Ligand-Enhanced Zero-Valent Iron for Organic Contaminants Degradation: A Mini Review
Abstract
:1. Introduction
2. Different Chelating Agents
2.1. Organic Chelating Agents
2.1.1. Aminopolycarboxylic Acids
EDTA
Types | Chelating Agents | Processes | Chemical Doses | pH | Reaction Time | Contaminant Removal |
---|---|---|---|---|---|---|
Aminopolycarboxylic acids | EDTA | ZVI/O2 | [ZVI] = 0.3 g· L−1, [EDTA] = 2 mM and [SMT] = 5 mg·L−1 | 5 | 60 min | 75.3% removal of SMT [43] |
ZVI/O2 | [Granular ZVI] = 50 g· L−1, [EDTA] = 0.32 mM and [4-CP] = 1.1 mM | 5.5~6.5 | 4 h | Complete removal of 4-CP [37] | ||
ZVI/O2 | [Granular ZVI] = 50 g· L−1, [EDTA] = 0.32 mM and [PCP] = 0.61 mM | 5.5~6.5 | 70 h | Complete removal of PCP [37] | ||
pre-ZVI/H2O2 | [ZVI] = 3.6 mM, [EDTA] = 0.1 mM, [H2O2] = 20 μM and [SMT] = 0.018 mM | 7 | 60 min | 90.6% removal of SMT [38] | ||
US/ZVI/Air | [ZVI] = 24 g· L−1, [EDTA] = 1.75 mM, and [2,4,6-TCP] = 50 mg·L−1 | 7 | 60 min | 98.8% removal of 2,4,6-TCP [44] | ||
MF/ZVI | [ZVI] = 0.4 g· L−1, [EDTA] = 2 mM and [DCF] = 10 mg·L−1 | 5 | 120 min | Almost 72% removal of DCF [40] | ||
NTA | ZVI/O2 | [ZVI] = 0.3 g· L−1, [NTA] = 2 mM and [SMT] = 5 mg·L−1 | 5 | 60 min | 93.8% removal of SMT [43] | |
ZVI/Air | [ZVI] = 15 g, [NTA] = 0.32 mg·L−1 and [Caffeic] = 350 mg·L−1 | 3.6~3.8 | 180 min | Complete removal of caffeic [44] | ||
pre-ZVI/H2O2 | [ZVI] = 2 mM, [NTA] = 0.25 mM, [H2O2] = 2 mM and [SMT] = 2 mg·L−1 | 7 | 30 min | 99.8% removal of SMT [45] | ||
EDDS | ZVI/O2 | [ZVI] = 0.3 g· L−1, [EDDS] = 0.25 mM and [SMT] = 5 mg·L−1 | 5 | 60 min | 58.2% removal of SMT [43] | |
ZVI/Air | [ZVI] = 20 g· L−1, [EDDS] = 0.8 mM, [Air] = 2 L·(min·L) −1 and [2,4-DCP] = 100 mg·L−1 | 7.37 | 60 min | 99% removal of 2,4-DCP [46] | ||
Polyphenols | Gallic acid | nZVI/O2 | [nZVI] = 5 g· L−1, [GA] = 10 mg·L−1 and [2-CB] = 2 mg·L−1 | 5 | 240 min | 65.5% and 59.4% removal of 2-CB at anaerobic and aerobic conditions, respectively [47] |
Tea polyphenol extract | mZVI/ H2O2 | [mZVI] = 0.5 g· L−1, [Tea polyphenol extract] = 0.1 mM, [H2O2] = 1 mM and [LCM] = 20 mg·L−1 | 5.8 | 90 min | 98.85% removal of lincomycin [48] | |
Polycarboxylates | Citric acid | ZVI/O2 | [ZVI] = 1 g· L−1, [CA] = 2 mM and [4-CP] = 0.2 mM | 7 | 60 min | 56.2% removal of 4-CP under dark conditions with lower DO concentrations [49] |
Bi-ZVI/O2 | [ZVI] = 1 g· L−1, [CA] = 0.2 mM and [4-CP] = 0.2 mM | 3.6~5.4 | 30 min | 80% removal of 4-CP [50] | ||
Vis/ZVI/H2O2 | [ZVI] = 12.6 g· L−1, [H2O2] = 2.9 mM, [CA] = 1 mM and [RhB] = 21 μM | 7.5 | 60 min | 54% RhB decomposition and 26% COD removal [51] | ||
Oxalic acid | nZVI/O2 | [nZVI] = 1.5 g· L−1, [OA] = 100 mM and [PCP] = 5 mg·L−1 | 3.18 | 30 min | 83% removal of PCP [52] | |
UV/pre-ZVI | [ZVI] = 0.4 g· L−1, [OA] = 0.5 mM and [SMT] = 10 mg·L−1 | 4 | 60 min | 99.6% removal of SMT [53] | ||
ZVI/O2 | [ZVI film] = 4 cm2, [OA] = 2.4 mM and [MB] = 9 mg·L−1 | 3 | 30 min | 90% removal of MB [54] | ||
Polyphosphate | Tetrapolyphosphate | US/ZVI | [ZVI] = 1 g· L−1, [TPP] = 0.3 mM and [NOR] = 10 mg·L−1 | 7 | 60 min | More than 90% removal of norfloxacin [55] |
nZVI/O2 | [nZVI] = 20 mM, [TPP] = 1 mM and [Atrazine] = 70 μM | 8 | 60 min | Complete removal of atrazine [16] | ||
Polyoxometalate | SiW124− | ZVI/ POM | [ZVI] = 0.2 g· L−1, [SiW124-] = 0.5 mM and [4-CP] = 0.1 mM | 2.5 | 240 min | 40% removal of 4-CP [56] |
PW12O403− | ZVI/ POM | [ZVI] = 1 mM, [PW12O403-] = 1 mM and [Phenol] = 10 μM | 2 | 120 min | Almost 62% removal of phenol [57] | |
ZVI/ POM | [ZVI] = 1 mM, [PW12O403-] = 1 mM and [Benzoic acid] = 10 μM | 2 | 120 min | Almost 90% removal of benzoic acid [57] |
EDDS
NTA
2.1.2. Polyphenols
2.1.3. Polycarboxylates
Citric Acid
Oxalic Acid
2.2. Inorganic Chelating Agents
2.2.1. Polyphosphates
