Analysis of Coalbed Methane Production Characteristics and Influencing Factors of No. 15 Coal Seam in the Shouyang Block
Abstract
:1. Introduction
2. Geological Background
2.1. Structural Geological Conditions
2.2. Coal-Bearing Stratum
3. Gas Production Characteristics
4. Analysis of Influencing Factors
4.1. Gas Enrichment Factors
4.1.1. Gas Content and Gas Saturation
4.1.2. Coal Thickness and Burial Depth
4.1.3. Critical Desorption Pressure
4.2. Permeability Factors
4.2.1. Permeability
4.2.2. Mean Value of Three-Dimensional Principal Stress
4.2.3. Fractal Dimension D Value of Fracture
4.3. Fracturing Factors
4.4. Effluent Factors
4.4.1. Sand–mud Ratio
4.4.2. Fault Fractal Dimension
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, Y.Y.; Bao, Y.; Hu, Y.L. Recent progress in improving the yield of microbially enhanced coalbed methane production. Energy Rep. 2023, 9, 2810–2819. [Google Scholar] [CrossRef]
- Du, S.; Wang, M.; Yang, J.; Zhao, Y.; Wang, J.; Yue, M.; Xie, C.; Song, H. An enhanced prediction framework for coalbed methane production incorporating deep learning and transfer learning. Energy 2023, 282, 128877. [Google Scholar] [CrossRef]
- Liang, S.; Liang, Y.; Elsworth, D.; Yao, Q.; Fu, X.; Kang, J.; Hao, Y.; Wang, M. Permeability evolution and production characteristics of inclined coalbed methane reservoirs on the southern margin of the Junggar Basin, Xinjiang, China. Int. J. Rock Mech. Min. Sci. 2023, 171, 105581. [Google Scholar] [CrossRef]
- Sadegh, K.; Pejman, T.; Hamed, L.R. A review of experimental and numerical modeling of digital coalbed methane: Imaging, segmentation, fracture modeling and permeability prediction. Int. J. Coal Geol. 2020, 228, 103552. [Google Scholar]
- Ritter, D.J.; Vinson, D.S.; Barnhart, E.P.; Akob, D.M.; Fields, M.W.; Cunningham, A.B.; Orem, W.H.; McIntosh, J.C. Enhanced microbial coalbed methane generation: A review of research, commercial activity, and remaining challenges. Int. J. Coal Geol. 2015, 146, 28–41. [Google Scholar] [CrossRef]
- Freij-Ayoub, R. Opportunities and challenges to coal bed methane production in Australia. J. Pet. Sci. Eng. 2012, 88–89, 1–4. [Google Scholar] [CrossRef]
- Sujoy, C.; Debadutta, M.; Tarkeshwar, K.; Gopinath, H. Thermodynamics, kinetics and modeling of sorption behaviour of coalbed methane—A review. J. Unconv. Oil Gas Resour. 2016, 16, 14–33. [Google Scholar]
- Wang, G.; Qin, Y.; Xie, Y.W. Geochemical Characteristics of Coal in the Taiyuan Formation in the Center and North of the Xishan Coalfield. Energies 2022, 15, 8025. [Google Scholar] [CrossRef]
- Jing, W.; Zhou, J.; Yuan, L.; Jin, R.; Jing, L. Deformation and Failure Mechanism of Surrounding Rock in Deep Soft Rock Tunnels Considering Rock Rheology and Different Strength Criteria. Rock Mech. Rock Eng. 2023. [Google Scholar] [CrossRef]
- Li, H.Y.; Lau, H.C.; Huang, S. China’s coalbed methane development: A review of the challenges and opportunities in subsurface and surface engineering. J. Pet. Sci. Eng. 2018, 166, 621–635. [Google Scholar] [CrossRef]
