Shortening the Standard Testing Time for Residual Biogas Potential (RBP) Tests Using Biogas Yield Models and Substrate Physicochemical Characteristics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Digestate Samples and RBP Test
2.2. Analytical Methods
2.3. Assessing the Strength of Fit for Biogas Production Kinetic Models
2.4. Prediction of Biogas Kinetic Model Coefficients and Constants Using Decision Tree Multivariate Regression Method
2.4.1. Decision Tree Multivariate Regression Method
2.4.2. Assessing Prediction Uncertainty Using a Gaussian Process Regressor (GPR)
3. Results and Discussion
3.1. Digestate Characterisation and RBP Test Results
3.2. Assessing Strength of Fit for Biogas Production Models
3.3. Biogas Yield Prediction from Digestate Physicochemical Characteristics by DT
3.4. AR (1) Model Prediction Guide GPR
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, M.E.; Steiman, M.W.; St Angelo, S.K. Biogas digestate as a renewable fertilizer: Effects of digestate application on crop growth and nutrient composition. Renew. Agric. Food Syst. 2021, 36, 173–181. [Google Scholar] [CrossRef]
- Walker, M.; Banks, C.; Heaven, S.; Frederickson, J. OFW004-005. Waste and Resources Action Programme, Residual Biogas Potential Test for Digestates; University of Southampton & Open University: Southampton, UK, 2010. [Google Scholar]
- WRAP. PAS 110:2014. Specification for Whole Digestate, Separated Liquor and separated Fibre Derived from the Anaerobic Digestion of Source-Segregated Biodegradable Materials. 2014. Available online: https://wrap.org.uk/sites/default/files/2021-03/PAS110_2014.pdf (accessed on 26 June 2022).
- Lie, E.; Welander, T. A method for determination of the readily fermentable organic fraction in municipal wastewater. Water Res. 1997, 31, 1269–1274. [Google Scholar] [CrossRef]
- Ruel, S.M.; Comeau, Y.; Héduit, A.; Deronzier, G.; Ginestet, P.; Audic, J.M. Operating conditions for the determination of the biochemical acidogenic potential of wastewater. Water Res. 2002, 36, 2337–2341. [Google Scholar] [CrossRef] [PubMed]
- Mohan, S.V.; Babu, V.L.; Sarma, P.N. Effect of various pretreatment methods on anaerobic mixed microflora to enhance biohydrogen production utilizing dairy wastewater as substrate. Bioresour. Technol. 2008, 99, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Banks, C.J.; Heaven, S.; Zhang, Y.; Sapp, M.; Thwaites, R. OMK002-014. Waste and Resources Action Programme. In Review of the Application of the Residual Biogas Potential Test; University of Southampton: Southampton, UK, 2013. [Google Scholar]
- WRAP. OFW004-005. Residual Biogas Potential Test for Digestates, Development and Evaluation of a Method for Testing the Residual Biogas Potential of Digestates (Section 4, Full Description of the RBP Test). 2010. Available online: https://www.ktbl.de/fileadmin/user_upload/Allgemeines/Download/Ringversuch-Biogas/Residual-Biogas-Potential.pdf (accessed on 20 July 2022).
- WRAP. OMK002-014. Review of the Application of the Residual Biogas Potential Test. 2013. Available online: http://www.organics-recycling.org.uk/uploads/article2652/PAS110%20digestate%20stability%20review.pdf (accessed on 13 July 2022).
