Deep Belief Network with Swarm Spider Optimization Method for Renewable Energy Power Forecasting
Abstract
:1. Introduction
- To the best of our knowledge, this is the first effort to incorporate the SSO into the DBN to optimize its parameters, and thus, the performance of the DBN is further improved;
- Based on the relevance analysis, the historical power and highly correlated influencing factors are used to construct multidimensional inputs to train the DBN optimized by the SSO method, and a novel hybrid forecasting model is developed for renewable energy prediction;
- Two datasets, including wind power data and PV power data, are used to verify the prediction performance of the proposed model for renewable energy prediction through comparison experiments under various conditions.
- The organization of the paper is as follows. Section 2 presents the methodologies, including deep belief network and swarm spider optimization method. Then, Section 3 introduces the proposed forecasting model via the DBF optimized using SSO. Section 4 elaborates on some case studies of the proposed forecasting model based on wind power data and PV power data. Finally, Section 5 concludes this work.
2. Methodology
2.1. Deep Belief Network
2.2. Swarm Spider Optimization Algorithm
- (1)
- Let the spider population be in an n-dimensional search space. In a population of spiders whose total number is N, the number of females is Nf and the number of males is Nm. The equations for Nf and Nm are
- (2)
- The calculation of the weight of each spider is
- (3)
- In a common network, the vibration transmitted between spiders is defined as:
- (4)
- Population initialization is defined as follows:
- (5)
- Movement is defined as follows:
- (6)
- Mating behavior is defined as follows.
3. Forecasting Model via SSO-DBN
3.1. Data Collection
3.2. Relevance Analysis
3.3. Data Preprocessing
3.4. The Proposed Model
4. Case Study
4.1. Wind Power Forecasting
4.1.1. Testing the Prediction Performance under Different Inputs
4.1.2. Comparative Study
4.1.3. Validation of Generalization Performance
4.2. PV Power Forecasting
4.2.1. Testing the Prediction Performance Considering Different Inputs
4.2.2. Comparative Study
4.2.3. Validation of the Generalization Performance
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Choi, S.H.; Manousiouthakis, V.I. Modeling the Carbon Cycle Dynamics and the Greenhouse Effect. Ifac-Papersonline 2022, 55, 424–428. [Google Scholar] [CrossRef]
- Zhou, Q.; Ma, Y.; Lv, Q.; Zhang, R.; Wang, W.; Yang, S. Short-Term Interval Prediction of Wind Power Based on KELM and a Universal Tabu Search Algorithm. Sustainability 2022, 14, 10779. [Google Scholar] [CrossRef]
- Wu, Z.; Pan, F.; Li, D.; He, H.; Zhang, T.; Yang, S. Prediction of Photovoltaic Power by the Informer Model Based on Convolutional Neural Network. Sustainability 2022, 14, 13022. [Google Scholar] [CrossRef]
- Ahmad, F.; Alam, M.S.; Shariff, S.M.; Krishnamurthy, M. A Cost-Efficient Approach to EV Charging Station Integrated Community Microgrid: A Case Study of Indian Power Market. IEEE Trans. Transp. Electrif. 2019, 5, 200–214. [Google Scholar] [CrossRef]