- Li, Z.; Liu, D.; Wang, Y.; Si, G.; Cai, Y.; Wang, Y. Evaluation of multistage characteristics for coalbed methane desorption-diffusion and their geological controls: A case study of the northern Gujiao Block of Qinshui Basin, China. J. Pet. Sci. Eng. 2021, 204, 108704. [Google Scholar] [CrossRef]
- Achinta, B.; Subhash, S. A review on modern imaging techniques for characterization of nanoporous unconventional reservoirs: Challenges and prospects. Mar. Pet. Geol. 2021, 133, 105287. [Google Scholar]
- Zhang, C.; Li, M.X.; Feng, S.R.; Hu, Q.J.; Qiao, M.P.; Wu, D.Q.; Yu, J.S.; Li, K.X. Reservoir properties and gas production difference between No.15 coal and No.3 coal in Zhengzhuang Block, southern Qinshui Basin. Coal Geol. Explor. 2022, 50, 145–153. [Google Scholar]
- Jiang, W.; Zhang, P.; Li, D.; Li, Z.; Wang, J.; Duan, Y.; Wu, J.; Liu, N. Reservoir characteristics and gas production potential of deep coalbed methane: Insights from the no. 15 coal seam in shouyang block, Qinshui Basin, China. Unconv. Resour. 2022, 2, 12–20. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, R.Y. Study on occurrence features as well as exploration and development of coalbed methane in Shouyang North Block, Shanxi. Coal Sci. Technol. 2015, 43, 99–104. [Google Scholar]
- Wang, J.; Kang, Y.; Jiang, S.; Zhang, S.; Ye, J.; Wu, J. Reasons for water production difference of CBM wells in Shouyang Block, Qinshui Basin, and prediction on favorable areas. Nat. Gas Ind. 2016, 36, 52–59. [Google Scholar]
- Zhang, Y.S.; He, J.; Zhang, Y.F.; Duan, J.; Kang, L.; Wang, Z. Enrichment Law and Optimization of Coal Bed Methane Reservoir in Shouyang Block, Qinshui Basin. China Pet. Chem. Stand. Qual. 2022, 42, 124–126. [Google Scholar]
- Zhu, H.Y.; Tang, X.H.; Liu, Q.Y.; Liu, S.; Zhang, B.; Jiang, S.; McLennan, J.D. McLennan. Permeability stress-sensitivity in 4D flow-geomechanical coupling of Shouyang CBM reservoir, Qinshui Basin, China. Fuel 2018, 232, 817–832. [Google Scholar] [CrossRef]
- Du, F.; Ni, X.; Zhang, Y.; Wang, W.; Wang, K. Hydrological control mode and production characteristics of coalbed methane field in Shouyang block. Coal Sci. Technol. 2023, 51, 177–188. [Google Scholar] [CrossRef]
- Lv, Y.; Liu, Y.; Wang, C.; Guo, G.; Zhu, X.; Jiang, R. Controls on High Water Production of CBM Wells in Shouyang Block, Qinshui Basin. Geoscience 2017, 31, 1088–1094. [Google Scholar]
- Kang, Y.S.; Chen, J.; Zhang, B. Identification of aquifers influencing the drainage of coalbed methane wells in Shouyang exploration area, Qinshui Basin. J. China Coal Soc. 2016, 41, 2263–2272. [Google Scholar]
- Wang, Z.Y.; Tang, S.H.; Sun, P.J.; Zheng, G. Feasibility Study of Multi-layer Drainage for Nos. 3 and 9 Coal Seams in Shouyang Block, Qinshui Basin. Coal Geol. China 2013, 25, 21–26. [Google Scholar]
- Huang, L.; Hu, Q.; Guo, Y.; Zhou, J.H. Feasibility of Multiple-zone Production in CBM Reservoirs, Shouyang Block, Qinshui Basin. Nat. Gas Technol. Econ. 2017, 11, 21–24. [Google Scholar]