- Strömberg, S.; Nistor, M.; Liu, J. Early prediction of biochemical methane potential through statistical and kinetic modelling of initial gas production. Bioresour. Technol. 2015, 176, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Pramanik, S.K.; Suja, F.B.; Porhemmat, M.; Pramanik, B.K. Performance and kinetic model of a single-stage anaerobic digestion system operated at different successive operating stages for the treatment of food waste. Processes 2019, 7, 600. [Google Scholar] [CrossRef]
- Calabrò, P.S.; Folino, A.; Maesano, M.; Pangallo, D.; Zema, D.A. Exploring the Possibility to Shorten the Duration and Reduce the Number of Replicates in Biomethane Potential Tests (BMP). Waste Biomass Valorization 2022, 2022, 939. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R.; Friedman, J.H. Chapter 9: Additive Models, Trees, and Related Methods. In The Elements of Statistical Learning: Data Mining, Inference, and Prediction; Springer: New York, NY, USA, 2009; Volume 2, pp. 1–758. [Google Scholar]
- Deng, Z.; van Linden, N.; Guillen, E.; Spanjers, H.; van Lier, J.B. Recovery and applications of ammoniacal nitrogen from nitrogen-loaded residual streams: A review. J. Environ. Manag. 2021, 295, 113096. [Google Scholar] [CrossRef] [PubMed]
- Ripley, L.E.; Boyle, W.C.; Converse, J.C. Improved alkalimetric monitoring for anaerobic digestion of high strength wastes. J. Water Pollut. Control Fed. 1986, 58, 406–411. [Google Scholar]
- SCA. Determination of volatile fatty acids in sewage sludge. In Methods for the Examination of Waters and Associated Materials; Standing Committee of Analysts; HMSO: London, UK, 1979. [Google Scholar]
- APHA. Standard Method for Examination of Water and Wastewater, 21st ed.; AWWA, WPCF: Washington, DC, USA, 2005. [Google Scholar]
- SCA. Methods for the determination of metals in soils, sediments and sewage sludge and plants by hydrochloric-nitric acid digestion. In Methods for the Examination of Waters and Associated Materials; Standing Committee of Analysts; HMSO: London, UK, 1986. [Google Scholar]
- Zahan, Z.; Othman, M.Z.; Muster, T.H. Anaerobic digestion/co-digestion kinetic potentials of different agro-industrial wastes: A comparative batch study for C/N optimisation. Waste Manag. 2018, 71, 663–674. [Google Scholar] [CrossRef] [PubMed]