- Boudia, S.M.; Yakoubi, A.; Guerri, O. Wind Resource Assessment in The Western Part of Algerian Highlands, Case Study of El-Bayadh. In Proceedings of the 2018 International Conference on Wind Energy and Applications in Algeria (ICWEAA), Algiers, Algeria, 6–7 November 2018. [Google Scholar]
- Zhu, X.; Li, S.; Li, Y.; Fan, J. Research progress of the ultra-short term power forecast for PV power generation: A review. In Proceedings of the 2021 33rd Chinese Control and Decision Conference (CCDC), Kunming, China, 22–24 May 2021; pp. 1419–1424. [Google Scholar]
- Tu, C.-S.; Tsai, W.-C.; Hong, C.-M.; Lin, W.-M. Short-Term Solar Power Forecasting via General Regression Neural Network with Grey Wolf Optimization. Energies 2022, 15, 6624. [Google Scholar] [CrossRef]
- Hanifi, S.; Lotfian, S.; Zare-Behtash, H.; Cammarano, A. Offshore Wind Power Forecasting—A New Hyperparameter Optimisation Algorithm for Deep Learning Models. Energies 2022, 15, 6919. [Google Scholar] [CrossRef]
- Sun, G.; Jiang, C.; Cheng, P.; Liu, Y.; Wang, X.; Fu, Y.; He, Y. Short-term wind power forecasts by a synthetical similar time series data mining method. Renew. Energy 2018, 115, 575–584. [Google Scholar] [CrossRef]
- Xiyun, Y.; Xue, M.; Guo, F.; Huang, Z.; Jianhua, Z. Wind power probability interval prediction based on bootstrap quantile regression method. In Proceedings of the 2017 Chinese Automation Congress (CAC), Jinan, China, 20–22 October 2017. [Google Scholar]
- Wang, C.-N.; Dang, T.-T.; Nguyen, N.-A.; Wang, J.-W. A combined Data Envelopment Analysis (DEA) and Grey Based Multiple Criteria Decision Making (G-MCDM) for solar PV power plants site selection: A case study in Vietnam. Energy Rep. 2022, 8, 1124–1142. [Google Scholar] [CrossRef]
- Khasanzoda, N.; Zicmane, I.; Beryozkina, S.; Safaraliev, M.; Sultonov, S.; Kirgizov, A. Regression model for predicting the speed of wind flows for energy needs based on fuzzy logic. Renew. Energy 2022, 191, 723–731. [Google Scholar] [CrossRef]
- Wang, F.; Chen, P.; Zhen, Z.; Yin, R.; Cao, C.; Zhang, Y.; Duić, N. Dynamic spatio-temporal correlation and hierarchical directed graph structure based ultra-short-term wind farm cluster power forecasting method. Appl. Energy 2022, 323, 119579. [Google Scholar] [CrossRef]
- Li, Z.; Luo, X.; Liu, M.; Cao, X.; Du, S.; Sun, H. Wind power prediction based on EEMD-Tent-SSA-LS-SVM. Energy Rep. 2022, 8, 3234–3243. [Google Scholar] [CrossRef]
- Qiang, C.; Qi, X. Research on Trend Analysis and Prediction Algorithm Based on Time Series. In Proceedings of the 2019 3rd International Conference on Electronic Information Technology and Computer Engineering (EITCE), Xiamen, China, 18–20 October 2019. [Google Scholar]
- Wu, F.; Cattani, C.; Song, W.; Zio, E. Fractional ARIMA with an improved cuckoo search optimization for the efficient Short-term power load forecasting. Alex. Eng. J. 2020, 59, 3111–3118. [Google Scholar] [CrossRef]
- Liu, X.; Lin, Z.; Feng, Z. Short-term offshore wind speed forecast by seasonal ARIMA—A comparison against GRU and LSTM. Energy 2021, 227, 120492. [Google Scholar] [CrossRef]