2.2.2. Polyoxometalate
3. Conclusions and Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- von Gunten, U. Ozonation of drinking water: Part I. Oxidation kinetics and product formation. Water Res. 2003, 37, 1443–1467. [Google Scholar] [CrossRef] [PubMed]
- Pignatello, J.J.; Oliveros, E.; MacKay, A. Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Crit. Rev. Environ. Sci. Technol. 2006, 36, 1–84. [Google Scholar] [CrossRef]
- Vilhunen, S.; Sillanpää, M. Recent developments in photochemical and chemical AOPs in water treatment: A mini-review. Rev. Environ. Sci. Bio/Technol. 2010, 9, 323–330. [Google Scholar] [CrossRef]
- Huber, D. Synthesis, properties, and applications of iron nanoparticles. Small 2005, 1, 482–501. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhou, M.; Pan, Y. Degradation of diclofenac by H2O2 activated with pre-magnetization Fe0: Influencing factors and degradation pathways. Chemosphere 2018, 212, 853–862. [Google Scholar] [CrossRef]
- Sun, Y.; Li, J.; Huang, T.; Guan, X. The influences of iron characteristics, operating conditions and solution chemistry on contaminants removal by zero-valent iron: A review. Water Res. 2016, 100, 277–295. [Google Scholar] [CrossRef]
- Pan, Y.; Zhang, Y.; Zhou, M.; Cai, J.; Tian, Y. Enhanced removal of antibiotics from secondary wastewater effluents by novel UV/pre-magnetized Fe0/H2O2 process. Water Res. 2019, 153, 144–159. [Google Scholar] [CrossRef] [PubMed]
- Fu, F.; Dionysiou, D.; Liu, H. The use of zero-valent iron for groundwater remediation and wastewater treatment: A review. J. Hazard. Mater. 2014, 267, 194–205. [Google Scholar] [CrossRef]
- Kunlun, Y.; Jiasheng, Z.; Dan, L.; Yue, S.; Zimo, L.; Xinhua, X. Preparation and application of iron-based composite materials for the removal of antimony from aqueous solution. Prog. Chem. 2017, 29, 1407. [Google Scholar]
- Wang, C.; Zhang, W. Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ. Sci. Technol. 1997, 31, 2154–2156. [Google Scholar] [CrossRef]
- Liang, L.; Sun, W.; Guan, X.; Huang, Y.; Choi, W.; Bao, H.; Li, L.; Jiang, Z. Weak magnetic field significantly enhances selenite removal kinetics by zero valent iron. Water Res. 2014, 49, 371–380. [Google Scholar] [CrossRef] [PubMed]
- Guan, X.; Sun, Y.; Qin, H.; Li, J.; Lo, I.M.C.; He, D.; Dong, H. The limitations of applying zero-valent iron technology in contaminants sequestration and the corresponding countermeasures: The development in zero-valent iron technology in the last two decades (1994–2014). Water Res. 2015, 75, 224–248. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhou, M. A critical review of the application of chelating agents to enable Fenton and Fenton-like reactions at high pH values. J. Hazard. Mater. 2019, 362, 436–450. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Zhou, M.; Wang, Q.; Cai, J.; Tian, Y.; Zhang, Y. EDTA, oxalate, and phosphate ions enhanced reactive oxygen species generation and sulfamethazine removal by zero-valent iron. J. Hazard. Mater. 2020, 391, 122210. [Google Scholar] [CrossRef] [PubMed]
- Keenan, C.R.; Sedlak, D.L. Ligand-enhanced reactive oxidant generation by nanoparticulate zero-valent iron and oxygen. Environ. Sci. Technol. 2008, 42, 6936–6941. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Cao, M.; Ai, Z.; Zhang, L. Dramatically Enhanced Aerobic Atrazine Degradation with Fe@Fe2O3 Core-Shell Nanowires by Tetrapolyphosphate. Environ. Sci. Technol. 2014, 48, 3354–3362. [Google Scholar] [CrossRef]
- Cornell, R.M.; Schwertmann, U. The Iron Oxides: Structure, Properties, Reactions, Occurrences, and Uses; John Wiley & Sons: Hoboken, NJ, USA, 2003; Volume 664. [Google Scholar]