- Kafle, G.K.; Chen, L. Comparison on batch anaerobic digestion of five different livestock manures and prediction of biochemical methane potential (BMP) using different statistical models. Waste Manag. 2016, 48, 492–502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gompertz, B. XXIV. On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. In a letter to Francis Baily, Esq. F. R. S. &c. Philos. Trans. R. Soc. Lond. 1825, 115, 513–583. [Google Scholar]
- Zhu, H.; Yang, J.; Cheng, X. Application of Modified Gompertz Model to Study on Biogas production from middle temperature co-digestion of pig manure and dead pigs. E3S Web Conf. 2019, 118, 1–7. Available online: https://www.e3s-conferences.org/articles/e3sconf/pdf/2019/44/e3sconf_icaeer18_03022.pdf (accessed on 10 October 2021). [CrossRef]
- Pererva, Y.; Miller, C.D.; Sims, R.C. Existing empirical kinetic models in biochemical methane potential (BMP) testing, their selection and numerical solution. Water 2020, 12, 1831. [Google Scholar] [CrossRef]
- Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. Regression. In Classification and Regression Trees, 1st ed.; Routledge & CSC Press: Boca Raton, FL, USA, 2017; pp. 216–264. [Google Scholar]
- Rasmussen, C.E.; Williams, C.K.I. Regression. In Gaussian Processes for Machine Learning; Dietterich, T., Bishop, C., Heckerman, D., Jordan, M., Kearns, M., Eds.; MIT Press: Cambridge, MA, USA, 2006; pp. 7–29. [Google Scholar]
- Nielfa, A.; Cano, R.; Fdz-Polanco, M. Theoretical methane production generated by the co-digestion of organic fraction municipal solid waste and biological sludge. Biotechnol. Rep. 2015, 5, 14–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
ADP No. | d-28 | Acetate | Total-VFA | TAN | TKN | TAN/TKN | TA | PA | IA | IA/PA | TS | VS |
---|---|---|---|---|---|---|---|---|---|---|---|---|
L/g VS | mg/L | g N/kg | kg/kg CaCO3 | g/kg | ||||||||
1 | 0.13 | 178.18 | 193.57 | 1.70 | 3.53 | 0.48 | 12.52 | 9.03 | 3.49 | 0.39 | 49.84 | 37.12 |
2 | 0.18 | 29.08 | 37.35 | 0.62 | 3.28 | 0.19 | 7.97 | 6.42 | 1.55 | 0.24 | 49.11 | 30.39 |
3 | 0.13 | 846.78 | 1016.41 | 7.98 | 12.37 | 0.64 | 33.38 | 25.87 | 7.51 | 0.29 | 93.28 | 67.65 |
4 | 0.24 | 684.05 | 775.99 | 4.04 | 6.48 | 0.62 | 17.52 | 12.42 | 5.10 | 0.41 | 46.43 | 32.59 |
5 | 0.12 | 247.38 | 332.57 | 5.12 | 7.48 | 0.69 | 24.50 | 16.62 | 7.88 | 0.47 | 56.57 | 37.49 |
6 | 0.06 | 111.56 | 115.64 | 2.80 | 4.91 | 0.57 | 46.43 | 28.12 | 18.31 | 0.65 | 178.34 | 50.05 |
