Thermal Storage Performance of Underground Cave Dwellings under Kang Intermittent Heating: A Case Study of Northern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection of the Case Studies
2.1.1. Analyzed Settlement: Miaoshang Village
2.1.2. Geographical Position and Climate Features
2.1.3. Building Description: Analyzed Underground Cave Dwellings
2.2. On-Site Measurement
2.3. Theoretical Calculation
2.3.1. Fourier Series Expansion of Double-Sided Thermal Effect
2.3.2. Heat Transfer of the Heavy Wall under Double-Sided Thermal Effect
2.3.3. Unsteady Heat Transfer Model Validation
3. Results and Discussion
3.1. Thermal Performance of Cave Rooms under the Biomass Heating
3.1.1. Thermal Environment of the Underground Cave Dwellings
3.1.2. Spatial Distribution of Indoor Air Temperature
3.2. Thermal Storage Performance of the Heavy Wall
3.2.1. Heat Flux of the Wall
3.2.2. Thermal Storage of the Inner Wall
3.2.3. Heat Release of Walls during the Night
3.3. Thermal Performance of the Heavy Wall under Double-Sided Thermal Effect
3.3.1. Thermal Frequency Response of the External Wall
3.3.2. Composition of Unsteady Heat Transfer of the External Wall
3.3.3. Thermal Storage Performance of the External Wall
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
A | amplitude, °C |
B | element in the wall Heat Transfer Matrix |
i | imaginary unit |
k | heat transfer coefficient, W/(m2/K) |
n | initial ordinal |
N | number of discrete points in the period |
q | heat flux, W/m2 |
t | temperature, °C |
T | cycle |
Greek symbols | |
heat transfer coefficient, W/(m2/K) | |
delay time, h | |
heat dissipation time, h | |
attenuation multiple | |
initial phase, rad | |
delay phase, rad | |
frequency | |
Subscripts | |
a | outdoor |
outdoor air temperature wave | |
e | nocturnal radiation |
f | Fourier series expansion |
Im | imaginary |
kr | indoor air in cave dwelling with Kang |
kr,f | Fourier series expansion of indoor air in cave dwelling with Kang |
n | order of harmonic |
nr | indoor air in cave dwelling without Kang |
nr,f | Fourier series expansion of indoor air in cave dwelling without Kang |
solar radiation | |
indoor | |
indoor air temperature wave | |
ground reflection | |
real | |
s | steady |
thermal frequency response of heat transfer | |
comprehensive | |
Fourier series expansion of comprehensive | |
thermal frequency response of endothermic |
References
- Parracha, J.L.; Lima, J.; Freire, M.T.; Ferreira, M.; Faria, P. Vernacular earthen buildings from Leiria, Portugal—Architectural survey towards their conservation and retrofitting. J. Build. Eng. 2021, 35, 102115. [Google Scholar] [CrossRef]
- Soudani, L.; Woloszyn, M.; Fabbri, A.; Morel, J.C.; Grillet, A.C. Energy evaluation of rammed earth walls using long term in-situ measurements. Sol. Energy 2017, 141, 70–80. [Google Scholar] [CrossRef]
- Balaguer, L.; Vegas López-Manzanares, F.O.; Mileto, C.; García-Soriano, L. Assessment of the Thermal Behaviour of Rammed Earth Walls in the Summer Period. Sustainability 2019, 11, 1924. [Google Scholar] [CrossRef] [Green Version]
