control; WHO Library: Geneva, Switzerland, 2009; pp. 10–12. [Google Scholar]
- Guha-Sapir, D.; Schimmer, B. Dengue fever: New paradigms for a changing epidemiology. Emerg. Epidemiol. 2005, 2, 1. [Google Scholar] [CrossRef] [Green Version]
- Sutriyawan, A.; Herdianti, H.; Cakranegara, P.A.; Lolan, Y.P.; Sinaga, Y. Predictive Index Using Receiver Operating Characteristic and Trend Analysis of Dengue Hemorrhagic Fever Incidence. Open Access Maced. J. Med. Sci. 2022, 10, 681–687. [Google Scholar] [CrossRef]
- Bhatt, S.; Gething, P.W.; Brady, O.J.; Messina, J.P.; Farlow, A.W.; Moyes, C.L.; Drake, J.M.; Brownstein, J.S.; Hoen, A.G.; Sankoh, O. The global distribution and burden of dengue. Nature 2013, 496, 504–507. [Google Scholar] [CrossRef] [Green Version]
- Stanaway, J.D.; Shepard, D.S.; Undurraga, E.A.; Halasa, Y.A.; Coffeng, L.E.; Brady, O.J.; Hay, S.I.; Bedi, N.; Bensenor, I.M.; Castañeda-Orjuela, C.A. The global burden of dengue: An analysis from the Global Burden of Disease Study 2013. Lancet Infect. Dis. 2016, 16, 712–723. [Google Scholar] [CrossRef] [Green Version]
- Abualamah, W.A.; Akbar, N.A.; Banni, H.S.; Bafail, M.A. Forecasting the morbidity and mortality of dengue fever in KSA: A time series analysis (2006–2016). J. Taibah Univ. Med. Sci. 2021, 16, 448–455. [Google Scholar] [CrossRef]
- Messina, J.P.; Brady, O.J.; Golding, N.; Kraemer, M.U.; Wint, G.; Ray, S.E.; Pigott, D.M.; Shearer, F.M.; Johnson, K.; Earl, L. The current and future global distribution and population at risk of dengue. Nat. Microbiol. 2019, 4, 1508–1515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aziz, A.T.; Al-Shami, S.A.; Mahyoub, J.A.; Hatabbi, M.; Ahmad, A.H.; Md Rawi, C.S. Promoting health education and public awareness about dengue and its mosquito vector in Saudi Arabia. Parasites Vectors 2014, 7, 487. [Google Scholar] [CrossRef] [PubMed]
- Khaira, U.; Utomo, P.E.P.; Aryani, R.; Weni, I. A comparison of SARIMA and LSTM in forecasting dengue hemorrhagic fever incidence in Jambi, Indonesia. J. Phys. Conf. Ser. 2020, 1566, 012054. [Google Scholar] [CrossRef]
- Riaz, M.M.; Mumtaz, K.; Khan, M.S.; Patel, J.; Tariq, M.; Hilal, H.; Siddiqui, S.A.; Shezad, F. Outbreak of dengue fever in Karachi 2006: A clinical perspective. J. Pak. Med. Assoc. 2009, 59, 339. [Google Scholar] [PubMed]
- Bhatnagar, S.; Lal, V.; Gupta, S.D.; Gupta, O.P. Forecasting incidence of dengue in Rajasthan, using time series analyses. Indian J. Public Health 2012, 56, 281. [Google Scholar]
- Siregar, F.A.; Makmur, T.; Saprin, S. Forecasting dengue hemorrhagic fever cases using ARIMA model: A case study in Asahan district. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Medan, Indonesia, 21–23 August 2017; p. 012032. [Google Scholar]
- Suleiman, A.A.; Suleiman, A.; Abdullahi, U.A.; Suleiman, S.A. Estimation of the case fatality rate of COVID-19 epidemiological data in Nigeria using statistical regression analysis. Biosaf. Health 2021, 3, 4–7. [Google Scholar] [CrossRef]