- Huang, Z.; Huang, J.; Min, J. SSA-LSTM: Short-Term Photovoltaic Power Prediction Based on Feature Matching. Energies 2022, 15, 7806. [Google Scholar] [CrossRef]
- Xing, Y.; Lien, F.-S.; Melek, W.; Yee, E. A Multi-Hour Ahead Wind Power Forecasting System Based on a WRF-TOPSIS-ANFIS Model. Energies 2022, 15, 5472. [Google Scholar] [CrossRef]
- Donti, P.L.; Kolter, J.Z. Machine Learning for Sustainable Energy Systems. Annu. Rev. Environ. Resour. 2021, 46, 719–747. [Google Scholar] [CrossRef]
- Yang, X.; Wang, S.; Peng, Y.; Chen, J.; Meng, L. Short-term photovoltaic power prediction with similar-day integrated by BP-AdaBoost based on the Grey-Markov model. Electr. Power Syst. Res. 2023, 215, 108966. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, B.; Pan, G.; Zhao, Y. A novel hybrid model based on VMD-WT and PCA-BP-RBF neural network for short-term wind speed forecasting. Energy Convers. Manag. 2019, 195, 180–197. [Google Scholar] [CrossRef]
- Abdoos, A.A. A new intelligent method based on combination of VMD and ELM for short term wind power forecasting. Neurocomputing 2016, 203, 111–120. [Google Scholar] [CrossRef]
- Ewees, A.A.; Al-Qaness, M.A.; Abualigah, L.; Elaziz, M.A. HBO-LSTM: Optimized long short term memory with heap-based optimizer for wind power forecasting. Energy Convers. Manag. 2022, 268, 116022. [Google Scholar] [CrossRef]
- Li, Z.; Luo, X.; Liu, M.; Cao, X.; Du, S.; Sun, H. Short-term prediction of the power of a new wind turbine based on IAO-LSTM. Energy Rep. 2022, 8, 9025–9037. [Google Scholar] [CrossRef]
- Wang, L.; Mao, M.; Xie, J.; Liao, Z.; Zhang, H.; Li, H. Accurate solar PV power prediction interval method based on frequency-domain decomposition and LSTM model. Energy 2023, 262, 125592. [Google Scholar] [CrossRef]
- Wang, F.; Xuan, Z.; Zhen, Z.; Li, K.; Wang, T.; Shi, M. A day-ahead PV power forecasting method based on LSTM-RNN model and time correlation modification under partial daily pattern prediction framework. Energy Convers. Manag. 2020, 212, 112766. [Google Scholar] [CrossRef]
- Niu, Z.; Yu, Z.; Tang, W.; Wu, Q.; Reformat, M. Wind power forecasting using attention-based gated recurrent unit network. Energy 2020, 196, 117081. [Google Scholar] [CrossRef]
- Farah, S.; A, W.D.; Humaira, N.; Aneela, Z.; Steffen, E. Short-term multi-hour ahead country-wide wind power prediction for Germany using gated recurrent unit deep learning. Renew. Sustain. Energy Rev. 2022, 167, 112700. [Google Scholar] [CrossRef]
- Liu, H.; Han, H.; Sun, Y.; Shi, G.; Su, M.; Liu, Z.; Wang, H.; Deng, X. Short-term wind power interval prediction method using VMD-RFG and Att-GRU. Energy 2022, 251, 123807. [Google Scholar] [CrossRef]
- Dai, Y.; Wang, Y.; Leng, M.; Yang, X.; Zhou, Q. LOWESS smoothing and Random Forest based GRU model: A short-term photovoltaic power generation forecasting method. Energy 2022, 256, 124661. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, X.; Ma, T.; Liu, D.; Wang, H.; Hu, W. A Multi-step ahead photovoltaic power forecasting model based on TimeGAN, Soft DTW-based K-medoids clustering, and a CNN-GRU hybrid neural network. Energy Rep. 2022, 8, 10346–10362. [Google Scholar] [CrossRef]