- Miño-Rodríguez, I.; Naranjo-Mendoza, C.; Korolija, I. Thermal Assessment of Low-Cost Rural Housing—A Case Study in the Ecuadorian Andes. Buildings 2016, 6, 36. [Google Scholar] [CrossRef] [Green Version]
- Losini, A.E.; Grillet, A.C.; Bellotto, M.; Woloszyn, M.; Dotelli, G. Natural additives and biopolymers for raw earth construction stabilization—A review. Constr. Build. Mater. 2021, 304, 124507. [Google Scholar] [CrossRef]
- Zhu, X.R.; Liu, J.P.; Yang, L.; Hu, R.R. Energy performance of a new Yaodong dwelling, in the Loess Plateau of China. Energy Build. 2014, 70, 159–166. [Google Scholar] [CrossRef]
- Hou, J.Y.; Wang, J. Chinese Cave; Henan Science and Technology Press: Zhengzhou, China, 1999. (In Chinese) [Google Scholar]
- Zhu, J.Y.; Tong, L.P.; Li, R.X.; Yang, J.Z.; Li, H.X. Annual thermal performance analysis of underground cave dwellings based on climate responsive design. Renew. Energy 2020, 145, 1633–1646. [Google Scholar] [CrossRef]
- Zhu, J.Y.; Tong, L.P. Experimental study on the thermal performance of underground cave dwellings with coupled Kang. Renew. Energy 2017, 108, 156–168. [Google Scholar] [CrossRef]
- Zhao, X.; Nie, P.; Zhu, J.Y.; Tong, L.P.; Liu, Y.F. Evaluation of thermal environments for cliff-side cave dwellings in cold region of China. Renew. Energy 2020, 158, 154–166. [Google Scholar] [CrossRef]
- Zhu, J.Y.; Xing, C.J.; Li, R.X.; Li, C.; Zhao, X. Experimental and theoretical investigation of thermal performance of Kang heating system in China. Energy Build. 2020, 226, 110344. [Google Scholar] [CrossRef]
- Liu, J.P.; Wang, L.J.; Yoshino, Y.; Liu, Y.F. The thermal mechanism of warm in winter and cool in summer in China traditional vernacular dwellings. Build. Environ. 2011, 46, 1709–1715. [Google Scholar] [CrossRef]
- Wang, F.; Liu, Y. Thermal Environment of the Courtyard Style Cave Dwelling in Winter. Energy Build. 2002, 34, 985–1001. [Google Scholar] [CrossRef]
- Li, X.P.; Cui, Y. Field study on indoor thermal environment of sinking cave in Guanzhong Area in winter. J. Xi’an Univ. Archit. Technol. (Nat. Sci. Ed.) 2019, 51, 591–596. [Google Scholar]
- Ma, X.; Zhang, L.; Zhao, J.Y.; Wang, M.Y.; Cheng, Z. The outdoor pedestrian thermal comfort and behavior in a traditional residential settlement—A case study of the cave dwellings in cold winter of China. Sol. Energy 2020, 220, 130–143. [Google Scholar] [CrossRef]
- Bruno, A.W.; Gallipoli, D.; Perlot, C.; Kallel, H. Thermal performance of fired and unfired earth bricks walls. J. Build. Eng. 2020, 28, 101017. [Google Scholar] [CrossRef]
- Laborel-Préneron, A.; Magniont, C.E.; Aubert, J.E. Hygrothermal properties of unfired earth bricks: Effect of barley straw, hemp shiv and corn cob addition. Energy Build. 2018, 178, 265–278. [Google Scholar] [CrossRef]
- Yu, K.C.; Tan, Y.F.; Zhang, T.T.; Zhang, J.D.; Wang, X.M. The traditional Chinese kang and its improvement: A review. Energy Build. 2020, 218, 110051. [Google Scholar] [CrossRef]
- Heier, J.; Bales, C.; Martin, V. Combining thermal energy storage with buildingse a review. Renew. Sustain. Energy Rev. 2015, 42, 1305–1325. [Google Scholar] [CrossRef]