7 | 0.07 | 183.61 | 187.39 | 2.69 | 4.44 | 0.61 | 58.20 | 20.92 | 37.27 | 1.78 | 137.43 | 40.44 |
8 | 0.26 | 14.42 | 324.32 | 0.40 | 1.29 | 0.31 | 3.31 | 2.20 | 1.11 | 0.50 | 17.16 | 12.11 |
9 | 0.36 | 2633.79 | 9262.76 | 6.54 | 9.23 | 0.71 | 23.99 | 15.62 | 8.36 | 0.54 | 47.79 | 34.51 |
10 | 0.17 | 134.49 | 204.90 | 3.32 | 5.21 | 0.64 | 17.64 | 13.10 | 4.54 | 0.35 | 46.53 | 29.51 |
11 | 0.30 | 2662.15 | 3963.27 | 2.22 | 3.14 | 0.71 | 9.45 | 5.22 | 4.23 | 0.81 | 20.38 | 12.74 |
12 | 0.17 | 23.29 | 36.68 | 2.71 | 4.64 | 0.58 | 12.22 | 8.98 | 3.24 | 0.36 | 36.91 | 26.50 |
13 | 0.16 | 335.54 | 364.46 | 2.80 | 5.29 | 0.53 | 15.73 | 12.14 | 3.59 | 0.30 | 43.59 | 29.98 |
14 | 0.13 | 19.25 | 19.25 | 0.44 | 2.25 | 0.20 | 3.97 | 1.85 | 2.11 | 1.14 | 35.04 | 21.47 |
15 | 0.09 | 250.28 | 259.05 | 3.58 | 6.12 | 0.58 | 17.20 | 13.66 | 3.54 | 0.26 | 58.00 | 43.56 |
16 | 0.38 | 2706.80 | 3871.62 | 3.00 | 4.87 | 0.62 | 11.91 | 7.76 | 4.14 | 0.53 | 36.65 | 26.88 |
17 | 0.26 | 36.69 | 50.29 | 1.49 | 2.85 | 0.52 | 7.71 | 5.79 | 1.91 | 0.33 | 29.82 | 16.42 |
18 | 0.25 | 832.24 | 1440.64 | 2.42 | 4.27 | 0.57 | 13.70 | 9.98 | 3.72 | 0.37 | 59.04 | 44.97 |
19 | 0.14 | 39.82 | 53.93 | 4.62 | 6.85 | 0.68 | 21.13 | 16.31 | 4.82 | 0.30 | 52.92 | 38.76 |
20 | 0.19 | 184.69 | 218.06 | 5.76 | 8.55 | 0.67 | 23.56 | 18.34 | 5.23 | 0.29 | 64.64 | 44.93 |
21 | 0.33 | 89.69 | 260.15 | 3.00 | 5.61 | 0.54 | 24.85 | 14.70 | 10.14 | 0.69 | 211.53 | 106.18 |
22 | 0.22 | 299.39 | 353.29 | 2.25 | 3.11 | 0.72 | 12.78 | 10.07 | 2.71 | 0.27 | 20.86 | 9.85 |
23 | 0.29 | 270.61 | 411.15 | 4.24 | 6.56 | 0.65 | 17.23 | 13.24 | 3.99 | 0.30 | 52.49 | 32.30 |
24 | 0.28 | 215.32 | 250.62 | 4.47 | 6.98 | 0.64 | 18.19 | 13.87 | 4.33 | 0.31 | 50.25 | 34.87 |
25 | 0.29 | 241.71 | 272.53 | 4.77 | 7.01 | 0.68 | 19.52 | 15.15 | 4.38 | 0.29 | 46.84 | 31.96 |
ADP No. | d-28 | pH | CV | C | H | N | Co | Fe | Mo | Ni | Total-COD | sCOD |
---|---|---|---|---|---|---|---|---|---|---|---|---|
L/g VS | MJ/kg TS | % | mg/L | g O2/L | ||||||||
1 | 0.13 | 8.30 | 16.38 | 39.20 | 4.48 | 5.61 | 0.85 | 130.53 | 0.29 | 1.20 | 42.77 | 6.67 |
2 | 0.18 | 7.41 | 14.89 | 37.44 | 4.57 | 5.53 | 0.08 | 1144.15 | 0.30 | 0.50 | 40.35 | 2.73 |
3 | 0.13 | 8.35 | 18.61 | 34.80 | 4.52 | 7.34 | 0.24 | 1020.82 | 0.43 | 1.75 | 88.64 | 21.56 |
4 | 0.24 | 8.17 | 17.53 | 40.13 | 4.89 | 6.61 | 0.28 | 2031.83 | 0.19 | 0.60 | 44.04 | 12.14 |
5 | 0.12 | 8.45 | 16.13 | 38.32 | 4.20 | 6.05 | 0.21 | 90.76 | 0.18 | 0.39 | 40.69 | 15.16 |