- Cummings, D.A.; Iamsirithaworn, S.; Lessler, J.T.; McDermott, A.; Prasanthong, R.; Nisalak, A.; Jarman, R.G.; Burke, D.S.; Gibbons, R.V. The impact of the demographic transition on dengue in Thailand: Insights from a statistical analysis and mathematical modeling. PLoS Med. 2009, 6, e1000139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johansson, M.A.; Reich, N.G.; Hota, A.; Brownstein, J.S.; Santillana, M. Evaluating the performance of infectious disease forecasts: A comparison of climate-driven and seasonal dengue forecasts for Mexico. Sci. Rep. 2016, 6, 33707. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.-Y.; Fu, X.; Lee, L.K.H.; Ma, S.; Goh, K.T.; Wong, J.; Habibullah, M.S.; Lee, G.K.K.; Lim, T.K.; Tambyah, P.A. Statistical modeling reveals the effect of absolute humidity on dengue in Singapore. PLoS Negl. Trop. Dis. 2014, 8, e2805. [Google Scholar] [CrossRef] [Green Version]
- Honório, N.A.; Nogueira, R.M.R.; Codeço, C.T.; Carvalho, M.S.; Cruz, O.G.; de Avelar Figueiredo Mafra Magalhães, M.; de Araújo, J.M.G.; de Araújo, E.S.M.; Gomes, M.Q.; Pinheiro, L.S. Spatial evaluation and modeling of dengue seroprevalence and vector density in Rio de Janeiro, Brazil. PLoS Negl. Trop. Dis. 2009, 3, e545. [Google Scholar] [CrossRef] [PubMed]
- Nishiura, H. Mathematical and statistical analyses of the spread of Dengue. Dengue Bull. 2006, 30, 51–67. [Google Scholar]
- Reiner, R.C., Jr.; Perkins, T.A.; Barker, C.M.; Niu, T.; Chaves, L.F.; Ellis, A.M.; George, D.B.; Le Menach, A.; Pulliam, J.R.; Bisanzio, D. A systematic review of mathematical models of mosquito-borne pathogen transmission: 1970–2010. J. R. Soc. Interface 2013, 10, 20120921. [Google Scholar] [CrossRef] [Green Version]
- Reich, N.G.; Shrestha, S.; King, A.A.; Rohani, P.; Lessler, J.; Kalayanarooj, S.; Yoon, I.-K.; Gibbons, R.V.; Burke, D.S.; Cummings, D.A. Interactions between serotypes of dengue highlight epidemiological impact of cross-immunity. J. R. Soc. Interface 2013, 10, 20130414. [Google Scholar] [CrossRef]
- Lauer, S.A.; Sakrejda, K.; Ray, E.L.; Keegan, L.T.; Bi, Q.; Suangtho, P.; Hinjoy, S.; Iamsirithaworn, S.; Suthachana, S.; Laosiritaworn, Y. Prospective forecasts of annual dengue hemorrhagic fever incidence in Thailand, 2010–2014. Proc. Natl. Acad. Sci. USA 2018, 115, E2175–E2182. [Google Scholar] [CrossRef] [Green Version]
- Buczak, A.L.; Baugher, B.; Moniz, L.J.; Bagley, T.; Babin, S.M.; Guven, E. Ensemble method for dengue prediction. PLoS ONE 2018, 13, e0189988. [Google Scholar] [CrossRef] [Green Version]
- Banditvilai, S.; Anansatitzin, S. Comparative study of three time series methods in forecasting dengue hemorrhagic fever incidence in thailand. In Proceedings of the International Academic Conferences, Sevilla, Spain, 5–8 March 2018. [Google Scholar]
- Nájera, J. World Health Organiziation Global Partnership to Roll Back Malaria. Malaria Control: Achievements, Problems and Strategies; WHO/CDS/RBM/99.10. 1999. Available online: www.who.int/malaria/publications/atoz (accessed on 25 August 2022).
