Sunflower Oil Flavored by Spearmint through Conventional and Ultrasound-Assisted Maceration: Differences in Oxidative Stability, Microbial Contamination and Sensory Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Preparation of Flavored SFO Samples
2.3. Quality Parameter Determination
2.4. Antioxidant Effect
2.5. Microbial Survival
2.6. Sensorial Evaluation
2.7. Accelerated Storage
2.8. Statistical Analysis
3. Results and Discussion
3.1. Physicochemical Properties of Flavored SFO
3.2. Chlorophylls, Carotenoids and Polyphenols of Flavored SFO
3.3. Tocopherols of Flavored SFO
3.4. Antioxidant Effect of Flavored SFO
3.5. Microbial Survival in Flavored SFO
3.6. Sensory Evaluation of Flavored SFO
3.7. Accelerated Storage of Flavored SFO
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, D.; Meng, Y.; Wang, C.; Wang, X.; Blasi, F. Antioxidant activity and sensory improvement of Angelica dahurica cv. Yubaizhi essential oil on sunflower oil during high-temperature storage. Processes 2020, 8, 403. [Google Scholar] [CrossRef] [Green Version]
- Mahendran, G.; Verma, S.K.; Rahman, L.-U. The traditional uses, phytochemistry and pharmacology of spearmint (Mentha spicata L.): A review. J. Ethnopharmacol. 2021, 278, 114266. [Google Scholar] [CrossRef] [PubMed]
- Upadhyay, R.; Sehwag, S.; Mishra, H.N. Chemometric approach to develop frying stable sunflower oil blends stabilized with oleoresin rosemary and ascorbyl palmitate. Food Chem. 2017, 218, 496–504. [Google Scholar] [CrossRef] [PubMed]
- Shabbir, M.A.; Ahmed, W.; Latif, S.; Inam-Ur-Raheem, M.; Manzoor, M.F.; Rafiq Khan, M.R.; Bilal, R.M.; Aadil, R.M. The quality behavior of ultrasound extracted sunflower oil and structural computation of potato strips appertaining to deep-frying with thermic variations. J. Food Process. Preserv. 2020, 44, e14809. [Google Scholar] [CrossRef]
- Kamkar, A.; Javan, A.J.; Asadi, F.; Kamalinejad, M. The antioxidative effect of Iranian Mentha pulegium extracts and essential oil in sunflower oil. Food Chem. Toxicol. 2010, 48, 1796–1800. [Google Scholar] [CrossRef]
- Farahmandfar, R.; Asnaashari, M.; Pourshayegan, M.; Maghsoudi, S.; Moniri, H. Evaluation of antioxidant properties of lemon verbena (Lippia citriodora) essential oil and its capacity in sunflower oil stabilization during storage time. Food Sci. Nutr. 2018, 6, 983–990. [Google Scholar] [CrossRef]
- Wang, D.; Chen, X.; Wang, Q.; Meng, Y.; Wang, D.; Wang, X. Influence of the essential oil of Mentha spicata cv. Henanshixiang on sunflower oil during the deep-frying of Chinese Maye. LWT Food Sci. Technol. 2020, 122, 109020. [Google Scholar] [CrossRef]
- Wang, D.; Wang, Q.; Li, S.; Xu, Y.; Wang, X.; Wang, C. Carvacrol methyl ether, a compound from the essential oil of Gardenia jasminoides fruits, exhibits antioxidant effects in the deep-frying of Chinese Youmotou using sunflower oil. LWT Food Sci. Technol. 2020, 128, 109502. [Google Scholar] [CrossRef]