- Huang, M.; Zhou, T.; Wu, X.; Mao, J. Distinguishing homogeneous-heterogeneous degradation of norfloxacin in a photochemical Fenton-like system (Fe3O4/UV/oxalate) and the interfacial reaction mechanism. Water Res. 2017, 119, 47–56. [Google Scholar] [CrossRef]
- Suter, D.; Banwart, S.; Stumm, W. Dissolution of hydrous iron(III) oxides by reductive mechanisms. Langmuir 1991, 7, 809–813. [Google Scholar] [CrossRef]
- Mu, Y.; Jia, F.; Ai, Z.; Zhang, L. Iron oxide shell mediated environmental remediation properties of nano zero-valent iron. Environ. Sci. Nano 2017, 4, 27–45. [Google Scholar] [CrossRef]
- Pan, Y.; Qin, R.; Hou, M.; Xue, J.; Zhou, M.; Xu, L.; Zhang, Y. The interactions of polyphenols with Fe and their application in Fenton/Fenton-like reactions. Sep. Purif. Technol. 2022, 300, 121831. [Google Scholar] [CrossRef]
- Goldstein, S.; Meyerstein, D.; Czapski, G. The Fenton reagents. Free Radic. Biol. Med. 1993, 15, 435–445. [Google Scholar] [CrossRef]
- Lee, C. Oxidation of organic contaminants in water by iron-induced oxygen activation: A short review. Environ. Eng. Res. 2015, 20, 205–211. [Google Scholar] [CrossRef]
- Tang, H.; Wang, J.; Zhang, S.; Pang, H.; Wang, X.; Chen, Z.; Li, M.; Song, G.; Qiu, M.; Yu, S. Recent advances in nanoscale zero-valent iron-based materials: Characteristics, environmental remediation and challenges. J. Clean. Prod. 2021, 319, 128641. [Google Scholar] [CrossRef]
- Stefaniuk, M.; Oleszczuk, P.; Ok, Y.S. Review on nano zerovalent iron (nZVI): From synthesis to environmental applications. Chem. Eng. J. 2016, 287, 618–632. [Google Scholar] [CrossRef]
- Zou, Y.; Wang, X.; Khan, A.; Wang, P.; Liu, Y.; Alsaedi, A.; Hayat, T.; Wang, X. Environmental Remediation and Application of Nanoscale Zero-Valent Iron and Its Compo-sites for the Removal of Heavy Metal Ions: A Review. Environ. Sci. Technol. 2016, 50, 7290–7304. [Google Scholar] [CrossRef]
- Li, J.; Dou, X.; Qin, H.; Sun, Y.; Yin, D.; Guan, X. Characterization methods of zerovalent iron for water treatment and remediation. Water Res. 2019, 148, 70–85. [Google Scholar] [CrossRef]
- Dwyer, F. Chelating Agents and Metal Chelates; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Gooch, J.W. Encyclopedic Dictionary of Polymers; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2010; Volume 1. [Google Scholar]
- Zhou, H.; Sun, Q.; Wang, X.; Wang, L.; Chen, J.; Zhang, J.; Lu, X. Removal of 2,4-dichlorophenol from contaminated soil by a heterogeneous ZVI/EDTA/Air Fenton-like system. Sep. Purif. Technol. 2014, 132, 346–353. [Google Scholar] [CrossRef]
- Sillanpää, M. Environmental Fate of EDTA and DTPA, in Reviews of Environmental Contamination and Toxicology: Continuation of Residue Reviews; Ware, G.W., Ed.; Springer: New York, NY, USA, 1997; pp. 85–111. [Google Scholar]
- Kabara, J.J. Cosmetic and Drug Preservation: Principles and Practice; M. Dekker: New York, NY, USA, 1984. [Google Scholar]
- Orama, M.; Hyvönen, H.; Saarinen, H.; Aksela, R. Complexation of [S, S] and mixed stereoisomers of N, N′-ethylenediaminedisuccinic acid (EDDS) with Fe (III), Cu (II), Zn (II) and Mn (II) ions in aqueous solution. J. Chem. Soc. Dalton Trans. 2002, 24, 4644–4648. [Google Scholar] [CrossRef]
- Martell, A.E.; Motekaitis, R.J.; Chen, D.; Hancock, R.D.; Mcmanus, D. Selection of new Fe (III)/Fe (II) chelating agents as catalysts for the oxidation of hydrogen sulfide to sulfur by air. Can. J. Chem. 1996, 74, 1872–1879. [Google Scholar] [CrossRef]
- Tachiev, G.; Roth, J.A.; Bowers, A.R. Kinetics of hydrogen peroxide decomposition with complexed and “free” iron catalysts. Int. J. Chem. Kinet. 2000, 32, 24–35. [Google Scholar] [CrossRef]
- Engelmann, M.D.; Bobier, R.T.; Hiatt, T.; Cheng, I.F. Variability of the Fenton reaction characteristics of the EDTA, DTPA, and citrate complexes of iron. Biometals 2003, 16, 519–527. [Google Scholar] [CrossRef] [PubMed]