- Yang, M.; Yang, X.D.; Wang, Z.F.; Wang, P.S. Thermal analysis of a new solar kang system. Energy Build. 2014, 75, 531–537. [Google Scholar] [CrossRef]
- Yang, M.; Yang, X.D.; Wang, P.S.; Shan, M.; Deng, J. A new Chinese solar kang and its dynamic heat transfer model. Energy Build. 2013, 62, 539–549. [Google Scholar] [CrossRef]
- Li, G.; Bi, X.X.; Feng, G.H.; Chi, L.; Zheng, X.F.; Liu, X.T. Phase change material Chinese Kang: Design and experimental performance study. Renew. Energy 2020, 150, 821–830. [Google Scholar] [CrossRef]
- Bian, M.L. Numerical simulation research on heat transfer characteristics of a Chinese kang. Case Stud. Therm. Eng. 2021, 25, 100922. [Google Scholar] [CrossRef]
- Feng, G.H.; Sheng, X.; Xu, X.L. Thermal performance analysis of combined heating of phase change kang and firewall for village room under winter condition. Procedia Eng. 2016, 146, 541–548. [Google Scholar] [CrossRef]
- Xu, J.M.; Xia, N.; Xing, K. Low energy consumption kang design for villages and towns in northeast cold area. Low Temp. Archit. Technol. 2016, 38, 1–13. (In Chinese) [Google Scholar]
- Rathore, P.K.S.; Shukla, S.K. Potential of macroencapsulated PCM for thermal energy storage in buildings: A comprehensive review. Constr. Build. Mater. 2019, 225, 723–744. [Google Scholar] [CrossRef]
- Romdhane, S.B.; Amamou, A.; Khalifa, R.B.; Saïd, N.M.; Younsi, Z.; Jemni, A. A review on thermal energy storage using phase change materials in passive building applications. J. Build. Eng. 2020, 32, 101563. [Google Scholar] [CrossRef]
- Reza, D.; Ayman, M.B.; Seth, B.D. NanoPCM based thermal energy storage system for a residential building. Energy Convers. Manag. 2022, 254, 115208. [Google Scholar]
- Iffa, E.; Hun, D.; Salonvaara, M.; Shrestha, S.; Lapsa, M. Performance evaluation of a dynamic wall integrated with active insulation and thermal energy storage systems. J. Energy Storage 2022, 46, 103815. [Google Scholar] [CrossRef]
- Eldokaishi, A.O.; Abdelsalam, M.Y.; Kamal, M.M.; Abotaleb, H.A. Modeling of water-PCM solar thermal storage system for domestic hot water application using Artificial neural networks. Appl. Therm. Eng. 2022, 204, 118009. [Google Scholar] [CrossRef]
- Jundika, C.K.; Luthfi, A.F.H.; Iqbal, T.; Chen, L.J.; Jiang, L.S. Optimization of an innovative hybrid thermal energy storage with phase change material (PCM) wall insulator utilizing Taguchi method. J. Energy Storage 2022, 49, 104067. [Google Scholar]
- Wang, H.; Ci, E.D.; Li, X.Q.; Li, J.Q. The magnesium nitrate hexahydrate with Ti4O7 composite phase change material for photo-thermal conversion and storage. Sol. Energy 2021, 230, 462–469. [Google Scholar] [CrossRef]
- Xu, Y.Q.; Luo, C.; Sang, H.Y.; Lu, B.W.; Wu, F.; Li, X.S.; Zhang, L.Q. Structure and surface insight into a temperature-sensitive CaO-based CO2 sorbent. Chem. Eng. J. 2022, 435, 134960. [Google Scholar] [CrossRef]
- Xu, Y.Q.; Lu, B.W.; Luo, C.; Wu, F.; Li, X.S.; Zhang, L.Q. Na2CO3 promoted CaO-based heat carrier for thermochemical energy storage in concentrated solar power plants. Chem. Eng. J. 2022, 435, 134852. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, T.; Lu, B.W.; Luo, C.; Wu, F.; Li, X.S.; Zhang, L.Q. Glycine tailored effective CaO-based heat carriers for thermochemical energy storage in concentrated solar power plants. Energy Convers. Manag. 2021, 250, 114886. [Google Scholar] [CrossRef]