- Luz, P.M.; Mendes, B.V.; Codeço, C.T.; Struchiner, C.J.; Galvani, A.P. Time series analysis of dengue incidence in Rio de Janeiro, Brazil. Am. J. Trop. Med. Hyg. 2008, 79, 933–939. [Google Scholar] [CrossRef]
- Wu, P.-C.; Guo, H.-R.; Lung, S.-C.; Lin, C.-Y.; Su, H.-J. Weather as an effective predictor for occurrence of dengue fever in Taiwan. Acta Trop. 2007, 103, 50–57. [Google Scholar] [CrossRef]
- Chen, K.-Y.; Wang, C.-H. A hybrid SARIMA and support vector machines in forecasting the production values of the machinery industry in Taiwan. Expert Syst. Appl. 2007, 32, 254–264. [Google Scholar] [CrossRef]
- Conejo, A.J.; Plazas, M.A.; Espinola, R.; Molina, A.B. Day-ahead electricity price forecasting using the wavelet transform and ARIMA models. IEEE Trans. Power Syst. 2005, 20, 1035–1042. [Google Scholar] [CrossRef]
- Suresh, K.; Krishna Priya, S. Forecasting sugarcane yield of Tamilnadu using ARIMA models. Sugar Tech. 2011, 13, 23–26. [Google Scholar] [CrossRef]
- Idrees, S.M.; Alam, M.A.; Agarwal, P. A prediction approach for stock market volatility based on time series data. IEEE Access 2019, 7, 17287–17298. [Google Scholar] [CrossRef]
- Siami-Namini, S.; Tavakoli, N.; Namin, A.S. A Comparison of ARIMA and LSTM in Forecasting Time Series. In Proceedings of the 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA), Orlando, FL, USA, 17–20 December 2018; pp. 1394–1401. [Google Scholar]
- Narasimha Murthy, K.; Saravana, R.; Vijaya Kumar, K. Modeling and forecasting rainfall patterns of southwest monsoons in North–East India as a SARIMA process. Meteorol. Atmos. Phys. 2018, 130, 99–106. [Google Scholar] [CrossRef]
- Thevakumar, P.; Jayathilaka, R. Exchange rate sensitivity influencing the economy: The case of Sri Lanka. PLoS ONE 2022, 17, e0269538. [Google Scholar] [CrossRef]
- Chang, X.; Gao, M.; Wang, Y.; Hou, X. Seasonal autoregressive integrated moving average model for precipitation time series. J. Math. Stat. 2012, 8, 500–505. [Google Scholar] [CrossRef] [Green Version]
- Jain, G.; Mallick, B. A study of time series models ARIMA and ETS. SSRN 2017, 2898968. [Google Scholar] [CrossRef]
- Han, P.; Wang, P.; Wang, Y. Drought forecasting based on the Standardized Precipitation Index at different temporal scales using ARIMA models. Agr. Res. Arid Areas 2008, 26, 212–218. [Google Scholar]
- Alyousifi, Y.; Othman, M.; Faye, I.; Sokkalingam, R.; Silva, P.C.L. Markov Weighted Fuzzy Time-Series Model Based on an Optimum Partition Method for Forecasting Air Pollution. Int. J. Fuzzy Syst. 2020, 22, 1468–1486. [Google Scholar] [CrossRef]
- Dalah, C.M.; Singh, V.; Abdullahi, I.; Suleiman, A. The study of HIV/AIDS trend in Yobe state for the prescribed period (1999–2019). Int. J. Stat. Appl. 2020, 10, 10–16. [Google Scholar]
- Martinez, E.Z.; Silva, E.A.S.d.; Fabbro, A.L.D. A SARIMA forecasting model to predict the number of cases of dengue in Campinas, State of São Paulo, Brazil. Rev. Da Soc. Bras. De Med. Trop. 2011, 44, 436–440. [Google Scholar] [CrossRef] [PubMed]
- Johansson, M.A.; Cummings, D.A.; Glass, G.E. Multiyear climate variability and dengue—El Nino southern oscillation, weather, and dengue incidence in Puerto Rico, Mexico, and Thailand: A longitudinal data analysis. PLoS Med. 2009, 6, e1000168. [Google Scholar] [CrossRef] [Green Version]