- Noradoun, C.; Engelmann, M.D.; Mclaughlin, M.; Hutcheson, R.; Breen, K.; Paszczynski, A.; Cheng, I.F. Destruction of Chlorinated Phenols by Dioxygen Activation under Aqueous Room Temperature and Pressure Conditions. Ind. Eng. Chem. Res. 2003, 42, 5024–5030. [Google Scholar] [CrossRef]
- Pan, Y.; Bu, Z.; Sang, C.; Guo, H.; Zhou, M.; Zhang, Y.; Tian, Y.; Cai, J.; Wang, W. EDTA enhanced pre-magnetized Fe0/H2O2 process for removing sulfamethazine at neutral pH. Sep. Purif. Technol. 2020, 250, 117281. [Google Scholar] [CrossRef]
- Liu, B.; Pan, T.; Liu, J.; Feng, L.; Chen, Y.; Zheng, H. Taping into the super power and magic appeal of ultrasound coupled with EDTA on degradation of 2,4,6-TCP by Fe0 based advanced oxidation processes. Chemosphere 2022, 288, 132650. [Google Scholar] [CrossRef]
- Zhou, T.; Feng, K.; Xiang, W.; Lv, Y.; Wu, X.; Mao, J.; He, C. Rapid decomposition of diclofenac in a magnetic field enhanced zero-valent iron/EDTA Fenton-like system. Chemosphere 2018, 193, 968–977. [Google Scholar] [CrossRef]
- Lu, M.; Wei, X. Treatment of oilfield wastewater containing polymer by the batch activated sludge reactor combined with a zerovalent iron/EDTA/air system. Bioresour. Technol. 2011, 102, 2555–2562. [Google Scholar] [CrossRef]
- Bucheli-Witschel, M.; Egli, T. Environmental fate and microbial degradation of aminopolycarboxylic acids. Fems Microbiol. Rev. 2001, 25, 69–106. [Google Scholar] [CrossRef]
- Wang, Q.; Pan, Y.; Fu, W.; Wu, H.; Zhou, M.; Zhang, Y. Aminopolycarboxylic acids modified oxygen reduction by zero valent iron: Proton-coupled electron transfer, role of iron ion and reactive oxidant generation. J. Hazard. Mater. 2022, 430, 128402. [Google Scholar] [CrossRef]
- Sanchez, I.; Stüber, F.; Fabregat, A.; Font, J.; Fortuny, A.; Bengoa, C. Degradation of model olive mill contaminants of OMW catalysed by zero-valent iron enhanced with a chelant. J. Hazard. Mater. 2012, 199–200, 328–335. [Google Scholar] [CrossRef]
- Pan, Y.; Zhou, M.; Cai, J.; Tian, Y.; Zhang, Y. Mechanism study of nitrilotriacetic acid-modified premagnetized Fe0/H2O2 for removing sulfamethazine. Chem. Eng. J. 2019, 374, 1180–1190. [Google Scholar] [CrossRef]
- Sun, Q.; Zhou, H.Y.; Cao, M.H.; Wu, L.N.; Wang, L.L.; Chen, J.; Lu, X.H. Degradation of 2,4-Diehlorophenol in Aqueous Solution by ZVI/EDDS/Air System. Huanjing Kexue 2012, 33, 3833–3839. [Google Scholar] [PubMed]
- Wang, Y.; Liu, L.; Fang, G.; Wang, L.; Kengara, F.O.; Zhu, C. The mechanism of 2-chlorobiphenyl oxidative degradation by nanoscale zero-valent iron in the presence of dissolved oxygen. Environ. Sci. Pollut. Res. 2018, 25, 2265–2272. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, Q.; Lian, J.; Lu, B.; Fang, Z. Effects and mechanisms of lincomycin degradation by six promoters in the mZVI/H2O2 systems. Chem. Eng. J. 2020, 387, 123417. [Google Scholar] [CrossRef]
- Xu, Y.; Zeng, L.; Li, L.; Chang, Y.; Gong, J. Enhanced oxidative activity of zero-valent iron by citric acid complexation. Chem. Eng. J. 2019, 373, 891–901. [Google Scholar] [CrossRef]
- Gong, J.; Lee, C.; Kim, E.; Chang, Y.; Chang, Y. Enhancing the reactivity of bimetallic Bi/Fe0 by citric acid for remediation of polluted water. J. Hazard. Mater. 2016, 310, 135–142. [Google Scholar] [CrossRef]
- Hong, J.; Lu, S.; Zhang, C.; Qi, S.; Wang, Y. Removal of Rhodamine B under visible irradiation in the presence of Fe0, H2O2, citrate and aeration at circumneutral pH. Chemosphere 2011, 84, 1542–1547. [Google Scholar] [CrossRef]
- Ou, Y.; Wei, C.; Shih, Y. Short-chain organic acids increase the reactivity of zerovalent iron nanoparticles toward polychlorinated aromatic pollutants. Chem. Eng. J. 2016, 284, 372–379. [Google Scholar] [CrossRef]