6 | 0.06 | 8.14 | 3.29 | 17.08 | 1.71 | 2.20 | 1.08 | 2326.91 | 0.94 | 7.74 | 57.29 | 11.19 |
7 | 0.07 | 8.16 | 4.41 | 12.51 | 1.59 | 2.25 | 0.98 | 1923.48 | 0.69 | 5.06 | 39.32 | 8.45 |
8 | 0.26 | 7.33 | 20.26 | 46.25 | 5.58 | 6.11 | 0.03 | 87.36 | 0.07 | 0.24 | 28.62 | 3.16 |
9 | 0.36 | 8.35 | 22.26 | 47.75 | 5.32 | 8.51 | 0.09 | 539.07 | 0.14 | 0.50 | 75.39 | 35.94 |
10 | 0.17 | 8.04 | 14.78 | 36.85 | 4.00 | 5.74 | 0.42 | 174.88 | 0.30 | 0.71 | 36.12 | 7.82 |
11 | 0.30 | 7.62 | 17.02 | 38.87 | 4.43 | 6.30 | 0.04 | 210.67 | 0.08 | 0.19 | 28.69 | 10.00 |
12 | 0.17 | 8.10 | 18.26 | 42.43 | 4.88 | 6.13 | 0.25 | 234.07 | 0.08 | 0.28 | 31.68 | 10.17 |
13 | 0.16 | 8.37 | 16.21 | 38.47 | 4.47 | 6.65 | 1.04 | 111.12 | 0.30 | 1.02 | 46.88 | 9.53 |
14 | 0.13 | 7.50 | 15.25 | 32.94 | 4.50 | 5.78 | 0.45 | 1166.46 | 1.46 | 1.67 | 19.63 | 4.50 |
15 | 0.09 | 8.90 | 19.86 | 44.13 | 5.28 | 5.22 | 0.09 | 151.82 | 0.25 | 1.08 | 65.63 | 11.87 |
16 | 0.38 | 7.92 | 19.22 | 43.49 | 5.62 | 6.54 | 0.09 | 64.01 | 0.18 | 0.26 | 39.18 | 18.84 |
17 | 0.26 | 7.92 | 13.35 | 30.67 | 3.82 | 5.67 | 0.19 | 348.02 | 0.28 | 0.56 | 26.51 | 6.39 |
18 | 0.25 | 8.16 | 17.76 | 42.16 | 4.76 | 4.34 | 9.06 | 227.30 | 5.68 | 30.37 | 55.74 | 17.00 |
19 | 0.14 | 8.42 | 17.90 | 44.56 | 4.67 | 6.87 | 1.42 | 293.85 | 0.50 | 1.33 | 58.58 | 14.74 |
20 | 0.19 | 8.15 | 16.41 | 38.55 | 4.55 | 6.40 | 1.21 | 1056.09 | 0.45 | 1.55 | 68.52 | 15.57 |
21 | 0.33 | 8.07 | 12.24 | 33.21 | 2.64 | 2.35 | 2.58 | 4249.89 | 1.17 | 13.79 | 82.92 | 12.59 |
22 | 0.22 | 8.32 | 10.74 | 24.93 | 2.88 | 5.27 | 0.89 | 36.94 | 0.26 | 0.82 | 17.76 | 9.52 |
23 | 0.29 | 8.54 | 13.84 | 32.93 | 4.06 | 5.59 | 0.18 | 649.78 | 0.16 | 0.46 | 54.33 | 16.54 |
24 | 0.28 | 8.54 | 16.82 | 38.59 | 4.82 | 6.65 | 0.38 | 679.62 | 0.16 | 0.58 | 67.39 | 15.86 |
25 | 0.29 | 8.67 | 16.50 | 36.82 | 4.71 | 5.90 | 0.37 | 797.93 | 0.15 | 0.53 | 61.56 | 16.83 |
Type I | ADP | 3 | 4 | 5 | 11 | 12 | 13 | 16 | 19 | 20 | 21 | |||||
Increase (%) | 0.38 | 0.04 | 0.26 | 0.27 | 0.36 | 0.31 | 0.18 | 0.36 | 0.4 | 0.50 | ||||||
Type II | ADP | 1 | 2 | 6 | 7 | 8 | 9 | 10 | 14 | 15 | 17 | 18 | 22 | 23 | 24 | 25 |
Increase (%) | 1.07 | 1.13 | 1.23 | 1.56 | 0.70 | 0.58 | 0.58 | 0.94 | 0.95 | 1.13 | 1.00 | 0.92 | 0.77 | 0.86 | 0.80 |
Type I | Fitting R2 Values (%) | |||||||||||||||
ADP | 3 | 4 | 5 | 11 | 12 | 13 | 16 | 19 | 20 | 21 | ||||||