- Gao, Y.; Li, Y.; Zhu, Y.; Wu, C.; Gu, D. Power quality disturbance classification under noisy conditions using adaptive wavelet threshold and DBN-ELM hybrid model. Electr. Power Syst. Res. 2021, 204, 107682. [Google Scholar] [CrossRef]
- Gao, S.; Xu, L.; Zhang, Y.; Pei, Z. Rolling bearing fault diagnosis based on SSA optimized self-adaptive DBN. ISA Trans. 2021, 128, 485–502. [Google Scholar] [CrossRef]
- Mellit, A.; Pavan, A.M.; Lughi, V. Deep learning neural networks for short-term photovoltaic power forecasting. Renew. Energy 2021, 172, 276–288. [Google Scholar] [CrossRef]
- Akbal, Y.; Ünlü, K.D. A univariate time series methodology based on sequence-to-sequence learning for short to midterm wind power production. Renew. Energy 2022, 200, 832–844. [Google Scholar] [CrossRef]
- Hinton, G.E.; Salakhutdinov, R.R. Reducing the Dimensionality of Data with Neural Networks. Science 2006, 313, 504–507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, F.; Wang, S.; Zhang, Y. Survey on deep belief network model and its applications. Comput. Eng. Appl. 2018, 54, 11–18. [Google Scholar]
- Li, Y.; Peng, T.; Hua, L.; Ji, C.; Ma, H.; Nazir, M.S.; Zhang, C. Research and application of an evolutionary deep learning model based on improved grey wolf optimization algorithm and DBN-ELM for AQI prediction. Sustain. Cities Soc. 2022, 87, 104209. [Google Scholar] [CrossRef]
- Li, J.; Wang, W.; Chen, G.; Han, Z. Spatiotemporal assessment of landslide susceptibility in Southern Sichuan, China using SA-DBN, PSO-DBN and SSA-DBN models compared with DBN model. Adv. Space Res. 2022, 69, 3071–3087. [Google Scholar] [CrossRef]
- Ma, Y.; Li, Y.; Yue, S.; Sun, H.; Yang, M. Hybrid intelligent hysteresis model based on DBN-DNN algorithm and fusion Preisach operator. J. Magn. Magn. Mater. 2021, 544, 168663. [Google Scholar] [CrossRef]
- Wang, K.; Qi, X.; Liu, H.; Song, J. Deep belief network based k-means cluster approach for short-term wind power forecasting. Energy 2018, 165, 840–852. [Google Scholar] [CrossRef]
- Yuan, W.; Tang, Z.; Bu, B.; Cao, S. A Novel Hybrid Short-Term Wind Power Prediction Framework Based on Singular Spectrum Analysis and Deep Belief Network Utilized Improved Adaptive Genetic Algorithm. In Proceedings of the 2021 3rd International Conference on Industrial Artificial Intelligence (IAI), Shenyang, China, 8–11 November 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Tao, Y.; Chen, H. A hybrid wind power prediction method. In Proceedings of the 2016 IEEE Power and Energy Society General Meeting (PESGM), Boston, MA, USA, 17–21 July 2016. [Google Scholar]
- Wang, X.; Yang, Y.; Li, C. Deep Belief Network Based Multi-Dimensional Phase Space for Short-Term Wind Speed Forecasting. In Proceedings of the 2018 International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC), Xi’an, China, 15–17 August 2018; pp. 204–208. [Google Scholar] [CrossRef]