- Pan, Y.; Wang, Q.; Zhou, M.; Cai, J.; Tian, Y.; Zhang, Y. Kinetic and mechanism study of UV/pre-magnetized-Fe0/oxalate for removing sulfamethazine. J. Hazard. Mater. 2020, 398, 122931. [Google Scholar] [CrossRef]
- Wei, S.; Ren, H.; Li, J.; Shi, J.; Shao, Z. Decolorization of organic dyes by zero-valent iron in the presence of oxalic acid and influence of photoirradiation and hexavalent chromium. J. Mol. Catal. A-Chem. 2013, 379, 309–314. [Google Scholar] [CrossRef]
- Zhou, T.; Zou, X.; Wu, X.; Mao, J.; Wang, J. Synergistic degradation of antibiotic norfloxacin in a novel heterogeneous sonochemical Fe0/tetraphosphate Fenton-like system. Ultrason. Sonochem. 2017, 37, 320–327. [Google Scholar] [CrossRef]
- Lee, J.; Kim, J.; Choi, W. Oxidation on zerovalent iron promoted by polyoxometalate as an electron shuttle. Environ. Sci. Technol. 2007, 41, 3335–3340. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Keenan, C.R.; Sedlak, D.L. Polyoxometalate-Enhanced Oxidation of Organic Compounds by Nanoparticulate Zero-Valent Iron and Ferrous Ion in the Presence of Oxygen. Environ. Sci. Technol. 2008, 42, 4921–4926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, W.; Brigante, M.; Wu, F.; Mousty, C.; Hanna, K.; Mailhot, G. Assessment of the Fe(III)-EDDS Complex in Fenton-Like Processes: From the Radical Formation to the Degradation of Bisphenol A. Environ. Sci. Technol. 2013, 47, 1952–1959. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Brigante, M.; Wu, F.; Hanna, K.; Mailhot, G. Development of a new homogenous photo-Fenton process using Fe(III)-EDDS complexes. J. Photochem. Try Photobiol. A: Chem. 2012, 239, 17–23. [Google Scholar] [CrossRef]
- López-Rayo, S.; Sanchis-Pérez, I.; Ferreira, C.M.H.; Lucena, J.J. [S,S]-EDDS/Fe: A new chelate for the environmentally sustainable correction of iron chlorosis in calcar-eous soil. Sci. Total Environ. 2019, 647, 1508–1517. [Google Scholar] [CrossRef] [PubMed]
- Miralles-Cuevas, S.; Oller, I.; Ruiz-Delgado, A.; Cabrera-Reina, A.; Cornejo-Ponce, L.; Malato, S. EDDS as complexing agent for enhancing solar advanced oxidation pro-cesses in natural water: Effect of iron species and different oxidants. J. Hazard. Mater. 2019, 372, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Lu, Y.; Lu, J.; Yang, Z.; Yang, Z. Research progress on the biosynthesis and bioproduction of the biodegradable chelating agent (S,S)-EDDS. Process Biochem. 2022, 116, 38–48. [Google Scholar] [CrossRef]
- Zhang, Y.; Klamerth, N.; Messele, S.A.; ChelmeAyala, P.; Gamal El-Din, M. Kinetics study on the degradation of a model naphthenic acid by ethylenediamine-N,N’-disuccinic acid-modified Fenton process. J. Hazard. Mater. 2016, 318, 371–378. [Google Scholar] [CrossRef]
- Anderegg, G. Critical survey of stability constants of NTA complexes. Pure Appl. Chem. 1982, 54, 2693–2758. [Google Scholar] [CrossRef]
- White, V.; Knowles, C. Degradation of copper-NTA by Mesorhizobium sp. NCIMB 13524. Int. Biodeterior. Biodegrad. 2003, 52, 143–150. [Google Scholar] [CrossRef]
- Calapaj, R.; Ciraolo, L.; Corigliano, F.; Pasquale, S.D. Dead-stop determination of EDTA and NTA in commercially available detergents. Analyst 1982, 107, 403–407. [Google Scholar] [CrossRef]
- Ye, L.; Lucy, C.A. Chromatographic Determination of Metal-EDTA Complexes with Postcolumn Detection Using Fluorescent Ternary Complexes. Anal. Chem. 1995, 67, 2534–2538. [Google Scholar] [CrossRef]
- Henneken, L.; Nörtemann, B.; Hempel, D.C. Influence of physiological conditions on EDTA degradation. Appl. Microbiol. Biotechnol. 1995, 44, 190–197. [Google Scholar] [CrossRef]
- Liang, J.; Zhang, L.; Yan, W.; Zhou, Y. Mechanistic insights into a novel nitrilotriacetic acid-Fe0 and CaO2 process for efficient anaerobic digestion sludge dewatering at near-neutral pH. Water Res. 2020, 184, 116149. [Google Scholar] [CrossRef]