- Xu, Y.Q.; Lu, B.W.; Luo, C.; Chen, J.; Zang, Z.W.; Zhang, L.Q. Sorption enhanced steam reforming of ethanol over Ni-based catalyst coupling with high-performance CaO pellets. Chem. Eng. J. 2021, 406, 126903. [Google Scholar] [CrossRef]
- Brambilla, A.; Jusselme, T. Preventing Overheating in Offices through Thermal Inertial Properties of Compressed Earth Bricks: A Study on a Real Scale Prototype. Energy Build. 2017, 156, 281–292. [Google Scholar] [CrossRef]
- Romaní, J.; Gracia, A.D.; Cabeza, L.F. Simulation and control of thermally activated building systems (TABS). Energy Build. 2016, 127, 22–42. [Google Scholar] [CrossRef] [Green Version]
- Rhee, K.N.; Olesen, B.W.; Kim, K.W. Ten questions about radiant heating and cooling systems. Build. Environ. 2017, 112, 367–381. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Y.M.; Liu, X.C.; Zhang, R.R. Calculation of unsteady heat transfer through the envelope of an underground cavern using Z-transfer coefficient method. Energy Build. 2012, 48, 190–198. [Google Scholar] [CrossRef]
- Lai, Y.M.; Zhang, X.F.; Yu, W.B.; Zhang, S.J.; Liu, Z.Q.; Xiao, J.Z. Three-dimensional nonlinear analysis for the coupled problem of the heat transfer of the surrounding rock and the heat convection between the air and the surrounding rock in cold-region tunnel. Tunn. Undergr. Space Technol. 2005, 20, 323–332. [Google Scholar]
- Rees, S.W.; Zhou, Z.; Thomas, H.R. Ground heat transfer: A numerical simulation of a full-scale experiment. Build. Environ. 2007, 42, 1478–1488. [Google Scholar] [CrossRef]
- Chen, M. Thermal Performance of Rammed Earth Wall. Master’s Thesis, Xi’an University of Architecture and Technology, Xi’an, China, 2017. [Google Scholar]
- JGJ/T 132-2009; Standard for Energy Efficiency Test of Residential Buildings. Ministry of Housing and Urban-Rural Development of the People’s Republic of China: Beijing, China, 2009.
- Yan, Q.S.; Zhao, Q.Z. Building Thermal Process; China Architecture & Building Press: Beijing, China, 1986. [Google Scholar]
- GB 50176-2016; Code for Thermal Design of Civil Building. Ministry of Housing and Urban-Rural Development of the People’s Republic of China. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China: Beijing, China, 2016.
- ASHRAE. ASHRAE Handbook of Fundamentals; ASHRAE: Atlanta, GA, USA, 2009. [Google Scholar]
Layers | Thickness (mm) | Density (kg/m³) | Conductivity (W/m·K) | Specific Heat (kJ/kg·K) | Heat Storage Coefficient (W/m2·K) | Thermal Inertia |
---|---|---|---|---|---|---|
External wall | 6.63 | |||||
Plaster | 20 | 1800 | 0.93 | 0.84 | 10.11 | |
Loess | 260 | 1821 | 1.41 | 1.84 | 13.49 | |
Brick | 60 | 1668 | 0.43 | 750 | 6.25 | |
West internal wall | 65.50 | |||||
Plaster | 20 | 1800 | 0.93 | 0.84 | 10.11 | |
Loess | 4500 | 1850 | 1.41 | 1.84 | 13.49 | |
South side wall | 21.99 | |||||
Plaster | 20 | 1800 | 0.93 | 0.84 | 10.11 | |
Loess | 1500 | 1850 | 1.41 | 1.84 | 13.49 | |