- Yang, H.; Wang, D.; Lu, X.; Wang, X.; Blasi, F. Eugenol, obtained from the bioassay-guided fractionation of Coriandrum sativum essential oil, displayed antioxidant effect in deep-frying procedure of sunflower oil and improved sensory properties of fried products, Caijiao. J. Essent. Oil Res. 2022, 34, 240–250. [Google Scholar] [CrossRef]
- Yang, H.; Dong, Y.; Wang, D.; Wang, X. Separated from the essential oil of Coriandrum sativum L. leaves, carvacrol and limonene showed antioxidant effects in sunflower oil under frying conditions. J. Oleo Sci. 2022, 71, 1145–1158. [Google Scholar] [CrossRef]
- Reboredo-Rodríguez, P.; Figueiredo-González, M.; González-Barreiro, C.; Simal-Gándara, J.; Salvador, M.D.; Cancho-Grande, B.; Fregapane, G. State of the art on functional virgin olive oils enriched with bioactive compounds and their properties. Int. J. Mol. Sci. 2017, 18, 668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hrebień-Filisińska, A.M.; Bartkowiak, A. Antioxidative effect of sage (Salvia officinalis L.) macerate as “green extract” in inhibiting the oxidation of fish oil. Antioxidants 2022, 11, 100. [Google Scholar] [CrossRef] [PubMed]
- Sacchi, R.; Medaglia, D.D.; Paduano, A.; Caporaso, N.; Genovese, A. Characterisation of lemon-flavoured olive oils. LWT Food Sci. Technol. 2017, 79, 326–332. [Google Scholar] [CrossRef]
- Baiano, A.; Previtali, M.A.; Viggiani, I.; Varva, G.; Squeo, G.; Paradiso, V.M.; Summo, C.; Gomes, T.; Francesco Caponio, F. As oil blending affects physical, chemical, and sensory characteristics of flavoured olive oils. Eur. Food Res. Technol. 2016, 242, 1693–1708. [Google Scholar] [CrossRef]
- Lim, S.F.; Hamdan, A.; Chua, S.N.D.; Lim, B.H. Comparison and optimization of conventional and ultrasound-assisted solvent extraction for synthetization of lemongrass (Cymbopogon)-infused cooking oil. Food Sci. Nutr. 2020, 9, 2722–2732. [Google Scholar] [CrossRef]
- Veillet, S.; Tomao, V.; Chemat, F. Ultrasound assisted maceration: An original procedure for direct aromatization of olive oil with basil. Food Chem. 2010, 123, 905–911. [Google Scholar] [CrossRef]
- Yang, X.; Han, H.; Li, B.; Zhang, D.; Zhang, Z.; Xie, Y. Fumigant toxicity and physiological effects of spearmint (Mentha spicata, Lamiaceae) essential oil and its major constituents against Reticulitermes dabieshanensis. Ind. Crops Prod. 2021, 171, 113894. [Google Scholar] [CrossRef]
- Yang, Y.; Zong, J.; Yang, F. Studies on the germplasm resource investigation and utlization of shixiang vegetable in Henan Province. Chi. Hortic. Abstr. 2014, 30, 169–180. [Google Scholar]
- Houicher, A.; Kuley, E.; Özogul, F.; Bendeddouche, B. Effect of natural extracts (Mentha spicata L. and Artemisia campestris) on biogenic amine formation of sardine vacuum-packed and refrigerated (Sardina pilchardus) fillets. J. Food Process. Preserv. 2015, 39, 2393–2403. [Google Scholar] [CrossRef]