- Trott, T.; Henwood, R.W.; Langford, C.H. Sunliight photochemistry of ferric nitrilotriacetate complexes. Environ. Sci. Technol. 1972, 6, 367–368. [Google Scholar] [CrossRef]
- Stolzberg, R.J.; Hume, D.N. Rapid formation of iminodiacetate from photochemical degradation of iron(III) nitrilotriacetate solutions. Environ. Sci. Technol. 1975, 9, 654–656. [Google Scholar] [CrossRef]
- Sun, S.; Zeng, X.; Lemley, A.T. Kinetics and mechanism of carbamazepine degradation by a modified Fenton-like reaction with ferric-nitrilotriacetate complexes. J. Hazard. Mater. 2013, 252–253, 155–165. [Google Scholar] [CrossRef]
- De Luca, A.; Dantas, R.F.; Esplugas, S. Assessment of iron chelates efficiency for photo-Fenton at neutral pH. Water Res. 2014, 61, 232–242. [Google Scholar] [CrossRef]
- Zhang, Y.; Klamerth, N.; El-Din, M.G. Degradation of a model naphthenic acid by nitrilotriacetic acid—Modified Fenton process. Chem. Eng. J. 2016, 292, 340–347. [Google Scholar] [CrossRef]
- Pinto, I.S.S.; Neto, I.F.F.; Soares, H.M.V.M. Biodegradable chelating agents for industrial, domestic, and agricultural applications—A review. Environ. Sci. Pollut. Res. 2014, 21, 11893–11906. [Google Scholar] [CrossRef]
- Wang, Z. Iron Complex Nanoparticles Synthesized by Eucalyptus Leaves. ACS Sustain. Chem. Eng. 2013, 1, 1551–1554. [Google Scholar] [CrossRef]
- Perron, N.R.; Brumaghim, J.L. A Review of the Antioxidant Mechanisms of Polyphenol Compounds Related to Iron Binding. Cell Biochem. Biophys. 2009, 53, 75–100. [Google Scholar] [CrossRef] [PubMed]
- Ryan, P.; Hynes, M.J. The kinetics and mechanisms of the complex formation and antioxidant behaviour of the polyphenols EGCg and ECG with iron(III). J. Inor-Ganic Biochem. 2007, 101, 585–593. [Google Scholar] [CrossRef] [PubMed]
- Lau, O.W.; Luk, S.F.; Huang, H.L. Spectrophotometric determination of tannins in tea and beer samples with iron(III) and 1,10-phenanthroline as reagents. Analyst 1989, 114, 631–633. [Google Scholar] [CrossRef]
- Moran, J.F.; Klucas, R.V.; Grayer, R.J.; Abian, J.; Becana, M. Complexes of Iron with Phenolic Compounds from Soybean Nodules and Other Legume Tissues: Prooxidant and Antioxidant Properties. Free Radic. Biol. Med. 1997, 22, 861–870. [Google Scholar] [CrossRef] [Green Version]
- de Graft-Johnson, J.; Nowak, D. Effect of Selected Plant Phenolics on Fe2+-EDTA-H2O2 System Mediated Deoxyribose Oxidation: Molecular Structure-Derived Relationships of Anti- and Pro-Oxidant Actions. Molecules 2017, 22, 59. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Z.; Yuan, M.; Yang, B.; Liu, Z.; Huang, J.; Sun, D. Plant-mediated synthesis of highly active iron nanoparticles for Cr (VI) removal: Investigation of the leading biomolecules. Chemosphere 2016, 150, 357–364. [Google Scholar] [CrossRef]
- Iravani, S. Green synthesis of metal nanoparticles using plants. Green Chem. 2011, 13, 2638–2650. [Google Scholar] [CrossRef]
- Mittal, A.K.; Chisti, Y.; Banerjee, U.C. Synthesis of metallic nanoparticles using plant extracts. Biotechnol. Adv. 2013, 31, 346–356. [Google Scholar] [CrossRef]
- Lopes, G.K.; Schulman, H.M.; Hermes-Lima, M. Polyphenol tannic acid inhibits hydroxyl radical formation from Fenton reaction by complexing ferrous ions. Biochim. Et Biophys. Acta (BBA)-Gen. Subj. 1999, 1472, 142–152. [Google Scholar] [CrossRef]
- Andrade, R.G.; Ginani, J.S.; Lopes, G.K.B.; Dutra, F.; Alonso, A.; Hermes-Lima, M. Tannic acid inhibits in vitro iron-dependent free radical formation. Biochimie 2006, 88, 1287–1296. [Google Scholar] [CrossRef]
- Abrahamson, H.B.; Rezvani, A.B.; Brushmiller, J. Photochemical and spectroscopic studies of complexes, of iron(III) with citric acid and other carboxylic acids. Inorg. Chim. Acta 1994, 226, 117–127. [Google Scholar] [CrossRef]