FO | 98.5 | 98.4 | 97.9 | 86.8 | 99.0 | 98.2 | 99.5 | 97.7 | 96.4 | 97.2 | ||||||
MG | 97.6 | 94.0 | 96.6 | 80.7 | 96.1 | 91.8 | 96.0 | 94.9 | 88.3 | 61.6 | ||||||
PP | 98.5 | 98.7 | 97.9 | 94.6 | 99.1 | 99.5 | 99.6 | 97.8 | 98.7 | 97.6 | ||||||
Type II | Fitting R2 Values (%) | |||||||||||||||
ADP | 1 | 2 | 6 | 7 | 8 | 9 | 10 | 14 | 15 | 17 | 18 | 22 | 23 | 24 | 25 | |
FO | 97.1 | 98.6 | 86.5 | 77.2 | 83.2 | 97.3 | 98.4 | 97.6 | 97.5 | 97.5 | 95.5 | 96.0 | 98.8 | 99.1 | 99.5 | |
MG | 88.8 | 93.9 | 78.6 | 85.8 | 68.2 | 99.1 | 93.0 | 90.8 | 74.9 | 88.4 | 85.6 | 85.9 | 96.7 | 97.3 | 99.0 | |
PP | 99.9 | 99.6 | 92.8 | 92.6 | 98.0 | 97.4 | 98.9 | 99.5 | 98.9 | 97.8 | 99.1 | 98.9 | 98.8 | 99.1 | 99.5 |
Type I | Fitting R2 Values (%) | |||||||||||||||
ADP | 3 | 4 | 5 | 11 | 12 | 13 | 16 | 19 | 20 | 21 | ||||||
AR (1) | 98.2 | 99.4 | 97.4 | 97.0 | 98.6 | 99.3 | 99.8 | 99.7 | 98.9 | 90.1 | ||||||
Type II | Fitting R2 Values (%) | |||||||||||||||
ADP | 1 | 2 | 6 | 7 | 8 | 9 | 10 | 14 | 15 | 17 | 18 | 22 | 23 | 24 | 25 | |
AR (1) | 99.2 | 99.8 | 85.4 | 80.9 | 95.9 | 99.1 | 99.5 | 99.7 | 98.9 | 99.1 | 99.6 | 99.5 | 98.7 | 99.1 | 99.9 |
Type I | Days | FO | MG | PP | AR (1) | Type II | Days | FO | MG | PP | AR (1) |
---|---|---|---|---|---|---|---|---|---|---|---|
ADP 3 | 5 | 77.16 | 24.23 | 35.08 | / | ADP 2 | 5 | 46.46 | 51.94 | 28.00 | / |
10 | 4.98 | 9.62 | 7.26 | 1.15 | 10 | 24.34 | 37.77 | 24.65 | 12.20 | ||
15 | 1.01 | 5.14 | 2.70 | 0.47 | 15 | 17.34 | 24.48 | 6.86 | 4.52 | ||
20 | 2.10 | 1.55 | 0.88 | 1.71 | 20 | 10.98 | 14.87 | 2.02 | 1.63 | ||
25 | 2.29 | 0.07 | 3.23 | 1.81 | 25 | 6.40 | 6.25 | 0.43 | 0.27 | ||
ADP 4 | 5 | 57.99 | 26.65 | 52.67 | / | ADP 8 | 5 | 3.65 | 27.78 | 3.8080 | / |
10 | 7.50 | 15.32 | 7.19 | 3.97 | 10 | 15.24 | 17.56 | 15.13 | 12.57 | ||
15 | 5.00 | 5.53 | 4.65 | 6.00 | 15 | 12.03 | 12.02 | 8.31 | 8.62 | ||
20 | 1.84 | 1.71 | 4.26 | 2.63 | 20 | 9.62 | 9.62 | 5.23 | 8.20 | ||
25 | 0.40 | 0.22 | 1.97 | 1.91 | 25 | 3.48 | 3.44 | 2.76 | 5.74 | ||
ADP 5 | 5 | 159.25 | 17.17 | 105.36 | / | ADP 10 | 5 | 163.39 | 37.62 | 29.58 | / |
10 | 1.21 | 11.80 | 1.04 | 8.22 | 10 | 7.63 | 25.74 | 19.18 | 2.99 | ||
15 | 1.49 | 1.72 | 1.54 | 1.83 | 15 | 7.73 | 16.41 | 12.75 | 0.03 | ||
20 | 0.80 | 0.86 | 1.51 | 2.33 | 20 | 5.40 | 10.20 | 21.58 | 0.83 | ||
25 | 1.30 | 1.29 | 1.69 | 2.08 | 25 | 3.49 | 6.22 | 4.85 | 1.02 | ||