North side wall | 28.95 | |||||
Plaster | 20 | 1800 | 0.93 | 0.84 | 10.11 | |
Loess | 1980 | 1850 | 1.41 | 1.84 | 13.49 | |
Windows | ||||||
Single-layer glass | 3 | 2500 | 0.76 | 0.84 | 10.69 | |
Door | ||||||
Wood | 50 | 500 | 0.14 | 2.51 | 3.85 |
Cave Names | Span (mm) | Depth (mm) | Height of Arch Rise (mm) | Height of Side Wall (mm) | Thickness of Cover Soil (mm) | Thickness of External Wall (mm) | Shape Coefficient | Window Wall Ratio |
---|---|---|---|---|---|---|---|---|
NKCD | 3000 | 8400 | 1200 | 1800 | 4500 | 340 | 8.4 | 0.28 |
KCD | 3200 | 7600 | 1200 | 1800 | 4500 | 340 | 7.6 | 0.28 |
Date | 23 January | 24 January | 25 January | 26 January | 27 January | 28 January |
---|---|---|---|---|---|---|
Way of burning | Adding wood Burning at 9:00–10:00 | Adding wood Smoldering | Adding wood Smoldering | No adding | No adding | No adding |
Monitoring Parameters | Instrument Name | Measurement Range | Accuracy | Resolution |
---|---|---|---|---|
Air temperature and relative humidity | Fluke 971 | temperature: −20~60 °C relative humidity: 5~95% | temperature: ±0.5 °C (0~45 °C) ±1.0 °C (−20~0 °C, 45~60 °C) relative humidity: ±5% (<10%, >90%) | temperature: 0.1 °C relative humidity: 0.1% |
Surface temperature | Testo 830-S1 | −30~350 °C | ±1.5 °C (10~90%) | 0.1 °C |
Wind velocity | Testo 405-V1 | 0–10 m/s | ±0.1 m/s ± 5% reading (<2 m/s) ±0.3 m/s ± 5% reading (>2 m/s) | 0.01 m/s |
Illuminance | HT-1318 | 0~400 k Lux | ± 3% rdg ± 5% f.s. (<10,000 Lux); ± 4% rdg ± 10% dgts. (>10,000 Lux); | 1 Lux |
Orders | Thermal Frequency Response of Heat Transfer | Thermal Frequency Response of Endothermic | ||||
---|---|---|---|---|---|---|
Attenuation Multiple | Delay Time (h) | Delay Phase (rad) | Attenuation Multiple | Delay Time (h) | Delay Phase (rad) | |
1 | 42.28 | 12.22 | 3.20 | 1.27 | 0.44 | 0.12 |
2 | 158.86 | 8.71 | 4.56 | 1.32 | 0.31 | 0.16 |
3 | 438.96 | 7.14 | 5.61 | 1.37 | 0.26 | 0.21 |
4 | 1037.00 | 0.21 | 0.22 | 1.42 | 0.23 | 0.24 |
5 | 2220.40 | 0.77 | 1.00 | 1.47 | 0.21 | 0.27 |
6 | 4434.50 | 1.09 | 1.71 | 1.52 | 0.19 | 0.30 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, J.; Liu, Y.; Li, R.; Chen, B.; Chen, Y.; Lu, J. Thermal Storage Performance of Underground Cave Dwellings under Kang Intermittent Heating: A Case Study of Northern China. Processes 2022, 10, 595. https://doi.org/10.3390/pr10030595
Zhu J, Liu Y, Li R, Chen B, Chen Y, Lu J. Thermal Storage Performance of Underground Cave Dwellings under Kang Intermittent Heating: A Case Study of Northern China. Processes. 2022; 10(3):595. https://doi.org/10.3390/pr10030595
Chicago/Turabian StyleZhu, Jiayin, Yingfang Liu, Ruixin Li, Bin Chen, Yu Chen, and Jifu Lu. 2022. "Thermal Storage Performance of Underground Cave Dwellings under Kang Intermittent Heating: A Case Study of Northern China" Processes 10, no. 3: 595. https://doi.org/10.3390/pr10030595
APA StyleZhu, J., Liu, Y., Li, R., Chen, B., Chen, Y., & Lu, J. (2022). Thermal Storage Performance of Underground Cave Dwellings under Kang Intermittent Heating: A Case Study of Northern China. Processes, 10(3), 595. https://doi.org/10.3390/pr10030595