- Lanford, O.E.; Quinan, J.R. A Spectrophotometric Study of the Reaction of Ferric Iron and Citric Acid. J. Am. Chem. Soc. 1948, 70, 2900–2903. [Google Scholar] [CrossRef]
- Warner, R.C.; Weber, I. The Cupric and Ferric Citrate Complexes1. J. Am. Chem. Soc. 1953, 75, 5086–5094. [Google Scholar] [CrossRef]
- Field, T.B.; McCourt, J.L.; McBryde, W.A.E. Composition and Stability of Iron and Copper Citrate Complexes in Aqueous Solution. Can. J. Chem. 1974, 52, 3119–3124. [Google Scholar] [CrossRef]
- Timberlake, C.F. 975. Iron–malate and iron–citrate complexes. J. Chem. Soc. (Resumed) 1964, 5078–5085. [Google Scholar] [CrossRef]
- Königsberger, L.; Königsberger, E.; May, P.M.; Hefter, G.T. Complexation of iron(III) and iron(II) by citrate. Implications for iron speciation in blood plasma. J. Inorg. Biochem. 2000, 78, 175–184. [Google Scholar] [CrossRef] [PubMed]
- Hamada, Y.Z.; Bayakly, N.; Peipho, A.; Carlson, B. Accurate Potentiometric Studies of Chromium-Citrate and Ferric-Citrate Complexes in Aqueous Solutions at Physio-logical and Alkaline pH Values. Synth. React. Inorg. Met. Org. Nano-Met. Chem. 2006, 36, 469–476. [Google Scholar] [CrossRef]
- Guo, J.; Dong, C.; Zhang, J.; Lan, Y. Biogenic synthetic schwertmannite photocatalytic degradation of acid orange 7 (AO7) assisted by citric acid. Sep. Purif. Technol. 2015, 143, 27–31. [Google Scholar] [CrossRef]
- Tso, C.; Shih, Y. Effect of carboxylic acids on the properties of zerovalent iron toward adsorption and degradation of trichloroethylene. J. Environ. Manag. 2018, 206, 817–825. [Google Scholar] [CrossRef]
- Qian, M.; Yang, L.; Chen, X.; Li, K.; Xue, W.; Li, Y.; Zhao, H.; Cao, G.; Guan, X.; Shen, G. The treatment of veterinary antibiotics in swine wastewater by biodegradation and Fenton-like oxidation. Sci. Total Environ. 2020, 710, 136299. [Google Scholar] [CrossRef] [PubMed]
- Zepp, R.G.; Faust, B.C.; Hoigne, J. Hydroxyl radical formation in aqueous reactions (pH 3–8) of iron (II) with hydrogen peroxide: The photo-Fenton reaction. Environ. Sci. Technol. 1992, 26, 313–319. [Google Scholar] [CrossRef]
- Britton, H.T.S.; Robinson, R.A. CXCVIII.—Universal buffer solutions and the dissociation constant of veronal. J. Chem. Soc. (Resumed) 1931, 1456–1462. [Google Scholar] [CrossRef]
- Li, P.; Liu, C.; Luo, Y.; Shi, H.; Li, Q.; Pinchu, C.; Li, X.; Yang, J.; Fan, W. Oxalate in Plants: Metabolism, Function, Regulation, and Application. J. Agric. Food Chem. 2022, 70, 51. [Google Scholar] [CrossRef] [PubMed]
- Hislop, K.; Bolton, J. The photochemical generation of hydroxyl radicals in the UV-vis/ferrioxalate/H2O2 system. Environ. Sci. Technol. 1999, 33, 3119–3126. [Google Scholar] [CrossRef]
- Murov, S.L.; Carmichael, I.; Hug, G.L. Handbook of Photochemistry; CRC Press: Boca Raton, FL, USA, 1993. [Google Scholar]
- Kwan, C.Y.; Chu, W. The role of organic ligands in ferrous-induced photochemical degradation of 2,4-dichlorophenoxyacetic acid. Chemosphere 2007, 67, 1601–1611. [Google Scholar] [CrossRef]
- Doumic, L.I.; Soares, P.A.; Ayude, M.A.; Cassanello, M.; Boaventura, R.A.R.; Vilar, V.J.P. Enhancement of a solar photo-Fenton reaction by using ferrioxalate complexes for the treatment of a synthetic cotton-textile dyeing wastewater. Chem. Eng. J. 2015, 277, 86–96. [Google Scholar] [CrossRef]
- Xue, X.; Hanna, K.; Despas, C.; Wu, F.; Deng, N. Effect of chelating agent on the oxidation rate of PCP in the magnetite/H2O2 system at neutral pH. J. Mol. Catal. A Chem. 2009, 311, 29–35. [Google Scholar] [CrossRef]
- Faria, P.C.C.; Órfão, J.J.M.; Pereira, M.F.R. Activated carbon catalytic ozonation of oxamic and oxalic acids. Appl. Catal. B: Environ. 2008, 79, 237–243. [Google Scholar] [CrossRef]