ADP 13 | 5 | 23.12 | 43.08 | 25.98 | / | ADP 14 | 5 | 0.16 | 44.20 | 5.68 | / |
10 | 21.74 | 27.40 | 7.71 | 0.56 | 10 | 27.04 | 32.57 | 27.06 | 44.65 | ||
15 | 11.85 | 12.96 | 22.50 | 8.86 | 15 | 17.04 | 19.33 | 1.20 | 8.78 | ||
20 | 4.95 | 4.19 | 10.03 | 3.70 | 20 | 10.67 | 10.33 | 5.62 | 3.70 | ||
25 | 2.50 | 1.87 | 2.91 | 2.58 | 25 | 6.58 | 4.85 | 1.92 | 2.04 | ||
ADP 16 | 5 | 19.90 | 37.71 | 17.89 | / | ADP 17 | 5 | 1.6464 | 45.20 | 11.25 | / |
10 | 4.66 | 18.19 | 4.76 | 5.69 | 10 | 11.99 | 26.91 | 5.02 | 47.42 | ||
15 | 3.38 | 8.20 | 3.05 | 0.57 | 15 | 13.86 | 17.95 | 0.84 | 0.25 | ||
20 | 1.09 | 2.65 | 3.70 | 1.37 | 20 | 10.90 | 11.12 | 4.12 | 3.06 | ||
25 | 0.61 | 0.95 | 1.00 | 0.89 | 25 | 6.00 | 4.61 | 1.53 | 1.94 | ||
ADP 19 | 5 | 183.89 | 24.27 | 146.92 | / | ADP 18 | 5 | 2.98 | 45.76 | 3.74 | / |
10 | 2.33 | 13.07 | 2.33 | 8.62 | 10 | 30.94 | 34.05 | 30.93 | 5.6969 | ||
15 | 3.13 | 7.29 | 3.41 | 1.31 | 15 | 22.36 | 22.19 | 7.51 | 0.57 | ||
20 | 2.78 | 3.23 | 2.79 | 0.36 | 20 | 12.64 | 11.80 | 4.16 | 1.37 | ||
25 | 1.96 | 1.79 | 1.91 | 0.66 | 25 | 6.29 | 4.44 | 2.96 | 0.89 | ||
ADP 20 | 5 | 24.11 | 31.62 | 27.78 | ADP 25 | 5 | 81.36 | 54.33 | 28.59 | / | |
10 | 11.16 | 21.66 | 8.64 | 48.84 | 10 | 36.33 | 23.98 | 2.24 | 14.84 | ||
15 | 8.93 | 13.72 | 4.54 | 0.62 | 15 | 8.52 | 14.08 | 1.09 | 1.92 | ||
20 | 7.15 | 9.66 | 0.06 | 1.15 | 20 | 3.26 | 7.75 | 7.05 | 0.48 | ||
25 | 5.32 | 6.69 | 1.12 | 0.51 | 25 | 1.06 | 4.50 | 1.34 | 0.11 |
Test Sample No. | Fitted AR (1) Coefficient | Predicted AR (1) Coefficient | AR (1) Coefficient APE | Fitted AR (1) Constant | Predicted AR (1) Constant | AR (1) Constant APE | Real RBP Test Result | Predicted RBP Test Result | RBP Test Result APE |
---|---|---|---|---|---|---|---|---|---|
ADP1 | 0.932 | 0.937 | 0.5% | 0.010 | 0.010 | 1.1% | 0.132 | 0.137 | 4% |
ADP2 | 0.949 | 0.934 | 1.6% | 0.011 | 0.019 | 65.6% | 0.182 | 0.243 | 33.5% |
ADP3 | 0.789 | 0.884 | 12% | 0.028 | 0.017 | 40.2% | 0.132 | 0.141 | 6.9% |
ADP4 | 0.876 | 0.896 | 2.2% | 0.030 | 0.035 | 17.5% | 0.236 | 0.321 | 36% |
ADP5 | 0.834 | 0.850 | 1.9% | 0.020 | 0.036 | 84% | 0.117 | 0.236 | 101.9% |
ADP6 | 0.946 | 0.813 | 14% | 0.004 | 0.011 | 174.7% | 0.062 | 0.057 | 7.9% |
ADP7 | 0.969 | 0.932 | 3.8% | 0.003 | 0.011 | 293% | 0.066 | 0.137 | 107.4% |
ADP8 | 0.929 | 0.937 | 0.9% | 0.019 | 0.036 | 84.6% | 0.261 | 0.490 | 88% |
ADP9 | 0.853 | 0.893 | 4.8% | 0.055 | 0.032 | 41.2% | 0.361 | 0.291 | 19.5% |