- Shahbazi, Y.; Karami, N.; Shavisi, N. Effect of Mentha spicata essential oil on chemical, microbial, and sensory properties of minced camel meat during refrigerated storage. J. Food Saf. 2018, 38, e12375. [Google Scholar] [CrossRef]
- Assami, K.; Chemat, S.; Meklati, B.Y.; Chemat, F. Ultrasound-assisted aromatisation with condiments as an enabling technique for olive oil flavouring and shelf life enhancement. Food Anal. Methods 2016, 9, 982–990. [Google Scholar] [CrossRef]
- Ammar, I.; BenAmira, A.; Khemakem, I.; Attia, H.; Ennouri, M. Effect of Opuntia ficus-indica flowers maceration on quality and on heat stability of olive oil. J. Food Sci. Technol. 2017, 54, 1502–1510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jabri-Karoui, I.; Marzouk, B. Bioactive compounds, antioxidant activities and heat stability of corn oil enriched with Tunisian Citrus aurantium L. peel extract. J. Am. Oil Chem. Soc. 2014, 91, 1367–1375. [Google Scholar] [CrossRef]
- Redondo-Cuevas, L.; Castellano, G.; Raikos, V. Natural antioxidants from herbs and spices improve the oxidative stability and frying performance of vegetable oils. Int. J. Food Sci. Technol. 2017, 52, 2422–2428. [Google Scholar] [CrossRef]
- Khemakhem, I.; Yaiche, C.; Ayadi, M.A.; Mohamed Bouaziz, M. Impact of Aromatization by Citrus limetta and Citrus sinensis peels on olive oil quality, chemical composition and heat stability. J. Am. Oil Chem. Soc. 2015, 92, 701–708. [Google Scholar] [CrossRef]
- Ciafardini, G.; Zullo, B.A.; Peca, G. Presence of microorganisms in flavoured extra-virgin olive oil. Ann. Microbiol. 2004, 54, 161–168. [Google Scholar]
- Ciafardini, G.; Zullo, B.A.; D’Amico, A.; Cioccia, G.; Maiuro, L. Survival of yeasts inoculated in flavoured extra virgin olive oil. Ann. Microbiol. 2006, 56, 231–235. [Google Scholar] [CrossRef]
- Odeh, D.; Kraljić, K.; Skukan, A.B.; Škevin, D. Oxidative stability, microbial safety, and sensory properties of flaxseed (Linum usitatissimum L.) oil infused with spices and herbs. Antioxidants 2021, 10, 785. [Google Scholar] [CrossRef]
- Meng, Y.; Wang, D.; Dong, Y.; Chen, X.; Wang, X. The variation of oxidative stability and sensory attributes of sunflower oil induced by essential oil from Magnolia liliflora Desr. during high-temperature storage. Int. J. Food Sci. Technol. 2021, 56, 3355–3366. [Google Scholar] [CrossRef]
- Meng, Y.; Yang, H.; Wang, D.; Ma, Y.; Wang, X.; Blasi, F. Improvement for Oxidative stability and sensory properties of sunflower oil flavored by Huai Chrysanthemum × morifolium Ramat. essential oil during accelerated storage. Processes 2021, 9, 1199. [Google Scholar] [CrossRef]
- Dolati, M.; Rezaei, K.; Vanak, Z.P.; Movahed, S. Study of the effects of essential oils of cumin, savory and cardamom as natural antioxidants on the flavor and oxidative stability of soybean oil during the storage. J. Essent. Oil Bear. Plants 2016, 19, 176–184. [Google Scholar] [CrossRef]