- Zheng, A.; Wang, X.; Wang, X.; Wu, M.; Yuan, Y. The Effect of Coal Seam Gas saturation on CBM Well Productivity-A Case Study of Central Region of Hedong Area. Procedia Eng. 2011, 26, 1205–1213. [Google Scholar] [CrossRef]
- Zhang, Z.G. Controlling Factors of Productivity Difference of Coalbed Methane Wells in Eastern Yunnan and Western Guizhou; China University of Mining and Technology: Xuzhou, China, 2022. [Google Scholar]
- Lu, Y.Y.; Zhang, H.D.; Zhou, Z.; Ge, Z.L.; Chen, C.J.; Hou, Y.D.; Ye, M.L. Current status and effective suggestions for efficient exploitation of coalbed methane in China: A review. Energy Fuels 2021, 35, 9102–9123. [Google Scholar] [CrossRef]
- Moore, T.A. Coalbed methane: A review. Int. J. Coal Geol. 2012, 101, 36–81. [Google Scholar] [CrossRef]
- Li, C.; Yang, Z.; Chen, J.; Sun, H. Prediction of Critical Desorption Pressure of Coalbed Methane in Multi-coal Seams Reservoir of Medium and High Coal Rank: A Case Study of Eastern Yunnan and Western Guizhou, China. Nat. Resour. Res. 2022, 31, 1443–1461. [Google Scholar] [CrossRef]
- Shen, J.; Qin, Y.; Li, Y.; Yang, Y.; Ju, W.; Yang, C.; Wang, G. In situ stress field in the FZ Block of Qinshui Basin, China: Implications for the permeability and coalbed methane production. J. Pet. Sci. Eng. 2018, 170, 744–754. [Google Scholar] [CrossRef]
- Wang, G.; Xie, Y.; Chang, H.; Du, L.; Wang, Q.; He, T.; Zhang, S. Characteristics and Geological Impact Factors of Coalbed Methane Production in the Taiyuan Formation of the Gujiao Block. Processes 2023, 11, 2000. [Google Scholar] [CrossRef]
- Qin, Y.; Shen, J. On the fundamental issues of deep coalbed methane geology. Acta Pet. Sin. 2016, 37, 125–136. [Google Scholar]
- Wang, Z.; Fu, X.; Pan, J.; Deng, Z. Effect of N2/CO2 injection and alternate injection on volume swelling/shrinkage strain of coal. Energy 2023, 275, 127377. [Google Scholar] [CrossRef]
- Pan, J.; He, H.; Li, G.; Wang, X.; Hou, Q.; Liu, L.; Cheng, N. Anisotropic strain of anthracite induced by different phase CO2 injection and its effect on permeability. Energy 2023, 284, 128619. [Google Scholar] [CrossRef]
- Hu, Z.Q. Apllication of R/S analysis in the evaluation of vertical reservoir heterogeneity and fracture development. Exp. Pet. Geol. 2000, 04, 382–386. [Google Scholar]
- Song, M.S.; Liu, Z.; Zhang, X.C.; Wang, Y.; Li, J.; Yang, F. Fracability evaluation of tight reservoirs based on improved entropy analytic hierarchy process: Taking the Jurassic reservoirs of Well Z109 in the Junggar Basin as an example. J. Geomech. 2019, 25, 509–517. [Google Scholar]
- Zhang, B. CBM Well Produced Water Source Identification and Favorable Block Prediction in Shouyang Area. Coal Geol. China 2016, 28, 67–73. [Google Scholar]
- Huo, Z.B. Analysis on the Difference and Main Controlling Factors of Gas-Water Productivity of CBM Straight Wells in Zhengzhuang South Qinshui Basin. Master’s Thesis, China University of Mining and Technology, Xuzhou, China, 2017. [Google Scholar]
- Dang, F. Analysis of Factors Influencing the Productivity of Coalbed Methane in Different Geological Units in Shizhuangnan Block, Qinshui Basin; China University of Geosciences: Beijing, China, 2020. [Google Scholar] [CrossRef]