- Wei, H.; Liu, X.; Cao, W.; Ye, G.; Jiang, X.; He, Y. Ultra-short-term Wind Power Forecasting Based on Deep Belief Network and Wavelet Denoising. In Proceedings of the 2021 IEEE 4th International Electrical and Energy Conference (CIEEC), Wuhan, China, 28–30 May 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Hu, S.; Xiang, Y.; Huo, D.; Jawad, S.; Liu, J. An improved deep belief network based hybrid forecasting method for wind power. Energy 2021, 224, 120185. [Google Scholar] [CrossRef]
- Duan, J.; Wang, P.; Ma, W.; Fang, S.; Hou, Z. A novel hybrid model based on nonlinear weighted combination for short-term wind power forecasting. Int. J. Electr. Power Energy Syst. 2021, 134, 107452. [Google Scholar] [CrossRef]
- Wang, H.-Y.; Chen, B.; Pan, D.; Lv, Z.-A.; Huang, S.-Q.; Khayatnezhad, M.; Jimenez, G. Optimal wind energy generation considering climatic variables by Deep Belief network (DBN) model based on modified coot optimization algorithm (MCOA). Sustain. Energy Technol. Assess. 2022, 53, 102744. [Google Scholar] [CrossRef]
- Cuevas, E.; Cienfuegos, M.; Zaldívar, D.; Pérez-Cisneros, M. A swarm optimization algorithm inspired in the behavior of the social-spider. Expert Syst. Appl. 2013, 40, 6374–6384. [Google Scholar] [CrossRef] [Green Version]
- Dey, A.; Dey, S.; Bhattacharyya, S.; Platos, J.; Snasel, V. Novel quantum inspired approaches for automatic clustering of gray level images using Particle Swarm Optimization, Spider Monkey Optimization and Ageist Spider Monkey Optimization algorithms. Appl. Soft Comput. 2019, 88, 106040. [Google Scholar] [CrossRef]
- Ben, U.C.; Akpan, A.E.; Urang, J.G.; Akaerue, E.I.; Obianwu, V.I. Novel methodology for the geophysical interpretation of magnetic anomalies due to simple geometrical bodies using social spider optimization (SSO) algorithm. Heliyon 2022, 8, e09027. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Gu, Y.; Wang, Y. Supervised Deep Belief Network for Quality Prediction in Industrial Processes. IEEE Trans. Instrum. Meas. 2020, 70, 1–11. [Google Scholar] [CrossRef]
- Martinez, R.G. How good is good? probabilistic benchmarks and nanofinance+. arXiv 2021, arXiv:2103.01669. [Google Scholar]
Influencing Factors | Average Paddle Angle | Average Pitch Speed of Paddle (1) | Average Pitch Speed of Paddle (2) | Maximum Wind Speed |
---|---|---|---|---|
Correlation coefficient | −0.1991 | 0.0032 | 0.0040 | 0.8821 |
Influencing Factors | Minimum Wind Speed | Average Wind Speed | Average Wind Direction | Average Outdoor Temperature |
Correlation Coefficient | 0.8592 | 0.9093 | −0.0786 | −0.2952 |
Influencing Factors | Global Horizontal Radiation | Diffuse Horizontal Radiation | Weather Temperature Celsius | Weather Relative Humidity |
---|---|---|---|---|
Correlation Coefficient | 0.8196 | 0.7680 | 0.7418 | −0.6108 |
Model | MSE | RMSE | MAE | MAPE |
---|---|---|---|---|
BP | 1425.6 | 37.7578 | 32.0898 | 0.13489 |
LSTM | 3199.5 | 56.5646 | 42.8276 | 0.27937 |
DBN | 1031.4 | 32.1156 | 25.1342 | 0.19779 |
SSO-DBN | 423.13 | 20.5702 | 15.2306 | 0.08392 |
Test Set 1 | Model | MSE | RMSE | MAE | MAPE |