ADP10 | 0.890 | 0.894 | 0.4% | 0.020 | 0.023 | 16.1% | 0.174 | 0.206 | 18.6% |
ADP11 | 0.900 | 0.941 | 4.6% | 0.030 | 0.035 | 14.6% | 0.301 | 0.506 | 68.4% |
ADP12 | 0.832 | 0.950 | 14.1% | 0.028 | 0.035 | 23.5% | 0.171 | 0.523 | 205.7% |
ADP13 | 0.906 | 0.892 | 1.5% | 0.016 | 0.009 | 43% | 0.164 | 0.086 | 47.6% |
ADP14 | 0.941 | 0.936 | 0.6% | 0.009 | 0.010 | 14.6% | 0.129 | 0.138 | 7.1% |
ADP15 | 0.901 | 0.847 | 6.1% | 0.009 | 0.020 | 123% | 0.086 | 0.126 | 46.5% |
ADP16 | 0.864 | 0.842 | 2.5% | 0.053 | 0.032 | 38.7% | 0.379 | 0.205 | 46% |
ADP17 | 0.934 | 0.936 | 0.2% | 0.019 | 0.009 | 52.8% | 0.257 | 0.139 | 45.9% |
ADP18 | 0.961 | 0.870 | 9.4% | 0.013 | 0.041 | 211.6% | 0.254 | 0.307 | 21% |
ADP19 | 0.861 | 0.898 | 4.2% | 0.020 | 0.023 | 16.5% | 0.139 | 0.212 | 52.5% |
ADP20 | 0.887 | 0.894 | 0.8% | 0.022 | 0.022 | 1.8% | 0.194 | 0.202 | 4.3% |
ADP21 | 0.818 | 0.892 | 9.2% | 0.006 | 0.010 | 75.2% | 0.325 | 0.092 | 71.6% |
ADP22 | 0.910 | 0.939 | 3.2% | 0.021 | 0.022 | 7% | 0.222 | 0.315 | 41.9% |
ADP23 | 0.850 | 0.846 | 0.5% | 0.043 | 0.033 | 21.4% | 0.286 | 0.215 | 24.7% |
ADP24 | 0.872 | 0.896 | 2.7% | 0.036 | 0.034 | 5.2% | 0.280 | 0.313 | 12% |
ADP25 | 0.901 | 0.847 | 6.0% | 0.030 | 0.035 | 15.3% | 0.287 | 0.224 | 21.7% |
MAPE | 4.3% | 59.3% | 45.6% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Guo, W.; Longhurst, P.; Jiang, Y. Shortening the Standard Testing Time for Residual Biogas Potential (RBP) Tests Using Biogas Yield Models and Substrate Physicochemical Characteristics. Processes 2023, 11, 441. https://doi.org/10.3390/pr11020441
Liu Y, Guo W, Longhurst P, Jiang Y. Shortening the Standard Testing Time for Residual Biogas Potential (RBP) Tests Using Biogas Yield Models and Substrate Physicochemical Characteristics. Processes. 2023; 11(2):441. https://doi.org/10.3390/pr11020441
Chicago/Turabian StyleLiu, Yanxin, Weisi Guo, Philip Longhurst, and Ying Jiang. 2023. "Shortening the Standard Testing Time for Residual Biogas Potential (RBP) Tests Using Biogas Yield Models and Substrate Physicochemical Characteristics" Processes 11, no. 2: 441. https://doi.org/10.3390/pr11020441
APA StyleLiu, Y., Guo, W., Longhurst, P., & Jiang, Y. (2023). Shortening the Standard Testing Time for Residual Biogas Potential (RBP) Tests Using Biogas Yield Models and Substrate Physicochemical Characteristics. Processes, 11(2), 441. https://doi.org/10.3390/pr11020441