- Han, W.L.; Wang, Y.B.; Ni, X.M.; Li, Y.; Tao, C.; Liu, Z.M.; Wu, X. Influence of normal development faults characteristics on the exploitation of vertical coal-bed methane wells: A case study of the Shizhuang Block in the south of Qinshui Basin. J. China Coal Soc. 2020, 45, 3522–3532. [Google Scholar]
Well | Average Gas Production (m3/d) | Buried Depth (m) | Coal Thickness (m) | Gas Content (m3/t) |
---|---|---|---|---|
S01 | 375.06 | 1115 | 3.7 | 12.14 |
S02 | 132.15 | 1415.7 | 3.2 | 19.08 |
S03 | 63.31 | 971.3 | 4.1 | 14.1 |
S04 | 103.25 | 1348.00 | - | - |
S05 | 259.97 | 668.90 | 3.50 | 15.00 |
S06 | 29.23 | 583.45 | 5.45 | 15.50 |
S07 | 170.69 | 1124.95 | 3.95 | 15.30 |
S08 | 604.34 | 1441.55 | 4.00 | 15.30 |
S09 | 37 | 668.90 | 3.50 | 15.00 |
S10 | 243.16 | 1418.75 | 4.35 | 15.21 |
S11 | 50.36 | 1226.40 | 4.65 | 16.00 |
S12 | 61.17 | 1355.30 | 4.15 | 20.00 |
S13 | 521.74 | 1166.30 | 3.80 | 16.45 |
S14 | 171.15 | 1238.75 | 3.90 | 16.51 |
S15 | 162.59 | 1164.50 | 5.15 | 14.90 |
S16 | 221.48 | 1261.10 | 4.70 | 16.35 |
S17 | 51.17 | 674.10 | 3.20 | 5.97 |
S18 | 197.1 | 637.20 | 3.90 | 5.57 |
S19 | 40.00 | 675.15 | 3.8 | 6.46 |
S20 | 30.00 | 859 | 3 | 5.03 |
S21 | 10.51 | 774.77 | 3.20 | 4.78 |
S22 | 102.32 | 711.30 | 4.10 | 4.58 |
S23 | 144.91 | 705.60 | 2.90 | 3.79 |
S24 | 56.11 | 880.10 | 3.70 | 3.15 |
S25 | 105.53 | 819.20 | 4.30 | 3.25 |
S26 | 166.96 | 852.60 | 4.60 | 2.83 |
S27 | 71.81 | 850.60 | 3.10 | 2.77 |
S28 | 47.06 | - | - | - |
S29 | 0 | 802.9 | 3.9 | 2.67 |
S30 | 66.73 | 997.27 | 6.67 | 2.56 |
S31 | 107.68 | 1237.65 | 5.45 | 16.5 |
S32 | 24.01 | - | 4.20 | 16.4 |
S33 | 23.98 | - | - | - |
S34 | 0 | - | - | - |
S35 | 0 | 1120.15 | 3.4 | 14.2 |
S36 | 0 | 1210.5 | 3.45 | 13.1 |
S37 | 94.55 | 674.65 | 4.7 | - |
S38 | 0 | 896.8 | 1.6 | - |
S39 | 298.84 | 654.2 | 2.6 | - |
S40 | 13.03 | 749.3 | 3.8 | - |
S41 | 42.71 | 756.55 | 4.2 | - |
S42 | 4.8 | 893.8 | 3.4 | - |
Well | Fractal Dimension D Value of Fracture | Fault Fractal Dimension Value | Sand–mud Ratio | Permeability (mD) | Gas Saturation | Critical Desorption Pressure (MPa) | Maximum Horizontal Principal Stress (MPa) | Minimum Horizontal Principal Stress (MPa) | Vertical Principal Stress (MPa) | Horizontal Stress Difference Coefficient (MPa) | Mean Value of Three-Dimensional Principal Stress (MPa) |
---|---|---|---|---|---|---|---|---|---|---|---|
S01 | 1.74 | 0.78 | 0.68 | 0.20 | 0.36 | 0.45 | 28.02 | 26.87 | 26.84 | 0.04 | 27.24 |
S02 | 1.60 | 0.90 | 0.42 | 0.15 | 0.53 | 2.35 | 24.00 | 22.50 | 25.00 | 0.07 | 23.83 |
S03 | 1.68 | 0.70 | 0.54 | 0.30 | 0.46 | 2.55 | 23.80 | 22.00 | 28.00 | 0.08 | 24.60 |
S06 | 1.75 | 0.20 | 1.20 | 1.80 | 0.32 | 1.14 | 18.50 | 14.00 | 20.00 | 0.32 | 17.50 |
S07 | 1.70 | 0.20 | 1.34 | 0.62 | 0.22 | 1.23 | 18.50 | 14.50 | 21.00 | 0.28 | 18.00 |
S08 | 1.74 | 0.90 | 0.63 | 0.30 | 0.38 | 0.71 | 25.50 | 21.00 | 23.50 | 0.21 | 23.33 |
S09 | 1.75 | 0.20 | 1.05 | 0.10 | 0.58 | 2.62 | 30.11 | 26.32 | 28.42 | 0.14 | 28.28 |
S10 | 1.70 | 0.83 | 1.00 | 0.10 | 0.50 | 0.25 | 15.44 | 12.92 | 23.34 | 0.20 | 17.23 |