- Morales, I.; Salje, H.; Saha, S.; Gurley, E.S. Seasonal Distribution and Climatic Correlates of Dengue Disease in Dhaka, Bangladesh. Am. J. Trop. Med. Hyg. 2016, 94, 1359–1361. [Google Scholar] [CrossRef]
Month | 2016 | 2015 | 2014 | Total | Mean |
---|---|---|---|---|---|
January | 60 | 46 | 36 | 142 | 12 |
February | 114 | 109 | 46 | 269 | 23 |
March | 134 | 107 | 71 | 312 | 26 |
April | 164 | 119 | 94 | 377 | 33 |
May | 141 | 95 | 127 | 363 | 31 |
June | 119 | 78 | 110 | 307 | 26 |
July | 89 | 40 | 82 | 211 | 18 |
August | 66 | 21 | 71 | 158 | 14 |
September | 24 | 9 | 71 | 104 | 9 |
October | 18 | 5 | 42 | 65 | 6 |
November | 4 | 4 | 37 | 45 | 4 |
December | 5 | 7 | 29 | 41 | 4 |
Grand Total | 640 | 640 | 816 | 2394 | 200 |
Years | Min. | Max. | Q1 | Q2 | Q3 | Mean | S.D. | Skewness | Kurtosis |
---|---|---|---|---|---|---|---|---|---|
2016 | 4.00 | 164.00 | 22.50 | 77.50 | 122.75 | 78.17 | 56.71914 | −0.00655 | −1.6732 |
2015 | 4.00 | 119.00 | 8.50 | 43.00 | 98.00 | 53.33 | 45.52189 | 0.213275 | −1.8190 |
2014 | 29.00 | 127.00 | 40.75 | 71.00 | 85.00 | 68.00 | 31.34848 | 0.4051189 | −1.2137 |
Dataset | Critical Value | p-Value |
---|---|---|
Original | −3.2892 | 0.08936 |
Second-order differencing | −3.7968 | 0.03287 |
Dataset | Critical Value | p-Value |
---|---|---|
Original | −12.042 | 0.3605 |
Second-order differencing | −43.200 | 0.0100 |
Model. | RMSE | MAE | MAPE |
---|---|---|---|
ARIMA (2,1,1) | 19.66198 | 15.10929 | 60.09833 |
SARIMA (2,1,1) (1,0,0) | 13.07250 | 10.27440 | 53.47647 |
LSTM | 15.35412 | 12.54872 | 56.67457 |
Model | RMSE | MAE | MAPE |
---|---|---|---|
ARIMA (2,1,1) | 77.42119 | 71.02259 | 104.95288 |
SARIMA (2,1,1) (1,0,0) | 38.00313 | 33.54329 | 54.565850 |
LSTM | 45.37822 | 41.45632 | 76.983421 |
Model | Month | January | February | March | April | May | June | July | August | September | October | November | December | RMSE |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ARIMA | Forecast | 6 | 9 | 26 | 18 | 37 | 33 | 25 | 16 | 13 | 8 | 6 | 4 | 31.21 |
SARIMA | Forecast | 47 | 46 | 63 | 71 | 91 | 80 | 67 | 59 | 61 | 44 | 43 | 38 | 11.35 |
LSTM | Forecast | 13 | 14 | 46 | 101 | 99 | 109 | 89 | 74 | 41 | 26 | 16 | 13 | 20.13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Othman, M.; Indawati, R.; Suleiman, A.A.; Qomaruddin, M.B.; Sokkalingam, R. Model Forecasting Development for Dengue Fever Incidence in Surabaya City Using Time Series Analysis. Processes 2022, 10, 2454. https://doi.org/10.3390/pr10112454
Othman M, Indawati R, Suleiman AA, Qomaruddin MB, Sokkalingam R. Model Forecasting Development for Dengue Fever Incidence in Surabaya City Using Time Series Analysis. Processes. 2022; 10(11):2454. https://doi.org/10.3390/pr10112454
Chicago/Turabian StyleOthman, Mahmod, Rachmah Indawati, Ahmad Abubakar Suleiman, Mochammad Bagus Qomaruddin, and Rajalingam Sokkalingam. 2022. "Model Forecasting Development for Dengue Fever Incidence in Surabaya City Using Time Series Analysis" Processes 10, no. 11: 2454. https://doi.org/10.3390/pr10112454
APA StyleOthman, M., Indawati, R., Suleiman, A. A., Qomaruddin, M. B., & Sokkalingam, R. (2022). Model Forecasting Development for Dengue Fever Incidence in Surabaya City Using Time Series Analysis. Processes, 10(11), 2454. https://doi.org/10.3390/pr10112454