- Mezza, G.N.; Borgarello, A.V.; Grosso, N.R.; Fernandez, H.; Pramparo, M.C.; Gayol, M.F. Antioxidant activity of rosemary essential oil fractions obtained by molecular distillation and their effect on oxidative stability of sunflower oil. Food Chem. 2018, 242, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Saoudi, S.; Chammem, N.; Sifaoui, I.; Bouassida-Beji, M.; Jiménez, I.A.; Bazzocchi, I.L.; Silva, S.D.; Hamdi, M.; Bronze, M.R. Influence of Tunisian aromatic plants on the prevention of oxidation in soybean oil under heating and frying conditions. Food Chem. 2016, 212, 503–511. [Google Scholar] [CrossRef]
- Rudzińska, M.; Hassanein, M.M.M.; Abdel-Razek, A.G.; Kmiecik, D.; Siger, A.; Katarzyna Ratusz, K. Influence of composition on degradation during repeated deep-fat frying of binary and ternary blends of palm, sunflower and soybean oils with health-optimised saturated-to-unsaturated fatty acid ratios. Int. J. Food Sci. Technol. 2018, 53, 1021–1029. [Google Scholar] [CrossRef]
- Chong, Y.M.; Chang, S.K.; Sia, W.C.S.; Yim, H.S. Antioxidant efficacy of mangosteen (Garcinia mangostana Linn.) peel extracts in sunflower oil during accelerated storage. Food Biosci. 2015, 12, 18–25. [Google Scholar] [CrossRef]
- Tringaniello, C.; Cossignani, L.; Blasi, F. Characterization of the triacylglycerol fraction of Italian and Extra-European hemp seed oil. Foods 2021, 10, 916. [Google Scholar] [CrossRef] [PubMed]
- Soares, V.P.; Fagundes, M.B.; Guerra, D.R.; Leães, Y.S.V.; Speroni, C.S.; Robalo, S.S.; Emanuelli, T.; Cichoski, A.J.; Wagner, R.; Barin, J.S.; et al. Ultrasound assisted maceration for improving the aromatization of extra-virgin olive oil with rosemary and basil. Food Res. Int. 2020, 135, 109305. [Google Scholar] [CrossRef] [PubMed]
- Fagundes, M.B.; Ballus, C.A.; Soares, V.P.; de Freitas Ferreira, D.; Leães, Y.S.V.; Robalo, S.S.; Vendruscolo, R.G.; Campagnol, P.C.B.; Barin, J.S.; Cichoski, A.J.; et al. Characterization of olive oil flavored with Brazilian pink pepper (Schinus terebinthifolius Raddi) in different maceration processes. Food Res. Int. 2020, 137, 109593. [Google Scholar]
- Zellama, M.S.; Chahdoura, H.; Zairi, A.; Ziani, B.E.C.; Boujbiha, M.A.; Snoussi, M.; Ismail, S.; Flamini, G.; Mosbah, H.; Selmi, B.; et al. Chemical characterization and nutritional quality investigations of healthy extra virgin olive oil flavored with chili pepper. Environ. Sci. Pollut. Res. 2022, 29, 16392–16403. [Google Scholar] [CrossRef]
- Keramat, M.; Golmakani, M.-T.; Aminlari, M.; Shekarforoush, S. Oxidative stability of virgin olive oil supplemented with Zataria multiflora Boiss. and Rosmarinus officinalis L. essential oils during accelerated storage. J. Food Process. Preserv. 2017, 41, e12951. [Google Scholar] [CrossRef]
- Kasimoglu, Z.; Tontul, I.; Soylu, A.; Gulen, K.; Topuz, A. The oxidative stability of-flavoured virgin olive oil: The effect of the water activity of rosemary. J. Food Meas. Charact. 2018, 12, 2080–2086. [Google Scholar] [CrossRef]