S11 | 1.71 | 1.00 | 1.80 | 0.05 | 0.54 | 3.67 | 17.18 | 13.21 | 33.06 | 0.30 | 21.15 |
S12 | 1.74 | 0.62 | 1.85 | 0.05 | 0.52 | 3.00 | 17.50 | 15.00 | 29.00 | 0.17 | 20.50 |
S13 | 1.77 | 0.79 | 0.77 | 0.28 | 0.46 | 2.80 | 22.00 | 21.50 | 29.00 | 0.02 | 24.17 |
S14 | 1.78 | 0.70 | 0.81 | 0.46 | 0.50 | 1.00 | 25.00 | 23.80 | 33.00 | 0.05 | 27.27 |
S15 | 1.79 | 0.80 | 2.23 | 0.30 | 0.68 | 0.49 | 25.00 | 23.80 | 33.00 | 0.05 | 27.27 |
S17 | 1.79 | 0.20 | 1.04 | 0.50 | 0.42 | 1.68 | 20.05 | 17.50 | 15.83 | 0.15 | 17.79 |
S18 | 1.81 | 0.30 | 0.35 | 0.32 | 0.36 | 0.78 | 16.44 | 17.89 | 18.13 | 0.21 | 17.49 |
S19 | 1.84 | 0.94 | 0.44 | 0.52 | 0.38 | 1.45 | 16.24 | 16.77 | 19.69 | 0.11 | 17.57 |
S20 | 1.82 | 0.81 | 3.00 | 0.21 | 0.36 | 1.70 | 25.45 | 24.39 | 20.68 | 0.04 | 23.51 |
S21 | 1.82 | 0.90 | 3.12 | 0.20 | 0.32 | 1.80 | 20.35 | 17.57 | 18.38 | 0.16 | 18.77 |
S22 | 1.80 | 0.70 | 0.41 | 0.40 | 0.50 | 1.30 | 18.17 | 17.14 | 21.03 | 0.06 | 18.78 |
S23 | 1.77 | 0.65 | 1.52 | 1.00 | 0.36 | 1.30 | 17.46 | 12.95 | 20.37 | 0.35 | 16.93 |
S25 | 1.81 | 0.60 | 2.10 | 0.88 | 0.40 | 1.45 | 19.50 | 17.00 | 21.00 | 0.15 | 19.17 |
S26 | 1.62 | 0.50 | 2.50 | 1.50 | 0.38 | 1.46 | 22.00 | 18.00 | 25.71 | 0.22 | 21.90 |
S27 | 1.78 | 0.50 | 3.00 | 1.05 | 0.40 | 1.09 | 20.00 | 13.80 | 21.80 | 0.45 | 18.53 |
S29 | 1.63 | 0.40 | 4.80 | 1.00 | 0.50 | 2.50 | 19.50 | 15.50 | 21.40 | 0.26 | 18.80 |
S31 | 1.85 | 0.80 | 2.20 | 1.43 | 0.46 | 0.71 | 13.17 | 10.23 | 20.45 | 0.29 | 14.62 |
S32 | 1.71 | 0.84 | 1.24 | 0.25 | 0.34 | 1.27 | 18.20 | 15.67 | 19.43 | 0.16 | 17.77 |
Factors Affecting Gas Production | Coal Thickness | Fracture Fractal Dimension D Value | Gas Saturation | Gas Content | Horizontal Stress Difference Coefficient | Permeability |
---|---|---|---|---|---|---|
Correlation | 0.806 | 0.799 | 0.791 | 0.79 | 0.788 | 0.782 |
Factors affecting gas production | Critical desorption pressure | Mean value of three-dimensional principal stress | Burial depth | Sand–mud ratio | Fault fractal dimension | |
Correlation | 0.763 | 0.763 | 0.746 | 0.746 | 0.723 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, B.; Li, W.; Wang, G.; Jiao, X. Analysis of Coalbed Methane Production Characteristics and Influencing Factors of No. 15 Coal Seam in the Shouyang Block. Processes 2023, 11, 3269. https://doi.org/10.3390/pr11123269
Zhang B, Li W, Wang G, Jiao X. Analysis of Coalbed Methane Production Characteristics and Influencing Factors of No. 15 Coal Seam in the Shouyang Block. Processes. 2023; 11(12):3269. https://doi.org/10.3390/pr11123269
Chicago/Turabian StyleZhang, Bing, Wei Li, Gang Wang, and Xinglong Jiao. 2023. "Analysis of Coalbed Methane Production Characteristics and Influencing Factors of No. 15 Coal Seam in the Shouyang Block" Processes 11, no. 12: 3269. https://doi.org/10.3390/pr11123269
APA StyleZhang, B., Li, W., Wang, G., & Jiao, X. (2023). Analysis of Coalbed Methane Production Characteristics and Influencing Factors of No. 15 Coal Seam in the Shouyang Block. Processes, 11(12), 3269. https://doi.org/10.3390/pr11123269