Study on the Fracturing of Rock by High-Speed Water Jet Impact
Abstract
:1. Introduction
2. Fluid-Solid Coupling Algorithm
2.1. SPH Algorithm
2.2. SPH-FEM Coupling Contact Force Generation
3. Computational Modeling and Validation
3.1. Water Jet Material Model
3.2. Rock Material Model
3.3. Geometric Model Description of Water Jet Impact Rock Breaking
3.4. Model Validation
4. Analysis of Results
4.1. Rock Fracturing Damage Process
4.2. Effect of Jet Inclination on Microscopic Crack Propagation
4.3. Crack Propagation Behavior under the Action of Confining Pressure
5. Experimental Verification
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, Z.S.; Huang, L.Y.; Du, B.X. Insight of hydrodynamic characteristics related to ultra-high pressure water jet rust removal sprayers. Explos. Shock Waves 2022, 42, 158–171. [Google Scholar] [CrossRef]
- Wang, Y.F.; He, X.Q.; Wang, E.Y. Research progress and development tendency of the hydraulic technology for increasing the permeability of coal seams. J. China Coal Soc. 2014, 39, 1945–1955. [Google Scholar] [CrossRef]
- Tripathi, R.; Hloch, S.; Chattopadhyaya, S. Application of the pulsating and continuous water jet for granite erosion. Int. J. Rock Mech. Min. Sci. 2020, 126, 104209. [Google Scholar] [CrossRef]
- Mi, J.Y.; Huang, F.; Li, S.Q. Numerical simulation of rock breaking by rear-mixed abrasive water jet based on an SPH-FEM coupling algorithm. J. Vib. Shock 2021, 40, 132–139. [Google Scholar] [CrossRef]
- Jiang, H.X.; Du, C.L.; Liu, S.Y. Numerical Simulation of Rock Fragmentation under the Impact Load of Water Jet. Shock Vib. 2014, 32, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Yu, R.; Dong, X.; Li, Z. SPH-FEM simulation of concrete breaking process due to impact of high-speed water jet. AIP Adv. 2021, 11, 45–52. [Google Scholar] [CrossRef]
- Li, G.S.; Liao, H.L.; Huang, Z.W. Rock damage mechanisms under ultra-high pressure water jet impact. J. Mech. Eng. 2009, 45, 284–293. [Google Scholar] [CrossRef]
- Wu, Z.; Yu, F.; Zhang, P. Micro-mechanism study on rock breaking behavior under water jet impact using coupled SPH-FEM/DEM method with Voronoi grains. Eng. Anal. Bound. Elem. 2019, 108, 472–483. [Google Scholar] [CrossRef]
- Oh, T.M.; Prasidhi, A.K.; Cho, G.C. Effect of water jet geometric parameters on rock fracturing. KSCE J. Civ. Eng. 2014, 18, 772–779. [Google Scholar] [CrossRef]
- Sheng, M.; Tian, S.C.; Li, G.S. Shale rock fragmentation behaviors and their mechanics by high pressure waterjet impinging (in Chinese). Sci. Sin.-Phys. Mech. Astron. 2017, 47, 99–106. [Google Scholar] [CrossRef]
- Xue, Y.; Si, H.; Chen, G. The fragmentation mechanism of coal impacted by water jets and abrasive jets. Powder Technol. 2020, 361, 849–859. [Google Scholar] [CrossRef]
- Xue, Y.; Si, H.; Hu, Q. The propagation of stress waves in rock impacted by a pulsed water jet. Powder Technol. 2017, 320, 179–190. [Google Scholar] [CrossRef]
- Attaway, S.W.; Heinstein, M.W.; Swegle, J.W. Coupling of smooth particle hydrodynamics with the finite element method. Nucl. Eng. Des. 1994, 150, 199–205. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, G.C.; Xu, Y.J. Numerical simulation and experimental study on rock breaking by particle jet based on SPH method. Explos. Shock Waves 2017, 37, 479–486. [Google Scholar] [CrossRef]
- Price, D. Smoothed Particle Hydrodynamics. World Sci. 2005. [Google Scholar] [CrossRef]
- Hong, Q. New Method and Application of Smooth Particle Fluid Dynamics; Science Press: Beijing, China, 2017; Volume 6, p. 114. [Google Scholar]
- Vignjevic, R.; Vuyst, T.D.; Campbell, J.C.A. Frictionless Contact Algorithm for Meshless Methods. Comput. Model. Eng. Sci. 2006, 13, 117–128. [Google Scholar]
- Wang, J.; Yin, Y.; Luo, C. Johnson–Holmquist-II (JH-2) constitutive model for rock materials: Parameter determination and application in tunnel smooth blasting. Appl. Sci. 2018, 8, 1675. [Google Scholar] [CrossRef] [Green Version]
- Ren, F.; Fang, T.; Cheng, X. Study on rock damage and failure depth under particle water-jet coupling impact. Int. J. Impact Eng. 2020, 139, 103504. [Google Scholar] [CrossRef]
- Liu, X.; Liu, S.; Ji, H. Numerical research on rock breaking performance of water jet based on SPH. Powder Technol. 2015, 286, 181–192. [Google Scholar] [CrossRef]
- Li, H.; Liu, S.; Jia, J. Numerical simulation of rock-breaking under the impact load of self-excited oscillating pulsed water jet. Tunn. Undergr. Space Technol. 2020, 96, 103179. [Google Scholar] [CrossRef]
ρ0/(g·cm−3) | C/(m·s−1) | γ0 | a | S1 | S2 | S3 |
---|---|---|---|---|---|---|
1.05 | 1480 | 0.5 | 0 | 2.56 | −1.986 | 1.227 |
ρ/(kg/m3) | K1/GPa | K2/GPa | K3/GPa | Hel/GPa | T/MPa | G/GPa |
---|---|---|---|---|---|---|
2657 | 55.6 | −18 | 3980 | 4.5 | 8.3 | 28 |
A | N | M | B | C | D1 | D2 |
0.7 | 0.56 | 0.61 | 0.68 | 0.005 | 0.003 | 0.8 |
Confining pressure/MPa | 0 | 5 | 10 | 15 | 20 |
Number of element damaged | 163 | 150 | 139 | 143 | 150 |
Crater width/mm | 5.31 | 5.48 | 6.13 | 5.71 | 5.34 |
Volume Density | Water Absorption | Dry Compressive Strength | Water-Saturated Compressive Strength | Tensile Strength | Poisson’s Ratio |
---|---|---|---|---|---|
2.66 g/cm | 0.36% | 153 MPa | 93.1 MPa | 9.6 MPa | 0.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, Y.; Zhai, S.; Meng, X.; Pei, K.; Huo, F. Study on the Fracturing of Rock by High-Speed Water Jet Impact. Processes 2023, 11, 114. https://doi.org/10.3390/pr11010114
Pan Y, Zhai S, Meng X, Pei K, Huo F. Study on the Fracturing of Rock by High-Speed Water Jet Impact. Processes. 2023; 11(1):114. https://doi.org/10.3390/pr11010114
Chicago/Turabian StylePan, Yue, Shengyu Zhai, Xinjia Meng, Kangchao Pei, and Fulin Huo. 2023. "Study on the Fracturing of Rock by High-Speed Water Jet Impact" Processes 11, no. 1: 114. https://doi.org/10.3390/pr11010114
APA StylePan, Y., Zhai, S., Meng, X., Pei, K., & Huo, F. (2023). Study on the Fracturing of Rock by High-Speed Water Jet Impact. Processes, 11(1), 114. https://doi.org/10.3390/pr11010114