- Lu-Martínez, A.A.; Báez-González, J.G.; Castillo-Hernández, S.; Amaya-Guerra, C.; Rodríguez-Rodríguez, J.; García-Márquez, E. Studied of Prunus serotine oil extracted by cold pressing and antioxidant effect of P. longiflora essential oil. J. Food Sci. Technol. 2021, 58, 1420–1429. [Google Scholar] [CrossRef]
- Tohma, S.; Turan, S. Rosemary plant (Rosmarinus officinalis L.), solvent extract and essential oil can be used to extend the usage life of hazelnut oil during deep frying. Eur. J. Lipid Sci. Technol. 2015, 117, 1978–1990. [Google Scholar] [CrossRef]
- Dagdemir, E.; Cakmakci, S.; Gundogdu, E. Effect of Thymus haussknechtii and Origanum acutidens essential oils on the stability of cow milk butter. Eur. J. Lipid Sci. Technol. 2009, 111, 1118–1123. [Google Scholar] [CrossRef]
- Kowalski, R.; Kowalska, G.; Pankiewicz, U.; Włodarczyk-Stasiak, M.; Monika Sujka, M.; Mazurek, A. Effect of rapeseed oil aromatisation with marjoram on the content of volatile fraction and antioxidant properties. J. Food Sci. Technol. 2020, 57, 1138–1149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kowalski, R.; Kowalska, G.; Pankiewicz, U.; Mazurek, A.; Sujka, M.; Włodarczyk-Stasiak, M.; Kałwa, K. Effect of the method of rapeseed oil aromatisation with rosemary Rosmarinus officinalis L. on the content of volatile fraction. LWT Food Sci. Technol. 2018, 95, 40–46. [Google Scholar] [CrossRef]
- Yara-Varón, E.; Li, Y.; Balcells, M.; Canela-Garayoa, R.; Fabiano-Tixier, A.-S.; Chemat, F. Vegetable oils as alternative solvents for green oleo-extraction, purification and formulation of food and natural products. Molecules 2017, 22, 1474. [Google Scholar] [CrossRef]
- Zheng, L.; Jin, J.; Karrar, E.; Xie, L.; Huang, J.; Chang, M.; Wang, X.; Zhang, H.; Jin, Q. Antioxidant activity evaluation of tocored through chemical assays, evaluation in stripped corn oil, and CAA Assay. Eur. J. Lipid Sci. Technol. 2020, 122, 1900354. [Google Scholar] [CrossRef]
- Yildiz, S.; Turan, S.; Kiralan, M.; Ramadan, M.F. Antioxidant properties of thymol, carvacrol, and thymoquinone and its efficiencies on the stabilization of refined and stripped corn oils. J. Food Meas. Charact. 2021, 15, 621–632. [Google Scholar] [CrossRef]
Sample B | AV (mg/g) | PV (g/100 g) | AnV | K232 | K268 |
---|---|---|---|---|---|
Control | 0.31 ± 0.02 a | 0.12 ± 0.02 a | 1.17 ± 0.16 a | 2.46 ± 0.09 a | 1.07 ± 0.05 a |
MM-07 | 0.33 ± 0.04 a | 0.14 ± 0.02 a | 1.20 ± 0.11 a | 2.58 ± 0.13 a | 1.19 ± 0.06 b |
MM-14 | 0.42 ± 0.04 a | 0.14 ± 0.02 a | 1.24 ± 0.19 a | 2.84 ± 0.09 b | 1.25 ± 0.07 b,c |
UM | 0.36 ± 0.03 a | 0.15 ± 0.03 a | 1.33 ± 0.13 a | 2.97 ± 0.16 b | 1.32 ± 0.09 c |
Samples B | Chlorophylls (mg/kg) | Carotenoids (mg/kg) | Polyphenols (mg/kg) |
---|---|---|---|
Control | 0.08 ± 0.01 a | 01.31 ± 0.05 a | 10.14 ± 0.07 a |
MM-07 | 8.77 ± 0.58 b | 35.31 ± 0.66 b | 47.73 ± 0.41 b |
MM-14 | 9.49 ± 0.70 b,c | 43.26 ± 0.81 b,c | 52.65 ± 0.55 b,c |
UM | 9.81 ± 0.67 c | 45.33 ± 0.73 c | 56.16 ± 0.39 c |
Samples B | α-Tocopherol (μg/mL) | γ-Tocopherol (μg/mL) | δ-Tocopherol (μg/mL) | Total (μg/mL) |