DBN | 124,116 | 352.3017 | 284.373 | 0.13633 | |
BP | 48,960 | 221.2694 | 174.6741 | 0.085356 | |
LSTM | 307,442 | 554.4751 | 422.6309 | 0.21699 | |
SSO-DBN | 43,912 | 209.5526 | 166.1928 | 0.079677 | |
Test Set 2 | Model | MSE | RMSE | MAE | MAPE |
DBN | 46,720 | 216.149 | 168.9078 | 0.087231 | |
BP | 135,712 | 368.3912 | 280.44 | 0.15921 | |
LSTM | 348,741 | 590.5431 | 457.1409 | 0.25074 | |
SSO-DBN | 24,042 | 155.0563 | 115.3886 | 0.061968 | |
Test Set 3 | Model | MSE | RMSE | MAE | MAPE |
DBN | 10,807 | 103.9611 | 81.4449 | 0.20845 | |
BP | 11,598 | 107.6976 | 87.2935 | 0.18541 | |
LSTM | 34,440 | 185.5827 | 131.617 | 0.33576 | |
SSO-DBN | 5772 | 75.9773 | 51.9816 | 0.13823 | |
Test Set 4 | Model | MSE | RMSE | MAE | MAPE |
DBN | 26,797 | 163.6992 | 137.0456 | 0.35413 | |
BP | 9435 | 97.138 | 62.995 | 0.17088 | |
LSTM | 24,355 | 156.0626 | 112.9145 | 0.25035 | |
SSO-DBN | 5210 | 72.1822 | 49.3107 | 0.13241 |
Model | MSE | RMSE | MAE | MAPE |
---|---|---|---|---|
BP | 47.6455 | 6.9026 | 3.9977 | 0.061008 |
LSTM | 173.7193 | 13.1803 | 6.4963 | 0.079889 |
DBN | 48.6532 | 6.9752 | 5.6078 | 0.046594 |
SSO-DBN | 29.2372 | 5.4071 | 3.2073 | 0.038172 |
Test Set 1 | Model | MSE | RMSE | MAE | MAPE |
BP | 4.5769 | 2.1394 | 1.874 | 0.06363 | |
LSTM | 67.406 | 8.2101 | 6.0099 | 0.29398 | |
DBN | 9.28 | 3.0463 | 2.2691 | 0.10342 | |
SSO-DBN | 3.0803 | 1.7551 | 1.3589 | 0.052383 | |
Test Set 2 | Model | MSE | RMSE | MAE | MAPE |
BP | 24.9829 | 4.9983 | 4.6187 | 0.051809 | |
LSTM | 117.9945 | 10.8625 | 5.1422 | 0.31958 | |
DBN | 9.0096 | 3.0016 | 2.364 | 0.084287 | |
SSO-DBN | 5.0457 | 2.2463 | 1.8453 | 0.060033 | |
Test Set 3 | Model | MSE | RMSE | MAE | MAPE |
BP | 4.9911 | 2.2341 | 1.6594 | 0.04845 | |
LSTM | 239.1902 | 15.4658 | 6.0881 | 0.35011 | |
DBN | 13.5167 | 3.6765 | 2.8421 | 0.098 | |
SSO-DBN | 8.0852 | 2.8434 | 1.9787 | 0.072879 | |
Test Set 4 | Model | MSE | RMSE | MAE | MAPE |
BP | 81.4415 | 9.0245 | 5.273 | 0.10024 | |
LSTM | 961.5506 | 31.0089 | 15.8432 | 0.29904 | |
DBN | 58.2368 | 7.6313 | 4.75 | 0.085909 | |
SSO-DBN | 43.8941 | 6.6253 | 3.964 | 0.075145 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, Y.; Zhang, H.; Dai, J.; Zhu, R.; Qiu, L.; Dong, Y.; Fang, S. Deep Belief Network with Swarm Spider Optimization Method for Renewable Energy Power Forecasting. Processes 2023, 11, 1001. https://doi.org/10.3390/pr11041001
Wei Y, Zhang H, Dai J, Zhu R, Qiu L, Dong Y, Fang S. Deep Belief Network with Swarm Spider Optimization Method for Renewable Energy Power Forecasting. Processes. 2023; 11(4):1001. https://doi.org/10.3390/pr11041001
Chicago/Turabian StyleWei, Yuan, Huanchang Zhang, Jiahui Dai, Ruili Zhu, Lihong Qiu, Yuzhuo Dong, and Shuai Fang. 2023. "Deep Belief Network with Swarm Spider Optimization Method for Renewable Energy Power Forecasting" Processes 11, no. 4: 1001. https://doi.org/10.3390/pr11041001
APA StyleWei, Y., Zhang, H., Dai, J., Zhu, R., Qiu, L., Dong, Y., & Fang, S. (2023). Deep Belief Network with Swarm Spider Optimization Method for Renewable Energy Power Forecasting. Processes, 11(4), 1001. https://doi.org/10.3390/pr11041001