- Albi, T.; Serrano, A. Inorganic polyphosphate in the microbial world. Emerging roles for a multifaceted biopolymer. World J. Microbiol. Biotechnol. 2016, 32, 27. [Google Scholar] [CrossRef] [Green Version]
- Kulaev, I.S. Biochemistry of Inorganic Polyphosphates. Reviews of Physiology, Biochemistry and Pharmacology; Springer: Berlin, Germany, 1975; Volume 73, pp. 131–158. [Google Scholar]
- Biaglow, J.E.; Kachur, A.V. The generation of hydroxyl radicals in the reaction of molecular oxygen with polyphosphate complexes of ferrous ion. Radiat. Res. 1997, 148, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, F.; Li, P.; Zhang, L. Ferrous-tetrapolyphosphate complex induced dioxygen activation for toxic organic pollutants degradation. Sep. Purif. Technol. 2013, 120, 148–155. [Google Scholar] [CrossRef]
- Zhang, C.; Li, T.; Zhang, J.; Yan, S.; Qin, C. Degradation of p-nitrophenol using a ferrous-tripolyphosphate complex in the presence of oxygen: The key role of superoxide radicals. Appl. Catal. B-Environ. 2019, 259, 118030. [Google Scholar] [CrossRef]
- Kim, H.; Lee, H.; Kim, H.; Seo, J.; Hong, S.W.; Lee, J.; Lee, C. Polyphosphate-enhanced production of reactive oxidants by nanoparticulate zero-valent iron and ferrous ion in the presence of oxygen: Yield and nature of oxidants. Water Res. 2015, 86, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Kong, C.; Tratnyek, P.G.; Qin, C. Generation of Reactive Oxygen Species and Degradation of Pollutants in the Fe2+/O2/Tripolyphosphate System: Regulated by the Concentration Ratio of Fe2+ and Tripolyphosphate. Environ. Sci. Technol. 2022, 56, 4367–4376. [Google Scholar] [CrossRef]
- Hiskia, A.; Mylonas, A.; Papaconstantinou, E. Comparison of the photoredox properties of polyoxometallates and semiconducting particles. Chem. Soc. Rev. 2001, 30, 62–69. [Google Scholar] [CrossRef]
- Kim, S.; Park, H.; Choi, W. Comparative Study of Homogeneous and Heterogeneous Photocatalytic Redox Reactions: PW12O403- vs TiO2. J. Phys. Chem. B 2004, 108, 6402–6411. [Google Scholar] [CrossRef]
- Gkika, E.; Troupis, A.; Hiskia, A.; Papaconstantinou, E. Photocatalytic Reduction and Recovery of Mercury by Polyoxometalates. Environ. Sci. Technol. 2005, 39, 4242–4248. [Google Scholar] [CrossRef]
- Mylon, S.E.; Sun, Q.; Waite, T.D. Process optimization in use of zero-valent iron nanoparticles for oxidative transformations. Chemosphere 2010, 81, 127–131. [Google Scholar] [CrossRef]
- Zhang, L.; Zeng, H.; Zeng, Y.; Zhang, Z.; Zhao, X. Heterogeneous Fenton-like degradation of 4-chlorophenol using a novel FeIII-containing polyoxometalate as the catalyst. J. Mol. Catal. A Chem. 2014, 392, 202–207. [Google Scholar] [CrossRef]
- Lee, C.; Sedlak, D.L. A novel homogeneous Fenton-like system with Fe(III)–phosphotungstate for oxidation of organic compounds at neutral pH values. J. Mol. Catal. A Chem. 2009, 311, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Q.; Zhou, M.; Pan, Y.; Zhang, Y. Ligand-Enhanced Zero-Valent Iron for Organic Contaminants Degradation: A Mini Review. Processes 2023, 11, 620. https://doi.org/10.3390/pr11020620
Chen Q, Zhou M, Pan Y, Zhang Y. Ligand-Enhanced Zero-Valent Iron for Organic Contaminants Degradation: A Mini Review. Processes. 2023; 11(2):620. https://doi.org/10.3390/pr11020620
Chicago/Turabian StyleChen, Qi, Minghua Zhou, Yuwei Pan, and Ying Zhang. 2023. "Ligand-Enhanced Zero-Valent Iron for Organic Contaminants Degradation: A Mini Review" Processes 11, no. 2: 620. https://doi.org/10.3390/pr11020620
APA StyleChen, Q., Zhou, M., Pan, Y., & Zhang, Y. (2023). Ligand-Enhanced Zero-Valent Iron for Organic Contaminants Degradation: A Mini Review. Processes, 11(2), 620. https://doi.org/10.3390/pr11020620