---|---|---|---|---|
Control | 552.17 ± 48.73 a | 22.36 ± 2.14 a | 4.74 ± 0.08 a | 578.62 ± 52.46 a |
MM-07 | 589.36 ± 51.28 b | 24.41 ± 2.03 b | 5.09 ± 0.14 b | 618.17 ± 57.13 b |
MM-14 | 612.34 ± 56.19 c | 25.65 ± 1.94 c | 5.21 ± 0.16 c | 642.87 ± 48.78 c |
UM | 666.58 ± 31.87 d | 38.33 ± 2.32 d | 8.63 ± 0.09 d | 712.94 ± 36.95 d |
Samples B | DPPH Radical Scavenging (%) | β-Carotene Linoleate Bleaching (%) | Reducing Power (OD Value at 700 nm) |
---|---|---|---|
Control | 51.78 ± 1.42 a | 18.46 ± 0.39 a | 0.139 ± 0.012 a |
MM-07 | 73.12 ± 1.56 b | 32.34 ± 0.44 b | 0.152 ± 0.026 b |
MM-14 | 91.45 ± 1.32 c | 64.75 ± 0.57 c | 0.167 ± 0.027 c |
UM | 93.36 ± 1.47 c | 68.32 ± 0.41 c | 0.175 ± 0.020 d |
Samples B | Yeasts (CFU/mL) | Molds (CFU/mL) | L. monocytogenes (CFU/mL) | Enterobacteriaceae (CFU/mL) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 30 | 60 | 90 | 0 | 30 | 60 | 90 | 0 | 30 | 60 | 90 | 0 | 30 | 60 | 90 | |
Control | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | n.d. | n.d. | n.d. | n.d. | <1 | <1 | <1 | <1 |
MM-07 | 12 | <1 | <1 | <1 | 6 | <1 | <1 | <1 | n.d. | n.d. | n.d. | n.d. | 6 | <1 | <1 | <1 |
MM-14 | 14 | <1 | <1 | n.d. | 7 | <1 | <1 | n.d. | n.d. | n.d. | n.d. | n.d. | 9 | <1 | <1 | <1 |
UM | 15 | n.d. | n.d. | n.d. | 9 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 9 | <1 | <1 | n.d. |
Samples B | Taste | Flavor | Appearance | Overall Acceptability |
---|---|---|---|---|
Control | 6.56 ± 0.42 a | 6.12 ± 0.36 a | 8.33 ± 0.47 a | 5.87 ± 0.31 a |
MM-07 | 8.31 ± 0.36 b | 8.57 ± 0.28 b | 6.65 ± 0.52 b | 7.69 ± 0.25 b |
MM-14 | 8.69 ± 0.27 b | 8.41 ± 0.41 b | 6.45 ± 0.65 b | 8.23 ± 0.51 b |
UM | 8.07 ± 0.32 b | 8.30 ± 0.37 b | 6.01 ± 0.34 b | 7.92 ± 0.44 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, X.; Yang, H.; Meng, Y.; Wang, D. Sunflower Oil Flavored by Spearmint through Conventional and Ultrasound-Assisted Maceration: Differences in Oxidative Stability, Microbial Contamination and Sensory Properties. Processes 2022, 10, 2451. https://doi.org/10.3390/pr10112451
Lu X, Yang H, Meng Y, Wang D. Sunflower Oil Flavored by Spearmint through Conventional and Ultrasound-Assisted Maceration: Differences in Oxidative Stability, Microbial Contamination and Sensory Properties. Processes. 2022; 10(11):2451. https://doi.org/10.3390/pr10112451
Chicago/Turabian StyleLu, Xinjian, Haoduo Yang, Yudong Meng, and Dongying Wang. 2022. "Sunflower Oil Flavored by Spearmint through Conventional and Ultrasound-Assisted Maceration: Differences in Oxidative Stability, Microbial Contamination and Sensory Properties" Processes 10, no. 11: 2451. https://doi.org/10.3390/pr10112451
APA StyleLu, X., Yang, H., Meng, Y., & Wang, D. (2022). Sunflower Oil Flavored by Spearmint through Conventional and Ultrasound-Assisted Maceration: Differences in Oxidative Stability, Microbial Contamination and Sensory Properties. Processes, 10(11), 2451. https://doi.org/10.3390/pr10112451